Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = NV expression level

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2850 KiB  
Article
Gold Kiwi-Derived Nanovesicles Mitigate Ultraviolet-Induced Photoaging and Enhance Osteogenic Differentiation in Bone Marrow Mesenchymal Stem Cells
by Doyeon Kim, Chanho Lee, Manho Kim and Ju Hyun Park
Antioxidants 2024, 13(12), 1474; https://doi.org/10.3390/antiox13121474 - 29 Nov 2024
Cited by 1 | Viewed by 1106
Abstract
Bone marrow mesenchymal stem cells (BM-MSCs) play a crucial role in bone formation through their ability to differentiate into osteoblasts. Aging, however, detrimentally affects the differentiation and proliferation capacities of BM-MSCs, consequently impairing bone regeneration. Thus, mitigating the aging effects on BM-MSCs is [...] Read more.
Bone marrow mesenchymal stem cells (BM-MSCs) play a crucial role in bone formation through their ability to differentiate into osteoblasts. Aging, however, detrimentally affects the differentiation and proliferation capacities of BM-MSCs, consequently impairing bone regeneration. Thus, mitigating the aging effects on BM-MSCs is vital for addressing bone-related pathologies. In this study, we demonstrate that extracellular nanovesicles isolated from gold kiwi (GK-NVs) protect human BM-MSCs from ultraviolet (UV)-induced photoaging, thereby alleviating aging-related impairments in cellular functions that are crucial for bone homeostasis. Notably, GK-NVs were efficiently taken up by BM-MSCs without causing cytotoxicity. GK-NVs reduced intracellular reactive oxygen species (ROS) levels upon UV irradiation, restoring impaired proliferation and migration capabilities. Furthermore, GK-NVs corrected the skewed differentiation capacities of UV-irradiated BM-MSCs by enhancing osteoblast differentiation, as evidenced by the increased expression in osteoblast-specific genes and the calcium deposition, and by reducing adipocyte differentiation, as indicated by the decreased lipid droplet formation. These findings position GK-NVs as a promising biomaterial for the treatment of bone-related diseases such as osteoporosis. Full article
(This article belongs to the Special Issue Antioxidants as Anti-Aging Interventions)
Show Figures

Figure 1

21 pages, 6951 KiB  
Article
Comparative Analysis of mRNA, microRNA of Transcriptome, and Proteomics on CIK Cells Responses to GCRV and Aeromonas hydrophila
by Xike Li, Yue Lin, Wenjuan Li, Yuejuan Cheng, Junling Zhang, Junqiang Qiu and Yuanshuai Fu
Int. J. Mol. Sci. 2024, 25(12), 6438; https://doi.org/10.3390/ijms25126438 - 11 Jun 2024
Cited by 3 | Viewed by 1438
Abstract
Grass Carp Reovirus (GCRV) and Aeromonas hydrophila (Ah) are the causative agents of haemorrhagic disease in grass carp. This study aimed to investigate the molecular mechanisms and immune responses at the miRNA, mRNA, and protein levels in grass carp kidney cells (CIK) infected [...] Read more.
Grass Carp Reovirus (GCRV) and Aeromonas hydrophila (Ah) are the causative agents of haemorrhagic disease in grass carp. This study aimed to investigate the molecular mechanisms and immune responses at the miRNA, mRNA, and protein levels in grass carp kidney cells (CIK) infected by Grass Carp Reovirus (GCRV, NV) and Aeromonas hydrophilus (Bacteria, NB) to gain insight into their pathogenesis. Within 48 h of infection with Grass Carp Reovirus (GCRV), 99 differentially expressed microRNA (DEMs), 2132 differentially expressed genes (DEGs), and 627 differentially expressed proteins (DEPs) were identified by sequencing; a total of 92 DEMs, 3162 DEGs, and 712 DEPs were identified within 48 h of infection with Aeromonas hydrophila. It is worth noting that most of the DEGs in the NV group were primarily involved in cellular processes, while most of the DEGs in the NB group were associated with metabolic pathways based on KEGG enrichment analysis. This study revealed that the mechanism of a grass carp haemorrhage caused by GCRV infection differs from that caused by the Aeromonas hydrophila infection. An important miRNA–mRNA–protein regulatory network was established based on comprehensive transcriptome and proteome analysis. Furthermore, 14 DEGs and 6 DEMs were randomly selected for the verification of RNA/small RNA-seq data by RT-qPCR. Our study not only contributes to the understanding of the pathogenesis of grass carp CIK cells infected with GCRV and Aeromonas hydrophila, but also serves as a significant reference value for other aquatic animal haemorrhagic diseases. Full article
(This article belongs to the Special Issue Fish Genomics and Developmental Biology)
Show Figures

Figure 1

14 pages, 1212 KiB  
Article
Gene Dosage of F5 c.3481C>T Stop-Codon (p.R1161Ter) Switches the Clinical Phenotype from Severe Thrombosis to Recurrent Haemorrhage: Novel Hypotheses for Readthrough Strategy
by Donato Gemmati, Elisabetta D’Aversa, Bianca Antonica, Miriana Grisafi, Francesca Salvatori, Stefano Pizzicotti, Patrizia Pellegatti, Maria Ciccone, Stefano Moratelli, Maria Luisa Serino and Veronica Tisato
Genes 2024, 15(4), 432; https://doi.org/10.3390/genes15040432 - 29 Mar 2024
Cited by 2 | Viewed by 2108
Abstract
Inherited defects in the genes of blood coagulation essentially express the severity of the clinical phenotype that is directly correlated to the number of mutated alleles of the candidate leader gene (e.g., heterozygote vs. homozygote) and of possible additional coinherited traits. The F5 [...] Read more.
Inherited defects in the genes of blood coagulation essentially express the severity of the clinical phenotype that is directly correlated to the number of mutated alleles of the candidate leader gene (e.g., heterozygote vs. homozygote) and of possible additional coinherited traits. The F5 gene, which codes for coagulation factor V (FV), plays a two-faced role in the coagulation cascade, exhibiting both procoagulant and anticoagulant functions. Thus, defects in this gene can be predisposed to either bleeding or thrombosis. A Sanger sequence analysis detected a premature stop-codon in exon 13 of the F5 gene (c.3481C>T; p.R1161Ter) in several members of a family characterised by low circulating FV levels and contrasting clinical phenotypes. The propositus, a 29 y.o. male affected by recurrent haemorrhages, was homozygous for the F5 stop-codon and for the F5 c.1691G>A (p.R506Q; FV-Leiden) inherited from the heterozygous parents, which is suggestive of combined cis-segregation. The homozygous condition of the stop-codon completely abolished the F5 gene expression in the propositus (FV:Ag < 1%; FV:C < 1%; assessed by ELISA and PT-based one-stage clotting assay respectively), removing, in turn, any chance for FV-Leiden to act as a prothrombotic molecule. His father (57 y.o.), characterised by severe recurrent venous thromboses, underwent a complete molecular thrombophilic screening, revealing a heterozygous F2 G20210A defect, while his mother (56 y.o.), who was negative for further common coagulation defects, reported fully asymptomatic anamnesis. To dissect these conflicting phenotypes, we performed the ProC®Global (Siemens Helthineers) coagulation test aimed at assessing the global pro- and anticoagulant balance of each family member, investigating the responses to the activated protein C (APC) by means of an APC-sensitivity ratio (APC-sr). The propositus had an unexpectedly poor response to APC (APC-sr: 1.09; n.v. > 2.25), and his father and mother had an APC-sr of 1.5 and 2.0, respectively. Although ProC®Global prevalently detects the anticoagulant side of FV, the exceptionally low APC-sr of the propositus and his discordant severe–moderate haemorrhagic phenotype could suggest a residual expression of mutated FV p.506QQ through a natural readthrough or possible alternative splicing mechanisms. The coagulation pathway may be physiologically rebalanced through natural and induced strategies, and the described insights might be able to track the design of novel treatment approaches and rebalancing molecules. Full article
(This article belongs to the Special Issue Feature Papers in Human Genomics and Genetic Diseases 2023)
Show Figures

Figure 1

17 pages, 7253 KiB  
Article
RETRACTED: Andrographolide Alleviates Oxidative Damage and Inhibits Apoptosis Induced by IHNV Infection via CTSK/BCL2/Cytc Axis
by Qi Liu, Linfang Li, Jingzhuang Zhao, Guangming Ren, Tongyan Lu, Yizhi Shao and Liming Xu
Int. J. Mol. Sci. 2024, 25(1), 308; https://doi.org/10.3390/ijms25010308 - 25 Dec 2023
Cited by 3 | Viewed by 1946 | Retraction
Abstract
Infectious hematopoietic necrosis virus (IHNV) is an important pathogen that causes significant economic losses to salmon trout farming. Although vaccines have been invented for the treatment of IHNV, findings from our previous survey show that breeding enterprises and farmers require effective oral drugs [...] Read more.
Infectious hematopoietic necrosis virus (IHNV) is an important pathogen that causes significant economic losses to salmon trout farming. Although vaccines have been invented for the treatment of IHNV, findings from our previous survey show that breeding enterprises and farmers require effective oral drugs or immune enhancers. However, studies on the development of oral drugs are limited. In the present study, we used bioinformatics methods to predict the protein targets of andrographolide (Andro) in IHNV. Cells were infected with IHNV, and the effect of andrographolide was explored by evaluating the expression levels of genes implicated in oxidative stress, activities of antioxidant enzymes, and the expression of genes implicated in apoptosis and necrosis. In the present study, cells were divided into NC, IHNV, IHNV+10 μM andrographolide, and IHNV+20 μM andrographolide groups. qRT-PCR was performed to determine the expression level of genes, and an antioxidant enzyme detection kit was used to evaluate the activities of antioxidant enzymes. Fluorescent staining was performed using a reactive oxygen species detection kit (ROS) and Hoechst 33342/PI double staining kit, and the mechanism of alleviation of apoptosis and oxidative stress andrographolide after IHNV infection was determined. The results indicated that andrographolide inhibits viral growth by binding to the NV protein of IHNV and increasing the antioxidant capacity of the body through the CTSK/BCL2/Cytc axis, thereby inhibiting the occurrence of IHNV-induced apoptosis. This is the first study to explore the antagonistic mechanism of action of andrographolide in alleviating IHNV infection. The results provide valuable information on alternative strategies for the treatment of IHNV infection during salmon family and provide a reference for the use of andrographolide as an antioxidant agent in agricultural settings. Full article
(This article belongs to the Special Issue Protein–Protein Interactions: New Perspectives in Drug Discovery)
Show Figures

Figure 1

14 pages, 1883 KiB  
Article
Transcriptome Analysis of Maize Ear Leaves Treated with Long-Term Straw Return plus Nitrogen Fertilizer under the Wheat–Maize Rotation System
by Jun Li, Jintao Liu, Kaili Zhu and Shutang Liu
Plants 2023, 12(22), 3868; https://doi.org/10.3390/plants12223868 - 16 Nov 2023
Cited by 1 | Viewed by 1576
Abstract
Straw return (SR) plus nitrogen (N) fertilizer has become a practical field management mode to improve soil fertility and crop yield in North China. This study aims to explore the relationship among organic waste, mineral nutrient utilization, and crop yield under SRN mode. [...] Read more.
Straw return (SR) plus nitrogen (N) fertilizer has become a practical field management mode to improve soil fertility and crop yield in North China. This study aims to explore the relationship among organic waste, mineral nutrient utilization, and crop yield under SRN mode. The fertilizer treatments included unfertilized (CK), SR (straws from wheat and corn), N fertilizer (N), and SR plus N fertilizer (SRN). SRN treatment not only significantly increased the grain yield, net photosynthetic rate, and transpiration rate but also enhanced the contents of chlorophyll, soluble sugar, and soluble protein and increased the activities of antioxidant enzymes but reduced intercellular CO2 concentration and malondialdehyde (MDA) content when compared to other treatments. There were 2572, 1258, and 3395 differentially expressed genes (DEGs) identified from the paired comparisons of SRvsCK, NvsCK, and SRNvsCK, respectively. The transcript levels of many promising genes involved in the transport and assimilation of potassium, phosphate, and nitrogen, as well as the metabolisms of sugar, lipid, and protein, were down-regulated by straw returning under N treatment. SRN treatment maintained the maximum maize grain yield by regulating a series of genes’ expressions to reduce nutrient shortage stress and to enhance the photosynthesis of ear leaves at the maize grain filling stage. This study would deepen the understanding of complex molecular mechanisms among organic waste, mineral nutrient utilization, crop yield, and quality. Full article
(This article belongs to the Special Issue Soil Fertility, Plant Nutrition and Nutrient Management)
Show Figures

Figure 1

10 pages, 1688 KiB  
Article
Effects of Non-Virion Gene Expression Level and Viral Genome Length on the Replication and Pathogenicity of Viral Hemorrhagic Septicemia Virus
by Najib Abdellaoui, Seon Young Kim, Ki Hong Kim and Min Sun Kim
Viruses 2022, 14(9), 1886; https://doi.org/10.3390/v14091886 - 26 Aug 2022
Cited by 1 | Viewed by 1932
Abstract
Fish novirhabdoviruses, including viral hemorrhagic septicemia virus (VHSV), hirame rhabdovirus (HIRRV), and infectious hematopoietic necrosis virus (IHNV), harbor a unique non-virion (NV) gene that is crucial for efficient replication and pathogenicity. The effective levels and the function of the N-terminal region of the [...] Read more.
Fish novirhabdoviruses, including viral hemorrhagic septicemia virus (VHSV), hirame rhabdovirus (HIRRV), and infectious hematopoietic necrosis virus (IHNV), harbor a unique non-virion (NV) gene that is crucial for efficient replication and pathogenicity. The effective levels and the function of the N-terminal region of the NV protein, however, remain poorly understood. In the present study, several recombinant VHSVs, which completely lack (rVHSV-ΔNV) or harbor an additional (rVHSV-dNV) NV gene, were generated using reverse genetics. To confirm the function of the N-terminal region of the NV protein, recombinant VHSVs with the NV gene that gradually mutated from the start codon (ATG) to the stop codon (TGA), expressed as N-terminally truncated NV proteins (rVHSV-NV1, -NV2, and -NV3), were generated. CPE progression and viral growth analyses showed that epithelioma papulosum cyprini (EPC) cells infected with rVHSV-ΔNV or rVHSV-NV3—which did not express NV protein—rarely showed CPE and viral replication as opposed to EPC cells infected with rVHSV-wild. Interestingly, regardless of the presence of two NV genes in the rVHSV-dNV genome, EPC cells infected with rVHSV-dNV or rVHSV-A-EGFP (control) failed to induce CPE and viral replication. In EPC cells infected with rVHSV-dNV or rVHSV-A-EGFP, which harbored a longer VHSV genome than the wild-type, Mx gene expression levels, which were detected by luciferase activity assay, were particularly high; Mx gene expression levels were higher in EPC cells infected with rVHSV-ΔNV, -NV2, or -NV3 than in those infected with rVHSV-wild or rVHSV-NV1. The total amount of NV transcript produced in EPC cells infected with rVHSV-wild was much higher than that in EPC cells infected with rVHSV-dNV. However, the expression levels of the NV gene per viral particle were significantly higher in EPC cells infected with rVHSV-dNV than in cells infected with rVHSV-wild. These results suggest that the NV protein is an essential component in the inhibition of host type-I interferon (IFN) and the induction of viral replication. Most importantly, viral genome length might affect viral replication efficiency to a greater extent than does NV gene expression. In in vivo pathogenicity experiments, the cumulative mortality rates of olive flounder fingerlings infected with rVHSV-dNV or rVHSV-wild were similar (60–70%), while those of fingerlings infected with rVHSV-A-EGFP were lower. Moreover, the virulence of rVHSV-ΔNV and rVHSV, both harboring a truncated NV gene (rVHSV-NV1, -NV2, and -NV3), was completely attenuated in the olive flounder. These results suggest that viral pathogenicity is affected by the viral replication rate and NV gene expression. In conclusion, the genome length and NV gene (particularly the N-terminal region) expression of VHSVs are closely associated with viral replication in host type-I IFN response and the viral pathogenicity. Full article
(This article belongs to the Special Issue Fish Virology)
Show Figures

Figure 1

12 pages, 7058 KiB  
Article
LRG1 Expression Is Elevated in the Eyes of Patients with Neovascular Age-Related Macular Degeneration
by Lucia Mundo, Gian Marco Tosi, Stefano Lazzi, Grazia Pertile, Barbara Parolini, Giovanni Neri, Matteo Posarelli, Elena De Benedetto, Tommaso Bacci, Ennio Silvestri, Maria Chiara Siciliano, Stefano Barbera, Maurizio Orlandini, John Greenwood, Stephen E. Moss and Federico Galvagni
Int. J. Mol. Sci. 2021, 22(16), 8879; https://doi.org/10.3390/ijms22168879 - 18 Aug 2021
Cited by 14 | Viewed by 3918
Abstract
Leucine-rich a-2-glycoprotein 1 (LRG1) is a candidate therapeutic target for treating the neovascular form of age-related macular degeneration (nvAMD). In this study we examined the expression of LRG1 in eyes of nvAMD patients. Choroidal neovascular membranes (CNVMs) from patients who underwent submacular surgery [...] Read more.
Leucine-rich a-2-glycoprotein 1 (LRG1) is a candidate therapeutic target for treating the neovascular form of age-related macular degeneration (nvAMD). In this study we examined the expression of LRG1 in eyes of nvAMD patients. Choroidal neovascular membranes (CNVMs) from patients who underwent submacular surgery for retinal pigment epithelium–choroid graft transplantation were collected from 5 nvAMD patients without any prior intravitreal anti-VEGF injection, and from six patients who received intravitreal anti-VEGF injections before surgery. As controls free of nvAMD, retina sections were obtained from the eyes resected from a patient with lacrimal sac tumor and from a patient with neuroblastoma. CNVMs were immunostained for CD34, LRG1, and α-smooth muscle actin (α-SMA). Aqueous humor samples were collected from 58 untreated-naïve nvAMD patients prior to the intravitreal injection of anti-VEGF and 51 age-matched cataract control patients, and LRG1 concentration was measured by ELISA. The level of LRG1 immunostaining is frequently high in both the endothelial cells of the blood vessels, and myofibroblasts in the surrounding tissue of CNVMs of treatment-naïve nvAMD patients. Furthermore, the average concentration of LRG1 was significantly higher in the aqueous humor of nvAMD patients than in controls. These observations provide a strong experimental basis and scientific rationale for the progression of a therapeutic anti-LRG1 monoclonal antibody into clinical trials with patients with nvAMD. Full article
(This article belongs to the Special Issue Retinal Degeneration and Protection)
Show Figures

Figure 1

13 pages, 3442 KiB  
Article
Anti-Aging Effects of Nanovesicles Derived from Human Tonsil-Derived Mesenchymal Stem Cells
by Dohyun Kim, Youngdae Lee, Kwangsook Park, Danbi Park, Won Jai Lee, Tai Suk Roh, Hyungju Cho and Wooyeol Baek
Appl. Sci. 2021, 11(13), 5780; https://doi.org/10.3390/app11135780 - 22 Jun 2021
Cited by 1 | Viewed by 2566
Abstract
Growing evidence has demonstrated that biomimetic nanovesicles produced from specific cells show bioactive properties such as anti-tumor or anti-inflammatory activities. However, the properties of these nanovesicles are very diverse, depending on their cell sources. In this study, human tonsil-derived mesenchymal stem cells (TMSCs) [...] Read more.
Growing evidence has demonstrated that biomimetic nanovesicles produced from specific cells show bioactive properties such as anti-tumor or anti-inflammatory activities. However, the properties of these nanovesicles are very diverse, depending on their cell sources. In this study, human tonsil-derived mesenchymal stem cells (TMSCs) were used in the production of functional biomimetic nanovesicles with anti-senescence. TMSCs were isolated from human tonsil tissue obtained by tonsillectomy. TMSC-derived nanovesicles (TMSC-NVs) were produced by serial extrusion using a mini-extruder. Western blotting and particle analysis were performed for characterization of TMSC-NVs. They were applied to both replicative and ultraviolet B-induced senescent human dermal fibroblasts in vitro. Following six days of treatment, analysis of the proliferation and senescence level of fibroblasts was performed using cell counting and senescence-associated β-galactosidase assay, respectively. Treatment with TMSC-NVs enhanced the cell proliferation and reduced the activity of senescence-associated β-galactosidase in both replicative and ultraviolet B-induced senescent cells. Treatment with TMSC-NVs resulted in increased expression of extracellular matrix and anti-oxidant genes. Treatment with TMSC-NVs resulted in reduced expression of vinculin in focal adhesion. These results show that TMSC-NVs have an effect on recovering from cellular senescence by oxidative stress and can be applied as useful materials for the development of skin rejuvenation. Full article
(This article belongs to the Special Issue Current Techniques in Implants for Plastic Surgery)
Show Figures

Figure 1

15 pages, 1457 KiB  
Article
Grapefruit-Derived Micro and Nanovesicles Show Distinct Metabolome Profiles and Anticancer Activities in the A375 Human Melanoma Cell Line
by Christopher Stanly, Mariaevelina Alfieri, Alfredo Ambrosone, Antonietta Leone, Immacolata Fiume and Gabriella Pocsfalvi
Cells 2020, 9(12), 2722; https://doi.org/10.3390/cells9122722 - 21 Dec 2020
Cited by 115 | Viewed by 7163
Abstract
Fruit juice is one of the most easily accessible resources for the isolation of plant-derived vesicles. Here we found that micro- and nano-sized vesicles (MVs and NVs) from four Citrus species, C. sinensis, C. limon, C. paradisi and C. aurantium, [...] Read more.
Fruit juice is one of the most easily accessible resources for the isolation of plant-derived vesicles. Here we found that micro- and nano-sized vesicles (MVs and NVs) from four Citrus species, C. sinensis, C. limon, C. paradisi and C. aurantium, specifically inhibit the proliferation of lung, skin and breast cancer cells, with no substantial effect on the growth of non-cancer cells. Cellular and molecular analyses demonstrate that grapefruit-derived vesicles cause cell cycle arrest at G2/M checkpoint associated with a reduced cyclins B1 and B2 expression levels and the upregulation of cell cycle inhibitor p21. Further data suggest the inhibition of Akt and ERK signalling, reduced intercellular cell adhesion molecule-1 and cathepsins expressions, and the presence of cleaved PARP-1, all associated with the observed changes at the cellular level. Gas chromatography-mass spectrometry-based metabolomics reveals distinct metabolite profiles for the juice and vesicle fractions. NVs exhibit a high relative amount of amino acids and organic acids whereas MVs and fruit juice are characterized by a high percentage of sugars and sugar derivatives. Grapefruit-derived NVs are in particular rich in alpha–hydroxy acids and leucine/isoleucine, myo-inositol and doconexent, while quininic acid was detected in MVs. Our findings reveal the metabolite signatures of grapefruit-derived vesicles and substantiate their potential use in new anticancer strategies. Full article
(This article belongs to the Special Issue Metabolomics in Plant Research)
Show Figures

Graphical abstract

18 pages, 1446 KiB  
Article
Effect of the Viral Hemorrhagic Septicemia Virus Nonvirion Protein on Translation via PERK-eIF2α Pathway
by Shelby Powell Kesterson, Jeffery Ringiesn, Vikram N. Vakharia, Brian S. Shepherd, Douglas W. Leaman and Krishnamurthy Malathi
Viruses 2020, 12(5), 499; https://doi.org/10.3390/v12050499 - 30 Apr 2020
Cited by 19 | Viewed by 4573
Abstract
Viral hemorrhagic septicemia virus (VHSV) is one of the most deadly infectious fish pathogens, posing a serious threat to the aquaculture industry and freshwater ecosystems worldwide. Previous work showed that VHSV sub-genotype IVb suppresses host innate immune responses, but the exact mechanism by [...] Read more.
Viral hemorrhagic septicemia virus (VHSV) is one of the most deadly infectious fish pathogens, posing a serious threat to the aquaculture industry and freshwater ecosystems worldwide. Previous work showed that VHSV sub-genotype IVb suppresses host innate immune responses, but the exact mechanism by which VHSV IVb inhibits antiviral response remains incompletely characterized. As with other novirhabdoviruses, VHSV IVb contains a unique and highly variable nonvirion (NV) gene, which is implicated in viral replication, virus-induced apoptosis and regulating interferon (IFN) production. However, the molecular mechanisms underlying the role of IVb NV gene in regulating viral or cellular processes is poorly understood. Compared to the wild-type recombinant (rWT) VHSV, mutant VHSV lacking a functional IVb NV reduced IFN expression and compromised innate immune response of the host cells by inhibiting translation. VHSV IVb infection increased phosphorylated eukaryotic initiation factor 2α (p-eIF2α), resulting in host translation shutoff. However, VHSV IVb protein synthesis proceeds despite increasing phosphorylation of eIF2α. During VHSV IVb infection, eIF2α phosphorylation was mediated via PKR-like endoplasmic reticulum kinase (PERK) and was required for efficient viral protein synthesis, but shutoff of host translation and IFN signaling was independent of p-eIF2α. Similarly, IVb NV null VHSV infection induced less p-eIF2α, but exhibited decreased viral protein synthesis despite increased levels of viral mRNA. These findings show a role for IVb NV in VHSV pathogenesis by utilizing the PERK-eIF2α pathway for viral-mediated host shutoff and interferon signaling to regulate host cell response. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

12 pages, 1462 KiB  
Article
Inhibitory Effect of Metalloproteinase Inhibitors on Skin Cell Inflammation Induced by Jellyfish Nemopilema nomurai Nematocyst Venom
by Aoyu Li, Huahua Yu, Rongfeng Li, Song Liu, Ronge Xing and Pengcheng Li
Toxins 2019, 11(3), 156; https://doi.org/10.3390/toxins11030156 - 10 Mar 2019
Cited by 25 | Viewed by 4601
Abstract
Jellyfish envenomations result in extensive dermatological symptoms, clinically named as jellyfish dermatitis, which can seriously affect the daily activities and physical health of people. Inflammatory response accompanies the whole process of jellyfish dermatitis and the complexity of jellyfish venom components makes it difficult [...] Read more.
Jellyfish envenomations result in extensive dermatological symptoms, clinically named as jellyfish dermatitis, which can seriously affect the daily activities and physical health of people. Inflammatory response accompanies the whole process of jellyfish dermatitis and the complexity of jellyfish venom components makes it difficult to treat jellyfish dermatitis symptoms effectively. Moreover, inhibiting inflammation is essential for the treatment of jellyfish stings and exploring the main components of jellyfish venom that cause inflammation is an urgent research area. In this study, the inhibitory effects of matrix metalloproteinase (MMP) inhibitors for venom-induced inflammation were explored at a cellular level. The expression of the three inflammatory factors, IL-6, TNF-α and MCP-1 in two skin cell lines, human keratinocyte cells (HaCaT) and human embryonic skin fibroblasts cells (CCC-ESF-1), at the cellular level, after treatment with the inhibitors of jellyfish Nemopilema nomurai (N. nomurai) nematocyst venom (NnNV-I), were determined. The results showed that inhibitors of MMP can significantly reduce the toxic effects of jellyfish Nemopilema nomurai nematocyst venom (NnNV) to skin cells. The expression levels of the three inflammatory factors IL-6, MCP-1, and TNF-α in the cells were also significantly decreased, indicating that MMPs in jellyfish venom are probably vital factors leading to jellyfish dermatitis. This study is beneficial in the prevention and treatment of jellyfish stings. Full article
(This article belongs to the Collection Toxicological Challenges of Aquatic Toxins)
Show Figures

Figure 1

18 pages, 2021 KiB  
Article
Molecular Cloning and Functional Studies of Two Kazal-Type Serine Protease Inhibitors Specifically Expressed by Nasonia vitripennis Venom Apparatus
by Cen Qian, Qi Fang, Lei Wang and Gong-Yin Ye
Toxins 2015, 7(8), 2888-2905; https://doi.org/10.3390/toxins7082888 - 4 Aug 2015
Cited by 27 | Viewed by 6539
Abstract
Two cDNA sequences of Kazal-type serine protease inhibitors (KSPIs) in Nasonia vitripennis, NvKSPI-1 and NvKSPI-2, were characterized and their open reading frames (ORFs) were 198 and 264 bp, respectively. Both NvKSPI-1 and NvKSPI-2 contained a typical Kazal-type domain. Real-time quantitative PCR [...] Read more.
Two cDNA sequences of Kazal-type serine protease inhibitors (KSPIs) in Nasonia vitripennis, NvKSPI-1 and NvKSPI-2, were characterized and their open reading frames (ORFs) were 198 and 264 bp, respectively. Both NvKSPI-1 and NvKSPI-2 contained a typical Kazal-type domain. Real-time quantitative PCR (RT-qPCR) results revealed that NvKSPI-1 and NvKSPI-2 mRNAs were mostly detected specifically in the venom apparatus, while they were expressed at lower levels in the ovary and much lower levels in other tissues tested. In the venom apparatus, both NvKSPI-1 and NvKSPI-2 transcripts were highly expressed on the fourth day post eclosion and then declined gradually. The NvKSPI-1 and NvKSPI-2 genes were recombinantly expressed utilizing a pGEX-4T-2 vector, and the recombinant products fused with glutathione S-transferase were purified. Inhibition of recombinant GST-NvKSPI-1 and GST-NvKSPI-2 to three serine protease inhibitors (trypsin, chymotrypsin, and proteinase K) were tested and results showed that only NvKSPI-1 could inhibit the activity of trypsin. Meanwhile, we evaluated the influence of the recombinant GST-NvKSPI-1 and GST-NvKSPI-2 on the phenoloxidase (PO) activity and prophenoloxidase (PPO) activation of hemolymph from a host pupa, Musca domestica. Results showed PPO activation in host hemolymph was inhibited by both recombinant proteins; however, there was no significant inhibition on the PO activity. Our results suggested that NvKSPI-1 and NvKSPI-2 could inhibit PPO activation in host hemolymph and trypsin activity in vitro. Full article
Show Figures

Graphical abstract

Back to TopTop