Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = NS3 helicase inhibitor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3300 KiB  
Article
A Novel Approach to Develop New and Potent Inhibitors for the Simultaneous Inhibition of Protease and Helicase Activities of HCV NS3/4A Protease: A Computational Approach
by Muhammad Riaz, Ashfaq Ur Rehman, Muhammad Waqas, Asaad Khalid, Ashraf N. Abdalla, Arif Mahmood, Junjian Hu and Abdul Wadood
Molecules 2023, 28(3), 1300; https://doi.org/10.3390/molecules28031300 - 29 Jan 2023
Cited by 1 | Viewed by 2383
Abstract
Infection of hepatitis C (HCV) is a major threat to human health throughout the world. The current therapy program suffers from restricted efficiency and low tolerance, and there is serious demand frr novel medication. NS3/4A protease is observed to be very effective target [...] Read more.
Infection of hepatitis C (HCV) is a major threat to human health throughout the world. The current therapy program suffers from restricted efficiency and low tolerance, and there is serious demand frr novel medication. NS3/4A protease is observed to be very effective target for the treatment of HCV. A data set of the already reported HCV NS3/4A protease inhibitors was first docked into the NS3/4A protease (PDB ID: 4A92A) active sites of both protease and helicase sites for calculating the docking score, binding affinity, binding mode, and solvation energy. Then the data set of these reported inhibitors was used in a computer-based program “RECAP Analyses” implemented in MOE to fragment every molecule in the subset according to simple retrosynthetic analysis rules. The RECAP analysis fragments were then used in another computer-based program “RECAP Synthesis” to randomly recombine and generate synthetically reasonable novel chemical structures. The novel chemical structures thus produced were then docked against HCV NS3/4A. After a thorough validation of all undertaken steps, based on Lipinski’s rule of five, docking score, binding affinity, solvation energy, and Van der Waal’s interactions with HCV NS3/4A, 12 novel chemical structures were identified as inhibitors of HCV NS3/4A. The novel structures thus designed are hoped to play a key role in the development of new effective inhibitors of HCV. Full article
(This article belongs to the Special Issue Computational Strategy for Drug Design)
Show Figures

Figure 1

18 pages, 3040 KiB  
Article
Dynamic Interactions of Post Cleaved NS2B Cofactor and NS3 Protease Identified by Integrative Structural Approaches
by Jun-Ping Quek, Zheng Ser, Bing Liang Alvin Chew, Xin Li, Lili Wang, Radoslaw M. Sobota, Dahai Luo and Wint Wint Phoo
Viruses 2022, 14(7), 1440; https://doi.org/10.3390/v14071440 - 30 Jun 2022
Cited by 10 | Viewed by 3940
Abstract
Diseases caused by flaviviruses such as dengue virus (DENV) and West Nile Virus (WNV), are a serious threat to public health. The flavivirus single-stranded RNA genome is translated into a polyprotein which is cleaved into three structural proteins and seven non-structural proteins by [...] Read more.
Diseases caused by flaviviruses such as dengue virus (DENV) and West Nile Virus (WNV), are a serious threat to public health. The flavivirus single-stranded RNA genome is translated into a polyprotein which is cleaved into three structural proteins and seven non-structural proteins by the viral and cellular proteases. Non-structural (NS) protein 3 is a multifunctional protein that has N-terminal protease and C-terminal helicase domains. The NS3 protease requires co-factor NS2B for enzymatic activity and folding. Due to its essential role in viral replication, NS2B-NS3 protease is an attractive target for antiviral drugs. Despite the availability of crystal structures, dynamic interactions of the N- and C-termini of NS2B co-factor have been elusive due to their flexible fold. In this study, we employ integrative structural approaches combined with biochemical assays to elucidate the dynamic interactions of the flexible DENV4 NS2B and NS3 N- and C-termini. We captured the crystal structure of self-cleaved DENV4 NS2B47NS3 protease in post cleavage state. The intermediate conformation adopted in the reported structure can be targeted by allosteric inhibitors. Comparison of our new findings from DENV4 against previously studied ZIKV NS2B-NS3 proteins reveals differences in NS2B-NS3 function between the two viruses. No inhibition of protease activity was observed for unlinked DENV NS2B-NS3 in presence of the cleavage site while ZIKV NS2B-NS3 cleavage inhibits protease activity. Another difference is that binding of the NS2B C-terminus to DENV4 eNS2B47NS3Pro active site is mediated via interactions with P4-P6 residues while for ZIKV, the binding of NS2B C-terminus to active site is mediated by P1-P3 residues. The mapping of NS2B N- and C-termini with NS3 indicates that these intermolecular interactions occur mainly on the beta-barrel 2 of the NS3 protease domain. Our integrative approach enables a comprehensive understanding of the folding and dynamic interactions of DENV NS3 protease and its cofactor NS2B. Full article
(This article belongs to the Special Issue Viruses 2022 - At the Leading Edge of Virology Research)
Show Figures

Figure 1

2 pages, 168 KiB  
Abstract
FDA Approved Drugs Efavirenz, Tipranavir, and Dasabuvir Inhibit Replication of Multiple Flaviviruses In Vitro
by Michal Stefanik, Fortunatus C Ezebuo, Jan Haviernik, Ikemefuna C. Uzochukwu, Martina Fojtikova, Jiri Salat, Ludek Eyer and Daniel Ruzek
Proceedings 2020, 50(1), 6; https://doi.org/10.3390/proceedings2020050006 - 2 Jun 2020
Viewed by 1668
Abstract
Arthropod-borne flaviviruses such as tick-borne encephalitis virus (TBEV), West Nile virus (WNV), Zika virus (ZIKV), Dengue virus (DENV), and yellow fever virus (YFV) cause several serious life-threatening syndromes (encephalitis, miscarriages, paralysis, etc.). No effective antiviral therapy against these viruses has been approved yet. [...] Read more.
Arthropod-borne flaviviruses such as tick-borne encephalitis virus (TBEV), West Nile virus (WNV), Zika virus (ZIKV), Dengue virus (DENV), and yellow fever virus (YFV) cause several serious life-threatening syndromes (encephalitis, miscarriages, paralysis, etc.). No effective antiviral therapy against these viruses has been approved yet. We selected, via in silico modeling, 12 U.S. Food and Drug Administration (FDA)-approved antiviral drugs (paritaprevir, dolutegravir, raltegravir, efavirenz, elvitegravir, tipranavir, saquinavir, dasabuvir, delavirdine, maraviroc, trifluridine, and tauroursodeoxycholic acid) for their interaction with ZIKV proteins (NS3 helicase and protease, non-structural protein 5 (NS5) RNA-dependent RNA polymerase, and methyltransferase). Only three of them were active against ZIKV, namely, dasabuvir (ABT-333), efavirenz, and tipranavir. These compounds inhibit virus replication of ZIKV (MR-766 and Paraiba_01) in Vero cells; therefore, we tested these compounds against other medically important flaviviruses WNV (13-104 and Eg101) and TBEV (Hypr). Dasabuvir was originally developed as an antiviral drug against hepatitis C virus (HCV); tipranavir and efavirenz are used for treating human immunodeficiency virus (HIV) infection. The antiviral effects of efavirenz, tipranavir, and dasabuvir were tested for ZIKV in HUH-7, astrocytes (HBCA), and UKF-NB-4 cells, where we also identified a significant inhibition effect of these compounds. For Vero cells, efavirenz inhibited all investigated viruses with EC50 ranging from 9.70 to 29.26 µM; the tipranavir inhibition effect was from 16.19 (WNV 13-104) to 27.47 µM (TBEV), while the strongest and most robust antiviral effect was demonstrated in the case of dasabuvir (EC50 values ranging from 9.09 (TBEV) to 10.85 µM (WNV 13-104)). These results warrant further research of these drugs, either individually or in combination, as possible pan-flavivirus inhibitors. Full article
(This article belongs to the Proceedings of Viruses 2020—Novel Concepts in Virology)
18 pages, 3797 KiB  
Article
Plant-Derived Purification, Chemical Synthesis, and In Vitro/In Vivo Evaluation of a Resveratrol Dimer, Viniferin, as an HCV Replication Inhibitor
by Sungjin Lee, Karabasappa Mailar, Mi Il Kim, Minkyung Park, Jiseon Kim, Dal-Hee Min, Tae-Hwe Heo, Soo Kyung Bae, Wonjun Choi and Choongho Lee
Viruses 2019, 11(10), 890; https://doi.org/10.3390/v11100890 - 23 Sep 2019
Cited by 21 | Viewed by 4337
Abstract
Oligostilbenoid compounds, a group of resveratrol multimers, display several anti-microbial activities through the neutralization of cytotoxic oxidants, and by inhibiting essential host and viral enzymes. In our previous study, we identified a series of oligostilbenoid compounds as potent hepatitis C virus (HCV) replication [...] Read more.
Oligostilbenoid compounds, a group of resveratrol multimers, display several anti-microbial activities through the neutralization of cytotoxic oxidants, and by inhibiting essential host and viral enzymes. In our previous study, we identified a series of oligostilbenoid compounds as potent hepatitis C virus (HCV) replication inhibitors. In particular, vitisin B, a resveratrol tetramer, exhibited the most dramatic anti-HCV activity (EC50 = 6 nM and CC50 > 10 μM) via the disruption of the viral helicase NS3 (IC50 = 3 nM). However, its further development as an HCV drug candidate was halted due to its intrinsic drawbacks, such as poor stability, low water solubility, and restricted in vivo absorption. In order to overcome these limitations, we focused on (+)-ε-viniferin, a resveratrol dimer, as an alternative. We prepared three different versions of (+)-ε-viniferin, including one which was extracted from the grapevine root (EVF) and two which were chemically synthesized with either penta-acetylation (SVF-5Ac) or no acetylation (SVF) using a newly established synthesis method. We confirmed their anti-HCV replication activities and minimal cytotoxicity by using genotype 1b and 2a HCV replicon cells. Their anti-HCV replication action also translated into a significant reduction of viral protein expression. Anti-HCV NS3 helicase activity by EVF was also verified in vitro. Finally, we demonstrated that SVF has improved pharmacokinetic properties over vitisin B. Overall, the favorable antiviral and pharmacokinetic properties of these three versions of viniferin warrant their further study as members of a promising new class of anti-HCV therapeutics. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Graphical abstract

15 pages, 2379 KiB  
Article
Discovery of Novel Druggable Sites on Zika Virus NS3 Helicase Using X-ray Crystallography-Based Fragment Screening
by Ali Munawar, Steven Beelen, Ahmad Munawar, Eveline Lescrinier and Sergei V. Strelkov
Int. J. Mol. Sci. 2018, 19(11), 3664; https://doi.org/10.3390/ijms19113664 - 20 Nov 2018
Cited by 3 | Viewed by 5008
Abstract
The flavivirus family contains several important human pathogens, such as Zika virus (ZIKV), dengue, West Nile, and Yellow Fever viruses, that collectively lead to a large, global disease burden. Currently, there are no approved medicines that can target these viruses. The sudden outbreak [...] Read more.
The flavivirus family contains several important human pathogens, such as Zika virus (ZIKV), dengue, West Nile, and Yellow Fever viruses, that collectively lead to a large, global disease burden. Currently, there are no approved medicines that can target these viruses. The sudden outbreak of ZIKV infections in 2015–2016 posed a serious threat to global public health. While the epidemic has receded, persistent reservoirs of ZIKV infection can cause reemergence. Here, we have used X-ray crystallography-based screening to discover two novel sites on ZIKV NS3 helicase that can bind drug-like fragments. Both sites are structurally conserved in other flaviviruses, and mechanistically significant. The binding poses of four fragments, two for each of the binding sites, were characterized at atomic precision. Site A is a surface pocket on the NS3 helicase that is vital to its interaction with NS5 polymerase and formation of the flaviviral replication complex. Site B corresponds to a flexible, yet highly conserved, allosteric site at the intersection of the three NS3 helicase domains. Saturation transfer difference nuclear magnetic resonance (NMR) experiments were additionally used to evaluate the binding strength of the fragments, revealing dissociation constants (KD) in the lower mM range. We conclude that the NS3 helicase of flaviviruses is a viable drug target. The data obtained open opportunities towards structure-based design of first-in-class anti-ZIKV compounds, as well as pan-flaviviral therapeutics. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Graphical abstract

11 pages, 1606 KiB  
Article
Silvestrol Inhibits Chikungunya Virus Replication
by Lisa Henss, Tatjana Scholz, Arnold Grünweller and Barbara S. Schnierle
Viruses 2018, 10(11), 592; https://doi.org/10.3390/v10110592 - 30 Oct 2018
Cited by 41 | Viewed by 5344
Abstract
Silvestrol, a natural compound that is isolated from plants of the genus Aglaia, is a specific inhibitor of the RNA helicase eIF4A, which unwinds RNA secondary structures in 5′-untranslated regions (UTRs) of mRNAs and allows translation. Silvestrol has a broad antiviral activity [...] Read more.
Silvestrol, a natural compound that is isolated from plants of the genus Aglaia, is a specific inhibitor of the RNA helicase eIF4A, which unwinds RNA secondary structures in 5′-untranslated regions (UTRs) of mRNAs and allows translation. Silvestrol has a broad antiviral activity against multiple RNA virus families. Here, we show that silvestrol inhibits the replication of chikungunya virus (CHIKV), a positive single-stranded RNA virus. Silvestrol delayed the protein synthesis of non-structural (nsPs) and structural proteins, resulting in a delayed innate response to CHIKV infection. Interferon-α induced STAT1 phosphorylation was not inhibited nor did eIF2α become phosphorylated 16 h post infection in the presence of silvestrol. In addition, the host protein shut-off induced by CHIKV infection was decreased in silvestrol-treated cells. Silvestrol acts by limiting the amount of nsPs, and thereby reducing CHIKV RNA replication. From our results, we propose that inhibition of the host helicase eIF4A might have potential as a therapeutic strategy to treat CHIKV infections. Full article
(This article belongs to the Special Issue Chikungunya Virus and (Re-) Emerging Alphaviruses)
Show Figures

Figure 1

15 pages, 697 KiB  
Article
Identification of Hydroxyanthraquinones as Novel Inhibitors of Hepatitis C Virus NS3 Helicase
by Atsushi Furuta, Masayoshi Tsubuki, Miduki Endoh, Tatsuki Miyamoto, Junichi Tanaka, Kazi Abdus Salam, Nobuyoshi Akimitsu, Hidenori Tani, Atsuya Yamashita, Kohji Moriishi, Masamichi Nakakoshi, Yuji Sekiguchi, Satoshi Tsuneda and Naohiro Noda
Int. J. Mol. Sci. 2015, 16(8), 18439-18453; https://doi.org/10.3390/ijms160818439 - 7 Aug 2015
Cited by 23 | Viewed by 7351
Abstract
Hepatitis C virus (HCV) is an important etiological agent of severe liver diseases, including cirrhosis and hepatocellular carcinoma. The HCV genome encodes nonstructural protein 3 (NS3) helicase, which is a potential anti-HCV drug target because its enzymatic activity is essential for viral replication. [...] Read more.
Hepatitis C virus (HCV) is an important etiological agent of severe liver diseases, including cirrhosis and hepatocellular carcinoma. The HCV genome encodes nonstructural protein 3 (NS3) helicase, which is a potential anti-HCV drug target because its enzymatic activity is essential for viral replication. Some anthracyclines are known to be NS3 helicase inhibitors and have a hydroxyanthraquinone moiety in their structures; mitoxantrone, a hydroxyanthraquinone analogue, is also known to inhibit NS3 helicase. Therefore, we hypothesized that the hydroxyanthraquinone moiety alone could also inhibit NS3 helicase. Here, we performed a structure–activity relationship study on a series of hydroxyanthraquinones by using a fluorescence-based helicase assay. Hydroxyanthraquinones inhibited NS3 helicase with IC50 values in the micromolar range. The inhibitory activity varied depending on the number and position of the phenolic hydroxyl groups, and among different hydroxyanthraquinones examined, 1,4,5,8-tetrahydroxyanthraquinone strongly inhibited NS3 helicase with an IC50 value of 6 µM. Furthermore, hypericin and sennidin A, which both have two hydroxyanthraquinone-like moieties, were found to exert even stronger inhibition with IC50 values of 3 and 0.8 µM, respectively. These results indicate that the hydroxyanthraquinone moiety can inhibit NS3 helicase and suggest that several key chemical structures are important for the inhibition. Full article
(This article belongs to the Special Issue Viral Hepatitis Research)
Show Figures

Figure 1

15 pages, 938 KiB  
Article
PBDE: Structure-Activity Studies for the Inhibition of Hepatitis C Virus NS3 Helicase
by Kazi Abdus Salam, Atsushi Furuta, Naohiro Noda, Satoshi Tsuneda, Yuji Sekiguchi, Atsuya Yamashita, Kohji Moriishi, Masamichi Nakakoshi, Hidenori Tani, Sona Rani Roy, Junichi Tanaka, Masayoshi Tsubuki and Nobuyoshi Akimitsu
Molecules 2014, 19(4), 4006-4020; https://doi.org/10.3390/molecules19044006 - 2 Apr 2014
Cited by 8 | Viewed by 8081
Abstract
The helicase portion of the hepatitis C virus nonstructural protein 3 (NS3) is considered one of the most validated targets for developing direct acting antiviral agents. We isolated polybrominated diphenyl ether (PBDE) 1 from a marine sponge as an NS3 helicase inhibitor. In [...] Read more.
The helicase portion of the hepatitis C virus nonstructural protein 3 (NS3) is considered one of the most validated targets for developing direct acting antiviral agents. We isolated polybrominated diphenyl ether (PBDE) 1 from a marine sponge as an NS3 helicase inhibitor. In this study, we evaluated the inhibitory effects of PBDE (1) on the essential activities of NS3 protein such as RNA helicase, ATPase, and RNA binding activities. The structure-activity relationship analysis of PBDE (1) against the HCV ATPase revealed that the biphenyl ring, bromine, and phenolic hydroxyl group on the benzene backbone might be a basic scaffold for the inhibitory potency. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

15 pages, 498 KiB  
Article
Identification and Biochemical Characterization of Halisulfate 3 and Suvanine as Novel Inhibitors of Hepatitis C Virus NS3 Helicase from a Marine Sponge
by Atsushi Furuta, Kazi Abdus Salam, Idam Hermawan, Nobuyoshi Akimitsu, Junichi Tanaka, Hidenori Tani, Atsuya Yamashita, Kohji Moriishi, Masamichi Nakakoshi, Masayoshi Tsubuki, Poh Wee Peng, Youichi Suzuki, Naoki Yamamoto, Yuji Sekiguchi, Satoshi Tsuneda and Naohiro Noda
Mar. Drugs 2014, 12(1), 462-476; https://doi.org/10.3390/md12010462 - 21 Jan 2014
Cited by 13 | Viewed by 9475
Abstract
Hepatitis C virus (HCV) is an important etiological agent that is responsible for the development of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. HCV nonstructural protein 3 (NS3) helicase is a possible target for novel drug development due to its essential role in [...] Read more.
Hepatitis C virus (HCV) is an important etiological agent that is responsible for the development of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. HCV nonstructural protein 3 (NS3) helicase is a possible target for novel drug development due to its essential role in viral replication. In this study, we identified halisulfate 3 (hal3) and suvanine as novel NS3 helicase inhibitors, with IC50 values of 4 and 3 µM, respectively, from a marine sponge by screening extracts of marine organisms. Both hal3 and suvanine inhibited the ATPase, RNA binding, and serine protease activities of NS3 helicase with IC50 values of 8, 8, and 14 µM, and 7, 3, and 34 µM, respectively. However, the dengue virus (DENV) NS3 helicase, which shares a catalytic core (consisting mainly of ATPase and RNA binding sites) with HCV NS3 helicase, was not inhibited by hal3 and suvanine, even at concentrations of 100 µM. Therefore, we conclude that hal3 and suvanine specifically inhibit HCV NS3 helicase via an interaction with an allosteric site in NS3 rather than binding to the catalytic core. This led to the inhibition of all NS3 activities, presumably by inducing conformational changes. Full article
(This article belongs to the Special Issue Advances and New Perspectives in Marine Biotechnology)
Show Figures

Figure 1

Back to TopTop