Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = NPK briquette

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2802 KiB  
Article
Nitrogen Management Utilizing 4R Nutrient Stewardship: A Sustainable Strategy for Enhancing NUE, Reducing Maize Yield Gap and Increasing Farm Profitability
by Naba Raj Pandit, Shiva Adhikari, Shree Prasad Vista and Dyutiman Choudhary
Nitrogen 2025, 6(1), 7; https://doi.org/10.3390/nitrogen6010007 - 26 Jan 2025
Cited by 2 | Viewed by 2060
Abstract
The imbalanced use of fertilizers, particularly the inefficient application of nitrogen (N), has led to reduced nitrogen use efficiency (NUE), lowered crop yields and increased N losses in Nepal. This study aimed to enhance yields, NUE and farm profitability by optimizing N fertilizer [...] Read more.
The imbalanced use of fertilizers, particularly the inefficient application of nitrogen (N), has led to reduced nitrogen use efficiency (NUE), lowered crop yields and increased N losses in Nepal. This study aimed to enhance yields, NUE and farm profitability by optimizing N fertilizer rates, application timing and methods through multilocation trials and demonstrations. In 2017, 57 field trials were conducted in two mid-hill districts using a completely randomized block design. The treatments included control (CK), NPK omission (N0, P0 and K0), variable N rates (60, 120, 180 and 210 kg N ha−1) and top-dressing timings (120 kg N ha−1 applied at knee height and shoulder height, V6, V10 and V8 stages). A full dose of recommended P (60 kg ha−1) and K (40 kg ha−1) were applied at planting, while N was top-dressed in two equal splits at knee-height and shoulder-height growth stages for P and K omission treatments, as well as for treatment with variable N rates. Grain yields responded quadratically, with optimum N rates ranging from 120 to 180 kg ha−1 across the districts. N applied at 120 kg ha−1 and top-dressed at V6 and V10 increased maize yield by 20–25%, partial factor productivity of nitrogen (PFPN) by 12%, agronomic efficiency of nitrogen (AEN) by 21% and gross margin by 10% compared to conventional knee and shoulder height application. In 2018 and 2019, fertilizer BMPs, including V6 and V10 top-dressing and the urea briquette deep placement (UDP) were demonstrated on 102 farmers’ fields across five mid-hill districts to compare their agronomic and economic significance over traditional farmers’ practice (FP). UDP, validated in 2018 field trials, increased yields by 34% (8.8 t ha−1) and urea top-dressing at V6 and V10 increased yield by 33% (8.7 t ha−1) compared to FP (5.8 t ha−1), reducing the average yield gap by 3.0 t ha−1. Moreover, the gross margin was increased by 39% (V6 and V10) and 40% (UDP) over FP. The findings highlight the need for widespread adoption of fertilizer BMPs to close the yield gap and maximize profitability with minimal nitrogen footprint. Full article
Show Figures

Figure 1

13 pages, 2072 KiB  
Article
Optimum Rate and Deep Placement of Nitrogen Fertilizer Improves Nitrogen Use Efficiency and Tomato Yield in Nepal
by Naba Raj Pandit, Dyutiman Choudhary, Shashish Maharjan, Krishna Dhakal, Shree Prasad Vista and Yam Kanta Gaihre
Soil Syst. 2022, 6(3), 72; https://doi.org/10.3390/soilsystems6030072 - 17 Sep 2022
Cited by 11 | Viewed by 4748
Abstract
In Nepal, blanket fertilizer recommendations without considering diverse soil types, nutrient status, climate and crop management practices along with imbalanced fertilization practices by farmers, mainly “urea fertilizer,” have resulted in reduced nitrogen use efficiency (NUE) and productivity in tomato production. Optimizing the rate [...] Read more.
In Nepal, blanket fertilizer recommendations without considering diverse soil types, nutrient status, climate and crop management practices along with imbalanced fertilization practices by farmers, mainly “urea fertilizer,” have resulted in reduced nitrogen use efficiency (NUE) and productivity in tomato production. Optimizing the rate of nitrogen (N) fertilizer, application time and improved application methods could increase crop yields and NUE and reduce environmental costs. This study was conducted to identify the optimum N rate and application method for increased tomato yield and NUE. Multilocation trials (n = 28) conducted in a randomized complete block design with nine treatments across five districts included the omission of N, P and K (N0, P0, K0), variable N rates of 100, 150, 200 and 250 kg ha−1 (N-100, N-150, N-200 and N-250), use of urea briquettes (UB) with deep placement (UBN-150) and a control (CK). N input in UB was reduced by 25% from the recommended N rate of 200 kg ha−1 considering its expected higher NUE. Yield responses from an NPK omission plot revealed N as the most limiting plant nutrient. Applications of fertilizer at N-100, N-150, N-200 and N-250 increased tomato yield by 27%, 35%, 43% and 27%, respectively, over N0. Tomato yields responded quadratically to the added N fertilizers with optimum rates ranging from 150 to 200 kg ha−1 across districts. UBN-150 significantly increased tomato yield by 12% over N-150 and produced a similar yield to N-200 (the recommended rate). The highest partial factor productivity of nitrogen (PFPN) was observed at N-100 and the highest agronomic efficiency of N (AEN) was at N-200. Deep placement of UB at-150 increased PFPN by 8% and 21% and AEN by 27% and 21% compared with N-150 and N-200, respectively. These results have positive implications for developing efficient N fertilization strategies to increase tomato yields and reduce environmental impacts in Nepal. Full article
Show Figures

Figure 1

12 pages, 1095 KiB  
Article
Maize Grain Composition with Additions of NPK Briquette and Organically Enhanced N Fertilizer
by Xiaohui Wang, Shuangli Liu, Xinhua Yin, Nacer Bellaloui, John H. Winings, Sampson Agyin-Birikorang, Upendra Singh, Joaquin Sanabria and Alemu Mengistu
Agronomy 2020, 10(6), 852; https://doi.org/10.3390/agronomy10060852 - 15 Jun 2020
Cited by 9 | Viewed by 4000
Abstract
NPK fertilizer briquettes (NPKBriq) and organically enhanced N fertilizer (OENF), as newly developed fertilizer products, are reported to increase maize (Zea mays L.) yield and N use efficiency, but their effects on maize grain composition are unknown. The objective of this study [...] Read more.
NPK fertilizer briquettes (NPKBriq) and organically enhanced N fertilizer (OENF), as newly developed fertilizer products, are reported to increase maize (Zea mays L.) yield and N use efficiency, but their effects on maize grain composition are unknown. The objective of this study was to determine the effects of NPKBriq and OENF on the protein, oil, fiber, ash, and starch of maize grain. A field study was conducted at Jackson and Grand Junction, TN, during 2012 and 2013, with NPKBriq, OENF, ammonium sulfate ((NH4)2SO4) (+P and K), and urea (+P and K) as the main treatments and 0, 85, 128, and 170 kg N ha−1 as the sub treatments under a randomized complete block split plot design with four replicates. The fiber concentration was more responsive to the fertilizer source than the protein, oil, ash, and starch concentrations. OENF resulted in a higher fiber concentration than NPKBriq at 85 kg N ha−1 in 2013, averaged over the two sites. Both OENF and NPKBriq had nearly no significant effects on the concentrations of the quality attributes compared with ammonium sulfate and urea. In conclusion, the nutrient-balanced NPKBriq exerts the same or greater effects on maize grain quality relative to the commonly used nutrient management practices of urea (+P and K) and ammonium sulfate (+P and K) under normal weather conditions. OENF is an alternate N source to urea and ammonium sulfate for similar to higher maize grain quality. Full article
(This article belongs to the Special Issue Soil Fertility Management for Better Crop Production)
Show Figures

Figure 1

11 pages, 2419 KiB  
Article
Study of Temperature Fields and Heavy Metal Content in the Ash and Flue Gas Produced by the Combustion of Briquettes Coming from Paper and Cardboard Waste
by Harouna Gado Ibrahim, Salifou K. Ouiminga, Arsène Yonli, Oumar Sanogo, Tizane Daho and Jean Koulidiati
Recycling 2018, 3(3), 32; https://doi.org/10.3390/recycling3030032 - 13 Jul 2018
Cited by 10 | Viewed by 5106
Abstract
The present study focused on the combustion of four types of briquettes made from paper and cardboard waste produced in Ouagadougou (Burkina Faso). Rotary and tubular kilns were used to study the combustion. The combustion mean temperatures, nitrogen, phosphorus and potassium (NPK) content [...] Read more.
The present study focused on the combustion of four types of briquettes made from paper and cardboard waste produced in Ouagadougou (Burkina Faso). Rotary and tubular kilns were used to study the combustion. The combustion mean temperatures, nitrogen, phosphorus and potassium (NPK) content in the ash and heavy metals content in the ash and the flue gas were analyzed. The combustion steady phase mean temperatures ranged from 950 °C to 750 °C were obtained according to briquettes type. The temperature favored the transfer of the heavy metal in the flue gas comparatively to the ash mainly for Hg, Cd and Pb. The Pb, Hg and Mn content in flue gas and the ash are higher than their content in the parent wood used for paper production due to the additive during the manufacturing process. The results showed a high content of heavy metal in flue gas produced by combustion of briquette made with office paper and in the ash for the briquette made of corrugated cardboard. Furthermore, the low heavy metal contain in the ash allow their use for soil amendment. However, ash contained a low proportion of NPK (less than 2%) which does not allow their usage as fertilizer alone. Full article
(This article belongs to the Special Issue Waste Management Practices in Developing Countries)
Show Figures

Figure 1

Back to TopTop