Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = NADH/NAD+ redox imbalance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
47 pages, 2124 KB  
Review
From Electron Imbalance to Network Collapse: Decoding the Redox Code of Ischemic Stroke for Biomarker-Guided Precision Neuroprotection
by Ionut Bogdan Diaconescu, Adrian Vasile Dumitru, Calin Petru Tataru, Corneliu Toader, Matei Șerban, Răzvan-Adrian Covache-Busuioc and Lucian Eva
Int. J. Mol. Sci. 2025, 26(22), 10835; https://doi.org/10.3390/ijms262210835 - 7 Nov 2025
Cited by 5 | Viewed by 2077
Abstract
Ischemic stroke remains one of the most catastrophic diseases in neurology, in which, due to a disturbance in the cerebral blood flow, the brain is acutely deprived of its oxygen and glucose oligomer, which in turn rapidly leads to energetic collapse and progressive [...] Read more.
Ischemic stroke remains one of the most catastrophic diseases in neurology, in which, due to a disturbance in the cerebral blood flow, the brain is acutely deprived of its oxygen and glucose oligomer, which in turn rapidly leads to energetic collapse and progressive cellular death. There is now increasing evidence that this type of stroke is not simply a type of ‘oxidative stress’ but rather a programmable loss-of-redox homeostasis, within which electron flow and the balance of oxidants/reductants are cumulatively displaced at the level of the single molecule and at the level of the cellular area. The advances being made in cryo-electron microscopy, lipidomics, and spatial omics are coupled with the introduction of a redox code produced by the interaction of the couples NADH/NAD+, NADPH/NADP+, GSH/GSSG, BH4/BH2, and NO/SNO, which determine the end results of the fates of the neurons, glia, endothelium, and pericytes. Within the mitochondria, pathophysiological events, including reverse electron transport, succinate overflow, and permeability transition, are found to be the first events after reperfusion, while signals intercommunicating via ER–mitochondria contact, peroxisomes, and nanotunnels control injury propagation. At the level of the tissue, events such as the constriction of the pericytes, the degradation of the glycocalyx, and the formation of neutrophil extracellular traps underlie microvascular failure (at least), despite the effective recanalization of the vessels. Systemic influences such as microbiome products, oxidized lipids, and free mitochondrial DNA in cells determine the redox imbalance, but this generally occurs outside the brain. We aim to synthesize how the progressive stages of ischemic injury evolve from the cessation of flow to the collapse of the cell structure. Within seconds of injury, there is reverse electron transport (RET) through mitochondrial complex I, with bursts of superoxide (O2) and hydrogen peroxide (H2O2) being produced, which depletes the stores of superoxide dismutase, catalase, and glutathione peroxidase. Accumulated succinate and iron-induced lipid peroxidation trigger ferroptosis, while xanthine oxidase and NOX2/NOX4, as well as uncoupled eNOS/nNOS, lead to oxidative and nitrosative stress. These cascades compromise the function of neuronal mitochondria, the glial antioxidant capacity, and endothelial–pericyte integrity, leading to the degradation of the glycocalyx with microvascular constriction. Stroke, therefore, represents a continuum of redox disequilibrium, a coordinated biochemical failure linking the mitochondrial metabolism with membrane integrity and vascular homeostasis. Full article
(This article belongs to the Special Issue Current Trends in Redox Physiology Research)
Show Figures

Figure 1

19 pages, 2575 KB  
Article
Anandamide Alters Glycolytic Activity in Streptococcus mutans: Metabolomics and Stable Isotope Labeling Study
by Goldie Wolfson, Doron Steinberg, Alexandra Eliassaf, Anna Morshina, César Jessé Enríquez-Rodríguez, Itzhack Polacheck, Maya Korem and Ori Shalev
Int. J. Mol. Sci. 2025, 26(17), 8401; https://doi.org/10.3390/ijms26178401 - 29 Aug 2025
Viewed by 1042
Abstract
Streptococcus mutans (S. mutans) is a cariogenic bacterium in the oral cavity that plays a significant role in plaque formation and dental caries. In previous research by our group, we showed that the endocannabinoid anandamide (AEA) has anti-bacterial and anti-biofilm activities against S. [...] Read more.
Streptococcus mutans (S. mutans) is a cariogenic bacterium in the oral cavity that plays a significant role in plaque formation and dental caries. In previous research by our group, we showed that the endocannabinoid anandamide (AEA) has anti-bacterial and anti-biofilm activities against S. mutans. Here, we aimed to investigate its effects on S. mutans through metabolomics analyses. S. mutans was cultivated in the absence or presence of AEA at a sub-minimum inhibitory concentration (MIC), and changes in metabolites and metabolic pathways were assessed through liquid chromatography–mass spectrometry (LC-MS). Treatment of S. mutans using AEA at 10 µg/mL significantly disturbed the glycolytic flux in the bacteria, which was indicated by a reduced glucose uptake into the cell, suppression of key glycolytic intermediates, reduced acid production into the media, imbalance of NAD+/NADH, and decreased adenosine triphosphate (ATP) production. The disruption of carbohydrate metabolism impacts critical cellular processes, including energy production, redox balance, and biosynthetic pathways, leading to metabolic stress and impaired cellular function. These results highlight the mode of action of AEA as an antimicrobial agent. Altogether, these findings suggest that AEA has potential as a novel antimicrobial agent in the development of therapeutics against S. mutans. Full article
(This article belongs to the Special Issue Antimicrobial Materials: Molecular Developments and Applications)
Show Figures

Figure 1

6 pages, 666 KB  
Communication
Assessment of NADH/NAD+ Redox Imbalance in Psoriatic Lesions Using the FMSF Technique: Therapeutic Aspects
by Jerzy Gebicki, Tomasz Filipiak, Andrzej Marcinek and Anna Wozniacka
Sensors 2023, 23(21), 8718; https://doi.org/10.3390/s23218718 - 25 Oct 2023
Cited by 7 | Viewed by 3910
Abstract
Mitochondrial dysfunction has been linked to psoriasis, and it may be an important underlying factor contributing to this disease. However, a precise methodology for assessing mitochondrial dysfunction has yet to be developed. One promising approach is to measure NADH autofluorescence from the affected [...] Read more.
Mitochondrial dysfunction has been linked to psoriasis, and it may be an important underlying factor contributing to this disease. However, a precise methodology for assessing mitochondrial dysfunction has yet to be developed. One promising approach is to measure NADH autofluorescence from the affected skin areas. In this study, we show that Flow-Mediated Skin Fluorescence (FMSF) can be used for the non-invasive assessment of mitochondrial dysfunction in psoriasis. The fluorescence level at baseline and the half-time of ischemic growth (t1/2) derived from the FMSF traces can be used for the non-invasive assessment of NADH/NAD+ redox imbalance in psoriatic lesions compared to unaffected skin. These results are supported by an analysis of the key FMSF parameters: Reactive Hyperemia Response (RHR) and Hypoxia Sensitivity (HS). This method not only contributes to understanding the biochemical processes involved in the etiopathogenesis of psoriasis, but it also provides a basis for identifying new drug targets and improving the treatment process. Full article
(This article belongs to the Special Issue Advanced Biosensors for Human Disease Detection and Monitoring)
Show Figures

Figure 1

28 pages, 1129 KB  
Review
Bioactive Compounds as Inhibitors of Inflammation, Oxidative Stress and Metabolic Dysfunctions via Regulation of Cellular Redox Balance and Histone Acetylation State
by Hyunju Kang and Bohkyung Kim
Foods 2023, 12(5), 925; https://doi.org/10.3390/foods12050925 - 22 Feb 2023
Cited by 40 | Viewed by 50034
Abstract
Bioactive compounds (BCs) are known to exhibit antioxidant, anti-inflammatory, and anti-cancer properties by regulating the cellular redox balance and histone acetylation state. BCs can control chronic oxidative states caused by dietary stress, i.e., alcohol, high-fat, or high-glycemic diet, and adjust the redox balance [...] Read more.
Bioactive compounds (BCs) are known to exhibit antioxidant, anti-inflammatory, and anti-cancer properties by regulating the cellular redox balance and histone acetylation state. BCs can control chronic oxidative states caused by dietary stress, i.e., alcohol, high-fat, or high-glycemic diet, and adjust the redox balance to recover physiological conditions. Unique functions of BCs to scavenge reactive oxygen species (ROS) can resolve the redox imbalance due to the excessive generation of ROS. The ability of BCs to regulate the histone acetylation state contributes to the activation of transcription factors involved in immunity and metabolism against dietary stress. The protective properties of BCs are mainly ascribed to the roles of sirtuin 1 (SIRT1) and nuclear factor erythroid 2–related factor 2 (NRF2). As a histone deacetylase (HDAC), SIRT1 modulates the cellular redox balance and histone acetylation state by mediating ROS generation, regulating nicotinamide adenine dinucleotide (NAD+)/NADH ratio, and activating NRF2 in metabolic progression. In this study, the unique functions of BCs against diet-induced inflammation, oxidative stress, and metabolic dysfunction have been considered by focusing on the cellular redox balance and histone acetylation state. This work may provide evidence for the development of effective therapeutic agents from BCs. Full article
Show Figures

Figure 1

16 pages, 2736 KB  
Review
A Synopsis of the Associations of Oxidative Stress, ROS, and Antioxidants with Diabetes Mellitus
by Homer S. Black
Antioxidants 2022, 11(10), 2003; https://doi.org/10.3390/antiox11102003 - 10 Oct 2022
Cited by 68 | Viewed by 5644
Abstract
The Greek physician, Aretaios, coined the term “diabetes” in the 1st Century A.D. “Mellitus” arose from the observation that the urine exhibits a sweetness due to its elevated glucose levels. Diabetes mellitus (DM) accounted for 6.7 million deaths globally in 2021 with expenditures [...] Read more.
The Greek physician, Aretaios, coined the term “diabetes” in the 1st Century A.D. “Mellitus” arose from the observation that the urine exhibits a sweetness due to its elevated glucose levels. Diabetes mellitus (DM) accounted for 6.7 million deaths globally in 2021 with expenditures of USD 966 billion. Mortality is predicted to rise nearly 10-fold by 2030. Oxidative stress, an imbalance between the generation and removal of reactive oxygen species (ROS), is implicated in the pathophysiology of diabetes. Whereas ROS are generated in euglycemic, natural insulin-regulated glucose metabolism, levels are regulated by factors that regulate cellular respiration, e.g., the availability of NAD-linked substrates, succinate, and oxygen; and antioxidant enzymes that maintain the cellular redox balance. Only about 1–2% of total oxygen consumption results in the formation of superoxide anion and hydrogen peroxide under normal reduced conditions. However, under hyperglycemic conditions, about 10% of the respiratory oxygen consumed may be lost as free radicals. Under hyperglycemic conditions, the two-reaction polyol pathway is activated. Nearly 30% of blood glucose can flux through this pathway—a major path contributing to NADH/NAD+ redox imbalance. Under these conditions, protein glycation and lipid peroxidation increase, and inflammatory cytokines are formed, leading to the further formation of ROS. As mitochondria are the major site of intracellular ROS, these organelles are subject to the deleterious effects of ROS themselves and eventually become dysfunctional—a milestone in Metabolic Syndrome (MetS) of which insulin resistance and diabetes predispose to cardiovascular disease. Full article
(This article belongs to the Topic Redox Metabolism)
Show Figures

Figure 1

28 pages, 3994 KB  
Article
Targeting Glioblastoma via Selective Alteration of Mitochondrial Redox State
by Akira Sumiyoshi, Sayaka Shibata, Zhivko Zhelev, Thomas Miller, Dessislava Lazarova, Ichio Aoki, Takayuki Obata, Tatsuya Higashi and Rumiana Bakalova
Cancers 2022, 14(3), 485; https://doi.org/10.3390/cancers14030485 - 19 Jan 2022
Cited by 21 | Viewed by 4797
Abstract
Glioblastoma is one of the most aggressive brain tumors, characterized by a pronounced redox imbalance, expressed in a high oxidative capacity of cancer cells due to their elevated glycolytic and mitochondrial oxidative metabolism. The assessment and modulation of the redox state of glioblastoma [...] Read more.
Glioblastoma is one of the most aggressive brain tumors, characterized by a pronounced redox imbalance, expressed in a high oxidative capacity of cancer cells due to their elevated glycolytic and mitochondrial oxidative metabolism. The assessment and modulation of the redox state of glioblastoma are crucial factors that can provide highly specific targeting and treatment. Our study describes a pharmacological strategy for targeting glioblastoma using a redox-active combination drug. The experiments were conducted in vivo on glioblastoma mice (intracranial model) and in vitro on cell lines (cancer and normal) treated with the redox cycling pair menadione/ascorbate (M/A). The following parameters were analyzed in vivo using MRI or ex vivo on tissue and blood specimens: tumor growth, survival, cerebral perfusion, cellular density, tissue redox state, expression of tumor-associated NADH oxidase (tNOX) and transforming growth factor-beta 1 (TGF-β1). Dose-dependent effects of M/A on cell viability, mitochondrial functionality, and redox homeostasis were evaluated in vitro. M/A treatment suppressed tumor growth and significantly increased survival without adverse side effects. This was accompanied by increased oxidative stress, decreased reducing capacity, and decreased cellular density in the tumor only, as well as increased cerebral perfusion and down-regulation of tNOX and TGF-β1. M/A induced selective cytotoxicity and overproduction of mitochondrial superoxide in isolated glioblastoma cells, but not in normal microglial cells. This was accompanied by a significant decrease in the over-reduced state of cancer cells and impairment of their “pro-oncogenic” functionality, assessed by dose-dependent decreases in: NADH, NAD+, succinate, glutathione, cellular reducing capacity, mitochondrial potential, steady-state ATP, and tNOX expression. The safety of M/A on normal cells was compromised by treatment with cerivastatin, a non-specific prenyltransferase inhibitor. In conclusion, M/A differentiates glioblastoma cells and tissues from normal cells and tissues by redox targeting, causing severe oxidative stress only in the tumor. The mechanism is complex and most likely involves prenylation of menadione in normal cells, but not in cancer cells, modulation of the immune response, a decrease in drug resistance, and a potential role in sensitizing glioblastoma to conventional chemotherapy. Full article
Show Figures

Figure 1

18 pages, 1297 KB  
Review
NADH/NAD+ Redox Imbalance and Diabetic Kidney Disease
by Liang-Jun Yan
Biomolecules 2021, 11(5), 730; https://doi.org/10.3390/biom11050730 - 14 May 2021
Cited by 46 | Viewed by 11759
Abstract
Diabetic kidney disease (DKD) is a common and severe complication of diabetes mellitus. If left untreated, DKD can advance to end stage renal disease that requires either dialysis or kidney replacement. While numerous mechanisms underlie the pathogenesis of DKD, oxidative stress driven by [...] Read more.
Diabetic kidney disease (DKD) is a common and severe complication of diabetes mellitus. If left untreated, DKD can advance to end stage renal disease that requires either dialysis or kidney replacement. While numerous mechanisms underlie the pathogenesis of DKD, oxidative stress driven by NADH/NAD+ redox imbalance and mitochondrial dysfunction have been thought to be the major pathophysiological mechanism of DKD. In this review, the pathways that increase NADH generation and those that decrease NAD+ levels are overviewed. This is followed by discussion of the consequences of NADH/NAD+ redox imbalance including disruption of mitochondrial homeostasis and function. Approaches that can be applied to counteract DKD are then discussed, which include mitochondria-targeted antioxidants and mimetics of superoxide dismutase, caloric restriction, plant/herbal extracts or their isolated compounds. Finally, the review ends by pointing out that future studies are needed to dissect the role of each pathway involved in NADH-NAD+ metabolism so that novel strategies to restore NADH/NAD+ redox balance in the diabetic kidney could be designed to combat DKD. Full article
(This article belongs to the Special Issue Redox Imbalance and Mitochondrial Abnormalities in Kidney Disease)
Show Figures

Graphical abstract

Back to TopTop