Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = NAD+, T cell differentiation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6198 KiB  
Article
Small Extracellular Vesicle (sEV) Uptake from Lung Adenocarcinoma and Squamous Cell Carcinoma Alters T-Cell Cytokine Expression and Modulates Protein Profiles in sEV Biogenesis
by Hafiza Padinharayil, Jinsu Varghese, Pulikkottil Raphael Varghese, Cornelia M. Wilson and Alex George
Proteomes 2025, 13(2), 15; https://doi.org/10.3390/proteomes13020015 - 23 Apr 2025
Viewed by 1075
Abstract
Background: Despite advances in immunotherapy, non-small-cell lung carcinoma (NSCLC)’s clinical success is limited, possibly due to substantial immunological alterations in advanced cancer patients. This study examines the immunomodulatory effects of sEVs derived from lung adenocarcinoma (ADC) and squamous cell carcinoma (SCC) on T [...] Read more.
Background: Despite advances in immunotherapy, non-small-cell lung carcinoma (NSCLC)’s clinical success is limited, possibly due to substantial immunological alterations in advanced cancer patients. This study examines the immunomodulatory effects of sEVs derived from lung adenocarcinoma (ADC) and squamous cell carcinoma (SCC) on T cells. Methods: SEVs were isolated from lung cancer cell lines and Jurkat-E6.1. SEV size and morphology were analyzed by NTA and TEM, respectively, while Western blotting confirmed sEV markers. SEV uptake was assessed, followed by resazurin assay, RNA isolation, quantification, cDNA preparation, RT-PCR, nano LC-MS, and bioinformatic analysis, before and after treating Jurkat-E6.1 cells with sEVs from A549 and SKMES1. Results: Cancer-derived sEVs were efficiently internalized by immune cells, reducing T-cell viability. The real-time PCR analysis showed downregulation of KI67, BCL2, BAX, TNFA, IL6, TGFβ, and IL10, suggesting reduced proliferation, dysregulated apoptosis, and impaired inflammatory and immunosuppressive signaling, and the upregulation of GZMB and IL2 suggests retained cytotoxic potential but possibly dysfunctional T-cell activation. Proteomic analysis revealed 39 differentially abundant proteins (DAPs) in ADC-treated T cells and 276 in SCC-treated T cells, with 19 shared DAPs. Gene Ontology (GO) analysis of these DAPs highlighted processes such as sEV biogenesis, metabolic pathways, and regulatory functions, with ADC sEVs influencing NAD metabolism, ECM binding, and oxidoreductase activity, while SCC sEVs affected mRNA stability, amino acid metabolism, and cadherin binding. The cytoplasmic colocalization suggests the presence of these proteins in the cellular and extracellular lumen, indicating the potential of further release of these proteins in the vesicles by T cells. Conclusion: Lung cancer-derived sEVs regulate T-cell activities through immunoregulatory signaling. The molecular interactions between sEVs and immune cells can reveal novel tumor immune regulatory mechanisms and therapeutic targets. Full article
Show Figures

Figure 1

18 pages, 2140 KiB  
Article
Metabolic Profiling of Breast Cancer Cell Lines: Unique and Shared Metabolites
by Mariana Gallo, Elena Ferrari, Federica Brugnoli, Anna Terrazzan, Pietro Ancona, Stefano Volinia, Valeria Bertagnolo, Carlo M. Bergamini, Alberto Spisni, Thelma A. Pertinhez and Nicoletta Bianchi
Int. J. Mol. Sci. 2025, 26(3), 969; https://doi.org/10.3390/ijms26030969 - 24 Jan 2025
Cited by 1 | Viewed by 1430
Abstract
Breast Cancer (BrCa) exhibits a high phenotypic heterogeneity, leading to the emergence of aggressive clones and the development of drug resistance. Considering the BrCa heterogeneity and that metabolic reprogramming is a cancer hallmark, we selected seven BrCa cell lines with diverse subtypes to [...] Read more.
Breast Cancer (BrCa) exhibits a high phenotypic heterogeneity, leading to the emergence of aggressive clones and the development of drug resistance. Considering the BrCa heterogeneity and that metabolic reprogramming is a cancer hallmark, we selected seven BrCa cell lines with diverse subtypes to provide their comprehensive metabolome characterization: five lines commonly used (SK-Br-3, T-47D, MCF-7, MDA-MB-436, and MDA-MB-231), and two patient-derived xenografts (Hbcx39 and Hbcx9). We characterized their endometabolomes using 1H-NMR spectroscopy. We found distinct metabolite profiles, with certain metabolites being common but differentially accumulated across the selected BrCa cell lines. High levels of glycine, lactate, glutamate, and formate, metabolites known to promote invasion and metastasis, were detected in all BrCa cells. In our experiment setting were identified unique metabolites to specific cell lines: xanthine and 2-oxoglutarate in SK-Br-3, 2-oxobutyrate in T-47D, cystathionine and glucose-1-phosphate in MCF-7, NAD+ in MDA-MB-436, isocitrate in MDA-MB-231, and NADP+ in Hbcx9. The unique and enriched metabolites enabled us to identify the metabolic pathways modulated in a cell-line-specific manner, which may represent potential candidate targets for therapeutic intervention. We believe this study may contribute to the functional characterization of BrCa cells and assist in selecting appropriate cell lines for drug-response studies. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

20 pages, 2840 KiB  
Article
Iron Uptake Controls Trypanosoma cruzi Metabolic Shift and Cell Proliferation
by Claudia F. Dick, Carolina L. Alcantara, Luiz F. Carvalho-Kelly, Marco Antonio Lacerda-Abreu, Narcisa L. Cunha-e-Silva, José R. Meyer-Fernandes and Adalberto Vieyra
Antioxidants 2023, 12(5), 984; https://doi.org/10.3390/antiox12050984 - 22 Apr 2023
Cited by 4 | Viewed by 2684
Abstract
(1) Background: Ionic transport in Trypanosoma cruzi is the object of intense studies. T. cruzi expresses a Fe-reductase (TcFR) and a Fe transporter (TcIT). We investigated the effect of Fe depletion and Fe supplementation on different structures and functions of T. cruzi epimastigotes [...] Read more.
(1) Background: Ionic transport in Trypanosoma cruzi is the object of intense studies. T. cruzi expresses a Fe-reductase (TcFR) and a Fe transporter (TcIT). We investigated the effect of Fe depletion and Fe supplementation on different structures and functions of T. cruzi epimastigotes in culture. (2) Methods: We investigated growth and metacyclogenesis, variations of intracellular Fe, endocytosis of transferrin, hemoglobin, and albumin by cell cytometry, structural changes of organelles by transmission electron microscopy, O2 consumption by oximetry, mitochondrial membrane potential measuring JC-1 fluorescence at different wavelengths, intracellular ATP by bioluminescence, succinate-cytochrome c oxidoreductase following reduction of ferricytochrome c, production of H2O2 following oxidation of the Amplex® red probe, superoxide dismutase (SOD) activity following the reduction of nitroblue tetrazolium, expression of SOD, elements of the protein kinase A (PKA) signaling, TcFR and TcIT by quantitative PCR, PKA activity by luminescence, glyceraldehyde-3-phosphate dehydrogenase abundance and activity by Western blotting and NAD+ reduction, and glucokinase activity recording NADP+ reduction. (3) Results: Fe depletion increased oxidative stress, inhibited mitochondrial function and ATP formation, increased lipid accumulation in the reservosomes, and inhibited differentiation toward trypomastigotes, with the simultaneous metabolic shift from respiration to glycolysis. (4) Conclusion: The processes modulated for ionic Fe provide energy for the T. cruzi life cycle and the propagation of Chagas disease. Full article
(This article belongs to the Special Issue Oxidative Stress in Parasites)
Show Figures

Figure 1

28 pages, 3994 KiB  
Article
Targeting Glioblastoma via Selective Alteration of Mitochondrial Redox State
by Akira Sumiyoshi, Sayaka Shibata, Zhivko Zhelev, Thomas Miller, Dessislava Lazarova, Ichio Aoki, Takayuki Obata, Tatsuya Higashi and Rumiana Bakalova
Cancers 2022, 14(3), 485; https://doi.org/10.3390/cancers14030485 - 19 Jan 2022
Cited by 17 | Viewed by 4300
Abstract
Glioblastoma is one of the most aggressive brain tumors, characterized by a pronounced redox imbalance, expressed in a high oxidative capacity of cancer cells due to their elevated glycolytic and mitochondrial oxidative metabolism. The assessment and modulation of the redox state of glioblastoma [...] Read more.
Glioblastoma is one of the most aggressive brain tumors, characterized by a pronounced redox imbalance, expressed in a high oxidative capacity of cancer cells due to their elevated glycolytic and mitochondrial oxidative metabolism. The assessment and modulation of the redox state of glioblastoma are crucial factors that can provide highly specific targeting and treatment. Our study describes a pharmacological strategy for targeting glioblastoma using a redox-active combination drug. The experiments were conducted in vivo on glioblastoma mice (intracranial model) and in vitro on cell lines (cancer and normal) treated with the redox cycling pair menadione/ascorbate (M/A). The following parameters were analyzed in vivo using MRI or ex vivo on tissue and blood specimens: tumor growth, survival, cerebral perfusion, cellular density, tissue redox state, expression of tumor-associated NADH oxidase (tNOX) and transforming growth factor-beta 1 (TGF-β1). Dose-dependent effects of M/A on cell viability, mitochondrial functionality, and redox homeostasis were evaluated in vitro. M/A treatment suppressed tumor growth and significantly increased survival without adverse side effects. This was accompanied by increased oxidative stress, decreased reducing capacity, and decreased cellular density in the tumor only, as well as increased cerebral perfusion and down-regulation of tNOX and TGF-β1. M/A induced selective cytotoxicity and overproduction of mitochondrial superoxide in isolated glioblastoma cells, but not in normal microglial cells. This was accompanied by a significant decrease in the over-reduced state of cancer cells and impairment of their “pro-oncogenic” functionality, assessed by dose-dependent decreases in: NADH, NAD+, succinate, glutathione, cellular reducing capacity, mitochondrial potential, steady-state ATP, and tNOX expression. The safety of M/A on normal cells was compromised by treatment with cerivastatin, a non-specific prenyltransferase inhibitor. In conclusion, M/A differentiates glioblastoma cells and tissues from normal cells and tissues by redox targeting, causing severe oxidative stress only in the tumor. The mechanism is complex and most likely involves prenylation of menadione in normal cells, but not in cancer cells, modulation of the immune response, a decrease in drug resistance, and a potential role in sensitizing glioblastoma to conventional chemotherapy. Full article
Show Figures

Figure 1

21 pages, 623 KiB  
Review
CD38: T Cell Immuno-Metabolic Modulator
by Anwesha Kar, Shikhar Mehrotra and Shilpak Chatterjee
Cells 2020, 9(7), 1716; https://doi.org/10.3390/cells9071716 - 17 Jul 2020
Cited by 64 | Viewed by 13883
Abstract
Activation and subsequent differentiation of T cells following antigenic stimulation are triggered by highly coordinated signaling events that lead to instilling cells with a discrete metabolic and transcriptional feature. Compelling studies indicate that intracellular nicotinamide adenine dinucleotide (NAD+) levels have profound [...] Read more.
Activation and subsequent differentiation of T cells following antigenic stimulation are triggered by highly coordinated signaling events that lead to instilling cells with a discrete metabolic and transcriptional feature. Compelling studies indicate that intracellular nicotinamide adenine dinucleotide (NAD+) levels have profound influence on diverse signaling and metabolic pathways of T cells, and hence dictate their functional fate. CD38, a major mammalian NAD+ glycohydrolase (NADase), expresses on T cells following activation and appears to be an essential modulator of intracellular NAD+ levels. The enzymatic activity of CD38 in the process of generating the second messenger cADPR utilizes intracellular NAD+, and thus limits its availability to different NAD+ consuming enzymes (PARP, ART, and sirtuins) inside the cells. The present review discusses how the CD38-NAD+ axis affects T cell activation and differentiation through interfering with their signaling and metabolic processes. We also describe the pivotal role of the CD38-NAD+ axis in influencing the chromatin remodeling and rewiring T cell response. Overall, this review emphasizes the crucial contribution of the CD38NAD+ axis in altering T cell response in various pathophysiological conditions. Full article
Show Figures

Figure 1

22 pages, 2569 KiB  
Review
P2X7 Receptor at the Crossroads of T Cell Fate
by Elizabeth Rivas-Yáñez, Carlos Barrera-Avalos, Brian Parra-Tello, Pedro Briceño, Mariana V. Rosemblatt, Juan Saavedra-Almarza, Mario Rosemblatt, Claudio Acuña-Castillo, María Rosa Bono and Daniela Sauma
Int. J. Mol. Sci. 2020, 21(14), 4937; https://doi.org/10.3390/ijms21144937 - 13 Jul 2020
Cited by 42 | Viewed by 10163
Abstract
The P2X7 receptor is a ligand-gated, cation-selective channel whose main physiological ligand is ATP. P2X7 receptor activation may also be triggered by ARTC2.2-dependent ADP ribosylation in the presence of extracellular NAD. Upon activation, this receptor induces several responses, including the influx of calcium [...] Read more.
The P2X7 receptor is a ligand-gated, cation-selective channel whose main physiological ligand is ATP. P2X7 receptor activation may also be triggered by ARTC2.2-dependent ADP ribosylation in the presence of extracellular NAD. Upon activation, this receptor induces several responses, including the influx of calcium and sodium ions, phosphatidylserine externalization, the formation of a non-selective membrane pore, and ultimately cell death. P2X7 receptor activation depends on the availability of extracellular nucleotides, whose concentrations are regulated by the action of extracellular nucleotidases such as CD39 and CD38. The P2X7 receptor has been extensively studied in the context of the immune response, and it has been reported to be involved in inflammasome activation, cytokine production, and the migration of different innate immune cells in response to ATP. In adaptive immune responses, the P2X7 receptor has been linked to T cell activation, differentiation, and apoptosis induction. In this review, we will discuss the evidence of the role of the P2X7 receptor on T cell differentiation and in the control of T cell responses in inflammatory conditions. Full article
(This article belongs to the Special Issue Purinergic P2 Receptors: Structure and Function)
Show Figures

Figure 1

14 pages, 1539 KiB  
Article
1,25-Dihydroxyvitamin D Decreases Tertiary Butyl-Hydrogen Peroxide-Induced Oxidative Stress and Increases AMPK/SIRT1 Activation in C2C12 Muscle Cells
by Eugene Chang
Molecules 2019, 24(21), 3903; https://doi.org/10.3390/molecules24213903 - 29 Oct 2019
Cited by 35 | Viewed by 5850
Abstract
Enhanced oxidative stress has been associated with muscle mitochondrial changes and metabolic disorders. Thus, it might be a good strategy to decrease oxidative stress and improve mitochondrial changes in skeletal muscle. In the present study, we investigate the role of the most biologically [...] Read more.
Enhanced oxidative stress has been associated with muscle mitochondrial changes and metabolic disorders. Thus, it might be a good strategy to decrease oxidative stress and improve mitochondrial changes in skeletal muscle. In the present study, we investigate the role of the most biologically active metabolite of vitamin D, 1,25-dihyroxyvitamin D (1,25(OH)2D) in oxidative stress and mitochondrial changes in tertiary butyl-hydrogen (tBHP)-treated C2C12 muscle cells. Differentiated C2C12 muscle cells were pretreated with tBHP, followed by 1,25(OH)2D for additional 24 h. An exogenous inducer of oxidative stress, tBHP significantly increased oxidative stress, lipid peroxidation, intracellular damage, and cell death which were reversed by 1,25(OH)2D in C2C12 myotubes. 1.25(OH)2D improves tBHP-induced mitochondrial morphological changes such as swelling, irregular cristae, and smaller size and number, as observed by transmission electron microscope. In addition, 1,25(OH)2D treatment increases mtDNA contents as well as gene expression involved in mitochondrial biogenesis such as PGC1α, NRF1, and Tfam. Significant increments in mRNA levels related to antioxidant enzymes such as Nrf2, HMOX1, and TXNRD1, myogenic differentiation markers including myoglobin, muscle creatine kinase (MCK), and MHCІ and ІІ, and vitamin D metabolism such as CYP24, CYP27, and vitamin D receptor (VDR) were found in 1,25(OH)2D-treated myotubes. Moreover, upon t-BHP-induced oxidative stress, significant incremental changes in nicotinamide adenine dinucleotide (NAD) levels, activities of AMP-activated protein kinase (AMPK)/sirtulin 1 (SIRT1), and SIRT1 expression were noted in 1,25(OH)2D-treated C2C12 muscle cells. Taken together, these results suggest the observed potent inhibitory effect of 1,25(OH)2D on muscle oxidative stress and mitochondrial dynamics might be at least involved in the activation of AMPK and SIRT1 activation in muscle cells. Full article
Show Figures

Figure 1

16 pages, 2871 KiB  
Article
Moringa Extract Attenuates Inflammatory Responses and Increases Gene Expression of Casein in Bovine Mammary Epithelial Cells
by Wei Nee Cheng, Chang Hee Jeong, Han Geuk Seo and Sung Gu Han
Animals 2019, 9(7), 391; https://doi.org/10.3390/ani9070391 - 26 Jun 2019
Cited by 35 | Viewed by 7058
Abstract
Bovine mastitis is a common inflammatory disease in the udder of dairy cows that causes economic loss to dairy industries. The development of alternative strategies, especially the utilization of natural products, e.g., Moringa oleifera, has gained a lot of interests. The objective [...] Read more.
Bovine mastitis is a common inflammatory disease in the udder of dairy cows that causes economic loss to dairy industries. The development of alternative strategies, especially the utilization of natural products, e.g., Moringa oleifera, has gained a lot of interests. The objective of the current study was to investigate the protective effects of moringa extract (ME) in bovine mammary epithelial cells (MAC-T) in in vitro settings. Radical scavenging capacities and anti-inflammatory properties of ME were examined using lipopolysaccharide (LPS)-challenged MAC-T cells. ME showed significant radical scavenging activities. In addition, ME decreased reactive oxygen species produced by LPS in cells. ME also attenuated inflammatory cyclooxygenase-2 expression induced by LPS by down-regulating NF-κB signaling cascade. Moreover, ME ameliorated LPS-induced pro-inflammatory cytokines including tumor necrosis factor-α, interleukin-1β, and interleukin-6. Furthermore, ME up-regulated mRNA expression levels of heme oxygenase-1, NAD(P)H: quinone oxidoreductase-1, and thioredoxin reductase 1. Importantly, ME promoted differentiated MAC-T cells by increasing mRNA expression levels of α-casein S1, α-casein S2, and β-casein. In conclusion, ME has beneficial effects in bovine mammary epithelial cells through its anti-inflammatory, antioxidant, and casein production properties. Our study provides evidence that ME could be a good candidate for a feed supplement to decrease inflammatory responses due to bovine mastitis. Full article
(This article belongs to the Collection Use of Agricultural By-Products in Animal Feeding)
Show Figures

Figure 1

48 pages, 14448 KiB  
Article
Sirtuins in Alzheimer’s Disease: SIRT2-Related GenoPhenotypes and Implications for PharmacoEpiGenetics
by Ramón Cacabelos, Juan C. Carril, Natalia Cacabelos, Aleksey G. Kazantsev, Alex V. Vostrov, Lola Corzo, Pablo Cacabelos and Dmitry Goldgaber
Int. J. Mol. Sci. 2019, 20(5), 1249; https://doi.org/10.3390/ijms20051249 - 12 Mar 2019
Cited by 74 | Viewed by 7353
Abstract
Sirtuins (SIRT1-7) are NAD+-dependent protein deacetylases/ADP ribosyltransferases with important roles in chromatin silencing, cell cycle regulation, cellular differentiation, cellular stress response, metabolism and aging. Sirtuins are components of the epigenetic machinery, which is disturbed in Alzheimer’s disease (AD), contributing to AD [...] Read more.
Sirtuins (SIRT1-7) are NAD+-dependent protein deacetylases/ADP ribosyltransferases with important roles in chromatin silencing, cell cycle regulation, cellular differentiation, cellular stress response, metabolism and aging. Sirtuins are components of the epigenetic machinery, which is disturbed in Alzheimer’s disease (AD), contributing to AD pathogenesis. There is an association between the SIRT2-C/T genotype (rs10410544) (50.92%) and AD susceptibility in the APOEε4-negative population (SIRT2-C/C, 34.72%; SIRT2-T/T 14.36%). The integration of SIRT2 and APOE variants in bigenic clusters yields 18 haplotypes. The 5 most frequent bigenic genotypes in AD are 33CT (27.81%), 33CC (21.36%), 34CT (15.29%), 34CC (9.76%) and 33TT (7.18%). There is an accumulation of APOE-3/4 and APOE-4/4 carriers in SIRT2-T/T > SIRT2-C/T > SIRT2-C/C carriers, and also of SIRT2-T/T and SIRT2-C/T carriers in patients who harbor the APOE-4/4 genotype. SIRT2 variants influence biochemical, hematological, metabolic and cardiovascular phenotypes, and modestly affect the pharmacoepigenetic outcome in AD. SIRT2-C/T carriers are the best responders, SIRT2-T/T carriers show an intermediate pattern, and SIRT2-C/C carriers are the worst responders to a multifactorial treatment. In APOE-SIRT2 bigenic clusters, 33CC carriers respond better than 33TT and 34CT carriers, whereas 24CC and 44CC carriers behave as the worst responders. CYP2D6 extensive metabolizers (EM) are the best responders, poor metabolizers (PM) are the worst responders, and ultra-rapid metabolizers (UM) tend to be better responders that intermediate metabolizers (IM). In association with CYP2D6 genophenotypes, SIRT2-C/T-EMs are the best responders. Some Sirtuin modulators might be potential candidates for AD treatment. Full article
(This article belongs to the Special Issue Genomics of Brain Disorders)
Show Figures

Figure 1

23 pages, 763 KiB  
Article
SirT1—A Sensor for Monitoring Self-Renewal and Aging Process in Retinal Stem Cells
by Chi-Hsien Peng, Yuh-Lih Chang, Chung-Lan Kao, Ling-Min Tseng, Chih-Chia Wu, Yu-Chih Chen, Ching-Yao Tsai, Lin-Chung Woung, Jorn-Hon Liu, Shih-Hwa Chiou and Shih-Jen Chen
Sensors 2010, 10(6), 6172-6194; https://doi.org/10.3390/s100606172 - 21 Jun 2010
Cited by 40 | Viewed by 13779
Abstract
Retinal stem cells bear potency of proliferation, self-renewal, and differentiation into many retinal cells. Utilizing appropriate sensors one can effectively detect the self-renewal and aging process abilities. Silencing information regulator (SirT1), a member of the sirtuin family, is a NAD-dependent histone deacetylase and [...] Read more.
Retinal stem cells bear potency of proliferation, self-renewal, and differentiation into many retinal cells. Utilizing appropriate sensors one can effectively detect the self-renewal and aging process abilities. Silencing information regulator (SirT1), a member of the sirtuin family, is a NAD-dependent histone deacetylase and an essential mediator for longevity in normal cells by calorie restriction. We firstly investigate the SirT1 mRNA expression in retinal stem cells from rats and 19 human eyes of different ages. Results revealed that SirT1 expression was significantly decreased in in vivo aged eyes, associated with poor self-renewal abilities. Additionally, SirT1 mRNA levels were dose-dependently increased in resveratrol- treated retinal stem cells. The expression of SirT1 on oxidative stress-induced damage was significantly decreased, negatively correlated with the level of intracellular reactive oxygen species production. Treatment with resveratrol could effectively further reduce oxidative stress induced by H2O2 treatment in retinal stem cells. Importantly, the anti-oxidant effects of resveratrol in H2O2-treated retinal stem cells were significantly abolished by knockdown of SirT1 expression (sh-SirT1). SirT1 expression provides a feasible sensor in assessing self-renewal and aging process in retinal stem cells. Resveratrol can prevent reactive oxygen species-induced damages via increased retinal SirT1 expression. Full article
(This article belongs to the Special Issue Delft Workshop 2008-2009—Sensors and Imagers: a VLSI Perspective)
Show Figures

Back to TopTop