Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = Mn(II)-oxidizing bacteria

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5662 KiB  
Article
Synthesis, Characterization and Catalytic/Antimicrobial Activities of Some Transition Metal Complexes Derived from 2-Floro-N-((2-Hydroxyphenyl)Methylene)Benzohydrazide
by Ahmed K. Hijazi, Ziyad A. Taha, Dua’a K. Issa, Heba M. Alshare, Waleed M. Al-Momani, Ali Elrashidi and Ahmad S. Barham
Molecules 2024, 29(23), 5758; https://doi.org/10.3390/molecules29235758 - 5 Dec 2024
Cited by 2 | Viewed by 1519
Abstract
Background: In the last few decades, the field of coordination chemistry has grown very fast, especially in the fields of pharmaceutical, biological and catalytic studies. In ancient times, metals were thought to be beneficial to health issues but nowadays the link between organic–metal [...] Read more.
Background: In the last few decades, the field of coordination chemistry has grown very fast, especially in the fields of pharmaceutical, biological and catalytic studies. In ancient times, metals were thought to be beneficial to health issues but nowadays the link between organic–metal substances and different industrial and medicinal properties is well established. Methods: A Schiff base ligand (2-fluoro-N’-[(E)-2-hydroxyphenyl) methylene] benzohydrazide) was reacted with a series of transition metals to produce complexes with a general formula [ML2(NO3)]NO3.nH2O, where [M = Zn, Cu, Co, Ni, Mn], and [n = 0, 1], corresponding to complexes 15. The nature of the bond was determined in the solid state and solution using spectral studies (1H-NMR, 13C-NMR, UV-Vis and FT-IR), TGA, EPR, elemental analysis and molar conductivity measurement. Results: All M(II) complexes are 1:1 electrolytes, as illustrated by their molar conductivities. The results demonstrate that all synthesized complexes present a coordination number of six by the bonding of the bidentate ligand via its azomethine nitrogen atoms and carbonyl oxygen atoms, as well as with one nitrate group as a bidentate ligand via two oxygen atoms. The DPPH radical scavenging technique was used to investigate the antioxidant activities of the ligand [L] and the metal complexes. It is clear that the activity increased in M (II) complexes compared to the Schiff base ligand. Complex 5 showed the highest activity, with an excellent activity of 90.4%, while complex 4 showed the lowest. The antibacterial activities of the Schiff base and its complexes have been examined against various pathogenic bacteria to measure their inhibition potential. Complex 2 showed remarkable activity against Gram (+) bacteria and fungi with an MIC value of 8 μg/mL, which is greater than that of the positive controls, oxytetracycline and fluconazole. The catalytic activities of all complexes were examined in the oxidation of aniline, and the results illustrated that all complexes had a 100% selectivity in producing only azobenzene, and complex 4 had the highest activity (91%). Conclusion: The obtained results from this study show that the antioxidant and antibacterial properties of both the Schiff base ligand and its derived complexes are promising, with some demonstrating remarkable activities. Moreover, the catalytic activities and selectivities of the prepared complexes in aniline oxidation are interesting. Full article
Show Figures

Figure 1

18 pages, 11442 KiB  
Review
Advances in Research on Bacterial Oxidation of Mn(II): A Visualized Bibliometric Analysis Based on CiteSpace
by Wentao Mo, Hang Wang, Jianghan Wang, Yue Wang, Yunfei Liu, Yi Luo, Minghui He, Shuang Cheng, Huiting Mei, Jin He and Jianmei Su
Microorganisms 2024, 12(8), 1611; https://doi.org/10.3390/microorganisms12081611 - 7 Aug 2024
Cited by 1 | Viewed by 2435
Abstract
Manganese (Mn) pollution poses a serious threat to the health of animals, plants, and humans. The microbial-mediated Mn(II) removal method has received widespread attention because of its rapid growth, high efficiency, and economy. Mn(II)-oxidizing bacteria can oxidize toxic soluble Mn(II) into non-toxic Mn(III/IV) [...] Read more.
Manganese (Mn) pollution poses a serious threat to the health of animals, plants, and humans. The microbial-mediated Mn(II) removal method has received widespread attention because of its rapid growth, high efficiency, and economy. Mn(II)-oxidizing bacteria can oxidize toxic soluble Mn(II) into non-toxic Mn(III/IV) oxides, which can further participate in the transformation of other heavy metals and organic pollutants, playing a crucial role in environmental remediation. This study aims to conduct a bibliometric analysis of research papers on bacterial Mn(II) oxidation using CiteSpace, and to explore the research hotspots and developmental trends within this field between 2008 and 2023. A series of visualized knowledge map analyses were conducted with 469 screened SCI research papers regarding annual publication quantity, author groups and their countries and regions, journal categories, publishing institutions, and keywords. China, the USA, and Japan published the most significant number of research papers on the research of bacterial Mn(II) oxidation. Research hotspots of bacterial Mn(II) oxidation mainly focused on the species and distributions of Mn(II)-oxidizing bacteria, the influencing factors of Mn(II) oxidation, the mechanisms of Mn(II) oxidation, and their applications in environment. This bibliometric analysis provides a comprehensive visualized knowledge map to quickly understand the current advancements, research hotspots, and academic frontiers in bacterial Mn(II) oxidation. Full article
(This article belongs to the Special Issue Latest Review Papers in Environmental Microbiology 2024)
Show Figures

Figure 1

11 pages, 3231 KiB  
Article
Characterizing Biogenic MnOx Produced by Pseudomonas putida MnB1 and Its Catalytic Activity towards Water Oxidation
by Elisa Morales, Lauren N. Formanski, Shaner E. Sarah and Stone L. Kari
Life 2024, 14(2), 171; https://doi.org/10.3390/life14020171 - 24 Jan 2024
Cited by 2 | Viewed by 2074 | Correction
Abstract
Mn-oxidizing microorganisms oxidize environmental Mn(II), producing Mn(IV) oxides. Pseudomonas putida MnB1 is a widely studied organism for the oxidation of manganese(II) to manganese(IV) by a multi-copper oxidase. The biogenic manganese oxides (BMOs) produced by MnB1 and similar organisms have unique properties compared to [...] Read more.
Mn-oxidizing microorganisms oxidize environmental Mn(II), producing Mn(IV) oxides. Pseudomonas putida MnB1 is a widely studied organism for the oxidation of manganese(II) to manganese(IV) by a multi-copper oxidase. The biogenic manganese oxides (BMOs) produced by MnB1 and similar organisms have unique properties compared to non-biological manganese oxides. Along with an amorphous, poorly crystalline structure, previous studies have indicated that BMOs have high surface areas and high reactivities. It is also known that abiotic Mn oxides promote oxidation of organics and have been studied for their water oxidation catalytic function. MnB1 was grown and maintained and subsequently transferred to culturing media containing manganese(II) salts to observe the oxidation of manganese(II) to manganese(IV). The structures and compositions of these manganese(IV) oxides were characterized using scanning electron microscopy, energy dispersive X-ray spectroscopy, inductively coupled plasma optical emission spectroscopy, and powder X-ray diffraction, and their properties were assessed regarding catalytic functionality towards water oxidation in comparison to abiotic acid birnessite. Water oxidation was accomplished through the whole-cell catalysis of MnB1, the results for which compare favorably to the water-oxidizing ability of abiotic Mn(IV) oxides. Full article
(This article belongs to the Special Issue Advances in Research in Biocatalysis)
Show Figures

Figure 1

12 pages, 2334 KiB  
Article
A Novel Mn- and Fe-Oxides-Reducing Bacterium with High Activity to Drive Mobilization and Release of Arsenic from Soils
by Jianyu Xiong, Yifan Xu, Yang Li and Xian-Chun Zeng
Water 2023, 15(13), 2337; https://doi.org/10.3390/w15132337 - 23 Jun 2023
Cited by 3 | Viewed by 2091
Abstract
Since Mn, Fe and As contaminants often coexist in the environment, we hypothesize that the presence of multifunctional bacteria is capable of reducing Mn and Fe oxides and promoting the mobilization and release of arsenic. However, such bacteria have not been reported yet; [...] Read more.
Since Mn, Fe and As contaminants often coexist in the environment, we hypothesize that the presence of multifunctional bacteria is capable of reducing Mn and Fe oxides and promoting the mobilization and release of arsenic. However, such bacteria have not been reported yet; moreover, the impact of bacteria with the ability to simultaneously reduce Mn and Fe oxides on the formation of high-arsenic groundwater remains unclear. This study aims to address this question. Here, we found that the microbial community in the soils was able to efficiently reduce Mn oxides into Mn(II). An analysis of the microbial community structures of the soil shows that it contained Proteobacteria (41.1%), Acidobacteria (10.9%), Actinobacteria (9.5%) and other less abundant bacteria. Based on this observation, we successfully isolated a novel bacterium Cellulomonas sp. CM1, which possesses both Mn- and Fe-oxide-reducing activities. Under anaerobic conditions, strain CM1 can reduce Mn oxides, resulting in the production of 13 mg/L of Mn(II) within a span of 10 days. Simultaneously, it can reduce Fe oxides, leading to the generation of 9 mg/L of Fe(II) within 9 days when a yeast extract is used as an electron donor. During these reduction reactions, the cells were grown into a density of OD600 0.16 and 0.09, respectively, suggesting that Mn(IV) is more beneficial for the bacterial growth than Fe(III). Arsenic release assays indicate that after 108 days of anoxic incubation, approximately 126.2, 103.2 and 81.5 μg/L As(V) were mobilized and released from three soil samples, respectively, suggesting that CM1 plays significant roles in driving mobilization of arsenic from soils. These findings shed new light on the microbial processes that lead to the generation of arsenic-contaminated groundwater. Full article
(This article belongs to the Special Issue Biogeochemical Cycling of Arsenic in Groundwater and Soils)
Show Figures

Figure 1

18 pages, 4646 KiB  
Article
Diversity of Mixotrophic Neutrophilic Thiosulfate- and Iron-Oxidizing Bacteria from Deep-Sea Hydrothermal Vents
by Yang He, Xiang Zeng, Fei Xu and Zongze Shao
Microorganisms 2023, 11(1), 100; https://doi.org/10.3390/microorganisms11010100 - 30 Dec 2022
Cited by 9 | Viewed by 4300
Abstract
At deep-sea hydrothermal vents, sulfur oxidation and iron oxidation are of the highest importance to microbial metabolisms, which are thought to contribute mainly in chemolithoautotrophic groups. In this study, 17 mixotrophic neutrophilic thiosulfate- and iron-oxidizing bacteria were isolated from hydrothermal fields on the [...] Read more.
At deep-sea hydrothermal vents, sulfur oxidation and iron oxidation are of the highest importance to microbial metabolisms, which are thought to contribute mainly in chemolithoautotrophic groups. In this study, 17 mixotrophic neutrophilic thiosulfate- and iron-oxidizing bacteria were isolated from hydrothermal fields on the Carlsberg Ridge in the Indian Ocean, nine to the γ-proteobacteria (Halomonas (4), Pseudomonas (2), Marinobacter (2), and Rheinheimera (1)), seven to the α-proteobacteria (Thalassospira, Qipengyuania, Salipiger, Seohaeicola, Martelella, Citromicrobium, and Aurantimonas), and one to the Actinobacteria (Agromyces), as determined by their 16S rRNA and genome sequences. The physiological characterization of these isolates revealed wide versatility in electron donors (Fe(II) and Mn(II), or thiosulfate) and a variety of lifestyles as lithotrophic or heterotrophic, microaerobic, or anaerobic. As a representative strain, Pseudomonas sp. IOP_13 showed its autotrophic gowth from 105 cells/ml to 107 cells/ml;carbon dioxide fixation capacity with the δ13CVPDB in the biomass increased from −27.42‰ to 3460.06‰; the thiosulfate-oxidizing ability with produced SO42− increased from 60 mg/L to 287 mg/L; and the iron-oxidizing ability with Fe(II) decreased from 10 mM to 5.2 mM. In addition, iron-oxide crust formed outside the cells. Gene coding for energy metabolism involved in possible iron, manganese, and sulfur oxidation, and denitrification was identified by their genome analysis. This study sheds light on the function of the mixotrophic microbial community in the iron/manganese/sulfur cycles and the carbon fixation of the hydrothermal fields. Full article
(This article belongs to the Special Issue Diversity of Extremophiles in Hydrothermal Environments)
Show Figures

Figure 1

17 pages, 4797 KiB  
Article
Carbon Metabolism of a Soilborne Mn(II)-Oxidizing Escherichia coli Isolate Implicated as a Pronounced Modulator of Bacterial Mn Oxidation
by Tong Gu, Zhenghu Tong, Xue Zhang, Zhiyong Wang, Zhen Zhang, Tzann-Shun Hwang and Lin Li
Int. J. Mol. Sci. 2022, 23(11), 5951; https://doi.org/10.3390/ijms23115951 - 25 May 2022
Cited by 5 | Viewed by 2185
Abstract
Mn(II)-oxidizing microorganisms are generally considered the primary driving forces in the biological formation of Mn oxides. However, the mechanistic elucidation of the actuation and regulation of Mn oxidation in soilborne bacteria remains elusive. Here, we performed joint multiple gene-knockout analyses and comparative morphological [...] Read more.
Mn(II)-oxidizing microorganisms are generally considered the primary driving forces in the biological formation of Mn oxides. However, the mechanistic elucidation of the actuation and regulation of Mn oxidation in soilborne bacteria remains elusive. Here, we performed joint multiple gene-knockout analyses and comparative morphological and physiological determinations to characterize the influence of carbon metabolism on the Mn oxide deposit amount (MnODA) and the Mn oxide formation of a soilborne bacterium, Escherichia coli MB266. Different carbon source substances exhibited significantly varied effects on the MnODA of MB266. A total of 16 carbon metabolism-related genes with significant variant expression levels under Mn supplementation conditions were knocked out in the MB266 genome accordingly, but only little effect on the MnODA of each mutant strain was accounted for. However, a simultaneous four-gene-knockout mutant (namely, MB801) showed an overall remarkable MnODA reduction and an initially delayed Mn oxide formation compared with the wild-type MB266. The assays using scanning/transmission electron microscopy verified that MB801 exhibited not only a delayed Mn-oxide aggregate processing, but also relatively smaller microspherical agglomerations, and presented flocculent deposit Mn oxides compared with normal fibrous and crystalline Mn oxides formed by MB266. Moreover, the Mn oxide aggregate formation was highly related to the intracellular ROS level. Thus, this study demonstrates that carbon metabolism acts as a pronounced modulator of MnODA in MB266, which will provide new insights into the occurrence of Mn oxidation and Mn oxide formation by soilborne bacteria in habitats where Mn(II) naturally occurs. Full article
Show Figures

Figure 1

14 pages, 3414 KiB  
Article
Synthesis, Characterization, and Antimicrobial of MnO and CdO Nanoparticles by Using a Calcination Method
by Maged S. Al-Fakeh, Roaa O. Alsaedi, Nesrine Amiri and Gadah A. Allazzam
Coatings 2022, 12(2), 215; https://doi.org/10.3390/coatings12020215 - 7 Feb 2022
Cited by 16 | Viewed by 3409
Abstract
Nano-sized manganese oxide and cadmium oxide were formed quantitatively via chemical routes, using calcination from an aqueous solution containing metal chloride as a precursor, to create polyvinyl alcohol and para-aminobenzoic acid complexes with the following formulae: [Mn (PVA)(P-ABA) (H2O)3] [...] Read more.
Nano-sized manganese oxide and cadmium oxide were formed quantitatively via chemical routes, using calcination from an aqueous solution containing metal chloride as a precursor, to create polyvinyl alcohol and para-aminobenzoic acid complexes with the following formulae: [Mn (PVA)(P-ABA) (H2O)3] H2O and [Cd (PVA)(P-ABA) (H2O)3]. The synthesized complexes and metal oxide nanoparticles were characterized using elemental analysis, thermal analyses (TGA and DTA), FT-IR spectroscopy, XRD analysis, UV-vis spectra, and SEM and TEM electron microscopes. The kinetic and thermodynamic parameters (∆H*, ∆G* and ∆S*) for the Mn(II) and Cd(II) coordination compounds were calculated. The antimicrobial properties of the samples were assessed using five bacterial strains and three fungal strains. Three strains of (G+) bacteria, two strains of (G−) bacteria, one stain of yeast-like fungi, and two molds were used in this study. Full article
(This article belongs to the Special Issue Nanoparticles for Energy, Sensing and Biomedical Applications)
Show Figures

Figure 1

16 pages, 30736 KiB  
Article
Manganese-Oxidizing Antarctic Bacteria (Mn-Oxb) Release Reactive Oxygen Species (ROS) as Secondary Mn(II) Oxidation Mechanisms to Avoid Toxicity
by Ignacio Jofré, Francisco Matus, Daniela Mendoza, Francisco Nájera and Carolina Merino
Biology 2021, 10(10), 1004; https://doi.org/10.3390/biology10101004 - 6 Oct 2021
Cited by 20 | Viewed by 4355
Abstract
Manganese (Mn) oxidation is performed through oxidative Mn-oxidizing bacteria (MnOxb) as the main bio-weathering mechanism for Mn(III/IV) deposits during soil formation. However, with an increase in temperature, the respiration rate also increases, producing Reactive Oxygen Species (ROS) as by-products, which are harmful to [...] Read more.
Manganese (Mn) oxidation is performed through oxidative Mn-oxidizing bacteria (MnOxb) as the main bio-weathering mechanism for Mn(III/IV) deposits during soil formation. However, with an increase in temperature, the respiration rate also increases, producing Reactive Oxygen Species (ROS) as by-products, which are harmful to microbial cells. We hypothesize that bacterial ROS oxidize Mn(II) to Mn(III/IV) as a secondary non-enzymatic temperature-dependent mechanism for cell protection. Fourteen MnOxb were isolated from Antarctic soils under the global warming effect, and peroxidase (PO) activity, ROS, and Mn(III/IV) production were evaluated for 120 h of incubation at 4 °C, 15 °C, and 30 °C. ROS contributions to Mn oxidation were evaluated in Arthrobacter oxydans under antioxidant (Trolox) and ROS-stimulated (menadione) conditions. The Mn(III/IV) concentration increased with temperature and positively correlated with ROS production. ROS scavenging with Trolox depleted the Mn oxidation, and ROS-stimulant increased the Mn precipitation in A. oxydans. Increasing the Mn(II) concentration caused a reduction in the membrane potential and bacterial viability, which resulted in Mn precipitation on the bacteria surface. In conclusion, bacterial ROS production serves as a complementary non-enzymatic temperature-dependent mechanism for Mn(II) oxidation as a response in warming environments. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Show Figures

Graphical abstract

24 pages, 543 KiB  
Review
Removal of Manganese(II) from Acid Mine Wastewater: A Review of the Challenges and Opportunities with Special Emphasis on Mn-Oxidizing Bacteria and Microalgae
by Yongchao Li, Zheng Xu, Hongqing Ma and Andrew S. Hursthouse
Water 2019, 11(12), 2493; https://doi.org/10.3390/w11122493 - 26 Nov 2019
Cited by 78 | Viewed by 14653
Abstract
Many global mining activities release large amounts of acidic mine drainage with high levels of manganese (Mn) having potentially detrimental effects on the environment. This review provides a comprehensive assessment of the main implications and challenges of Mn(II) removal from mine drainage. We [...] Read more.
Many global mining activities release large amounts of acidic mine drainage with high levels of manganese (Mn) having potentially detrimental effects on the environment. This review provides a comprehensive assessment of the main implications and challenges of Mn(II) removal from mine drainage. We first present the sources of contamination from mineral processing, as well as the adverse effects of Mn on mining ecosystems. Then the comparison of several techniques to remove Mn(II) from wastewater, as well as an assessment of the challenges associated with precipitation, adsorption, and oxidation/filtration are provided. We also critically analyze remediation options with special emphasis on Mn-oxidizing bacteria (MnOB) and microalgae. Recent literature demonstrates that MnOB can efficiently oxidize dissolved Mn(II) to Mn(III, IV) through enzymatic catalysis. Microalgae can also accelerate Mn(II) oxidation through indirect oxidation by increasing solution pH and dissolved oxygen production during its growth. Microbial oxidation and the removal of Mn(II) have been effective in treating artificial wastewater and groundwater under neutral conditions with adequate oxygen. Compared to physicochemical techniques, the bioremediation of manganese mine drainage without the addition of chemical reagents is relatively inexpensive. However, wastewater from manganese mines is acidic and has low-levels of dissolved oxygen, which inhibit the oxidizing ability of MnOB. We propose an alternative treatment for manganese mine drainage that focuses on the synergistic interactions of Mn in wastewater with co-immobilized MnOB/microalgae. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

15 pages, 4879 KiB  
Article
Natural Attenuation of Mn(II) in Metal Refinery Wastewater: Microbial Community Structure Analysis and Isolation of a New Mn(II)-Oxidizing Bacterium Pseudomonas sp. SK3
by Santisak Kitjanukit, Kyohei Takamatsu and Naoko Okibe
Water 2019, 11(3), 507; https://doi.org/10.3390/w11030507 - 11 Mar 2019
Cited by 15 | Viewed by 4196
Abstract
Natural attenuation of Mn(II) was observed inside the metal refinery wastewater pipeline, accompanying dark brown-colored mineralization (mostly MnIVO2 with some MnIII2O3 and Fe2O3) on the inner pipe surface. The Mn-deposit hosted the [...] Read more.
Natural attenuation of Mn(II) was observed inside the metal refinery wastewater pipeline, accompanying dark brown-colored mineralization (mostly MnIVO2 with some MnIII2O3 and Fe2O3) on the inner pipe surface. The Mn-deposit hosted the bacterial community comprised of Hyphomicrobium sp. (22.1%), Magnetospirillum sp. (3.2%), Geobacter sp. (0.3%), Bacillus sp. (0.18%), Pseudomonas sp. (0.03%), and non-metal-metabolizing bacteria (74.2%). Culture enrichment of the Mn-deposit led to the isolation of a new heterotrophic Mn(II)-oxidizer Pseudomonas sp. SK3, with its closest relative Ps. resinovorans (with 98.4% 16S rRNA gene sequence identity), which was previously unknown as an Mn(II)-oxidizer. Oxidation of up to 100 mg/L Mn(II) was readily initiated and completed by isolate SK3, even in the presence of high contents of MgSO4 (a typical solute in metal refinery wastewaters). Additional Cu(II) facilitated Mn(II) oxidation by isolate SK3 (implying the involvement of multicopper oxidase enzyme), allowing a 2-fold greater Mn removal rate, compared to the well-studied Mn(II)-oxidizer Ps. putida MnB1. Poorly crystalline biogenic birnessite was formed by isolate SK3 via one-electron transfer oxidation, gradually raising the Mn AOS (average oxidation state) to 3.80 in 72 h. Together with its efficient in vitro Mn(II) oxidation behavior, a high Mn AOS level of 3.75 was observed with the pipeline Mn-deposit sample collected in situ. The overall results, including the microbial community structure analysis of the pipeline sample, suggest that the natural Mn(II) attenuation phenomenon was characterized by robust in situ activity of Mn(II) oxidizers (including strain SK3) for continuous generation of Mn(IV). This likely synergistically facilitated chemical Mn(II)/Mn(IV) synproportionation for effective Mn removal in the complex ecosystem established in this artificial pipeline structure. The potential utility of isolate SK3 is illustrated for further industrial application in metal refinery wastewater treatment processes. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

18 pages, 2789 KiB  
Article
Toxicity of Nine (Doped) Rare Earth Metal Oxides and Respective Individual Metals to Aquatic Microorganisms Vibrio fischeri and Tetrahymena thermophila
by Imbi Kurvet, Katre Juganson, Heiki Vija, Mariliis Sihtmäe, Irina Blinova, Guttorm Syvertsen-Wiig and Anne Kahru
Materials 2017, 10(7), 754; https://doi.org/10.3390/ma10070754 - 5 Jul 2017
Cited by 63 | Viewed by 6779
Abstract
Despite the increasing use of rare earth elements (REEs) and oxides (REOs) in various technologies, the information on their ecotoxicological hazard is scarce. Here, the effects of La3+, Ce3+, Pr3+, Nd3+, Gd3+, CeO [...] Read more.
Despite the increasing use of rare earth elements (REEs) and oxides (REOs) in various technologies, the information on their ecotoxicological hazard is scarce. Here, the effects of La3+, Ce3+, Pr3+, Nd3+, Gd3+, CeO2, and eight doped REOs to marine bacteria Vibrio fischeri and freshwater protozoa Tetrahymena thermophila were studied in parallel with REO dopant metals (Co2+, Fe3+, Mn2+, Ni2+, Sr2+). The highest concentrations of REOs tested were 100 mg/L with protozoa in deionized water and 500 mg/L with bacteria in 2% NaCl. Although (i) most REOs produced reactive oxygen species; (ii) all studied soluble REEs were toxic to bacteria (half-effective concentration, EC50 3.5–21 mg metal/L; minimal bactericidal concentration, MBC 6.3–63 mg/L) and to protozoa (EC50 28–42 mg/L); and (iii) also some dopant metals (Ni2+, Fe3+) proved toxic (EC50 ≤ 3 mg/L), no toxicity of REOs to protozoa (EC50 > 100 mg/L) and bacteria (EC50 > 500 mg/L; MBC > 500 mg/L) was observed except for La2NiO4 (MBC 25 mg/L). According to kinetics of V. fischeri bioluminescence, the toxicity of REEs was triggered by disturbing cellular membrane integrity. Fortunately, as REEs and REOs are currently produced in moderate amounts and form in the environment insoluble salts and/or oxides, they apparently present no harm to aquatic bacteria and protozoa. Full article
Show Figures

Figure 1

15 pages, 8007 KiB  
Article
Direct Adherence of Fe(III) Particles onto Sheaths of Leptothrix sp. Strain OUMS1 in Culture
by Tatsuki Kunoh, Hideki Hashimoto, Tomoko Suzuki, Naoyuki Hayashi, Katsunori Tamura, Mikio Takano, Hitoshi Kunoh and Jun Takada
Minerals 2016, 6(1), 4; https://doi.org/10.3390/min6010004 - 18 Jan 2016
Cited by 13 | Viewed by 5297
Abstract
Leptothrix species, one of the Fe/Mn-oxidizing bacteria, oxidize Fe(II) and produce extracellular, microtubuar, Fe-encrusted sheaths. Since protein(s) involved in Fe(II) oxidation is excreted from Leptothrix cells, the oxidation from Fe(II) to Fe(III) and subsequent Fe(III) deposition to sheaths have been thought to occur [...] Read more.
Leptothrix species, one of the Fe/Mn-oxidizing bacteria, oxidize Fe(II) and produce extracellular, microtubuar, Fe-encrusted sheaths. Since protein(s) involved in Fe(II) oxidation is excreted from Leptothrix cells, the oxidation from Fe(II) to Fe(III) and subsequent Fe(III) deposition to sheaths have been thought to occur in the vicinity or within the sheaths. Previously, Fe(III) particles generated in MSVP medium amended with Fe(II) salts by abiotic oxidation were directly recruited onto cell-encasing and/or -free sheaths of L. cholodnii SP-6. In this study, whether this direct Fe(III) adherence to sheaths also occurs in silicon-glucose-peptone (SGP) medium amended with Fe(0) (SGP + Fe) was investigated using another strain of Leptothrix sp., OUMS1. Preparation of SGP + Fe with Fe powder caused turbidity within a few hours due to abiotic generation of Fe(III) particles via Fe(II), and the medium remained turbid until day 8. When OUMS1 was added to SGP + Fe, the turbidity of the medium cleared within 35 h as Fe(III) particles adhered to sheaths. When primitive sheaths, cell-killed, cell-free, or lysozyme/EDTA/SDS- and proteinase K-treated sheath remnants were mixed with Fe(III) particles, the particles immediately adhered to each. Thus, vital activity of cells was not required for the direct Fe(III) particle deposition onto sheaths regardless of Leptothrix strains. Full article
Show Figures

Figure 1

28 pages, 800 KiB  
Article
Isolation and Characterization of a Mn(II)-Oxidizing Bacillus Strain from the Demosponge Suberites domuncula
by Xiaohong Wang, Matthias Wiens, Mugdha Divekar, Vladislav A. Grebenjuk, Heinz C. Schröder, Renato Batel and Werner E. G. Müller
Mar. Drugs 2011, 9(1), 1-28; https://doi.org/10.3390/md9010001 - 23 Dec 2010
Cited by 22 | Viewed by 10713
Abstract
In this study we demonstrate that the demosponge Suberites domuncula harbors a Mn(II)-oxidizing bacterium, a Bacillus strain, termed BAC-SubDo-03. Our studies showed that Mn(II) stimulates bacterial growth and induces sporulation. Moreover, we show that these bacteria immobilize manganese on their cell surface. Comparison [...] Read more.
In this study we demonstrate that the demosponge Suberites domuncula harbors a Mn(II)-oxidizing bacterium, a Bacillus strain, termed BAC-SubDo-03. Our studies showed that Mn(II) stimulates bacterial growth and induces sporulation. Moreover, we show that these bacteria immobilize manganese on their cell surface. Comparison of the 16S rDNA sequence allowed the grouping of BAC-SubDo-03 to the Mn-precipitating bacteria. Analysis of the spore cell wall revealed that it contains an Mn(II)-oxidizing enzyme. Co-incubation studies of BAC-SubDo-03 with 100 µM MnCl2 and >1 µM of CuCl2 showed an increase in their Mn(II)-oxidizing capacity. In order to prove that a multicopper oxidase-like enzyme(s) (MCO) exists in the cell wall of the S. domuncula-associated BAC‑SubDo-03 Bacillus strain, the gene encoding this enzyme was cloned (mnxG‑SubDo‑03). Sequence alignment of the deduced MCO protein (MnxG-SubDo-03) revealed that the sponge bacterium clusters together with known Mn(II)-oxidizing bacteria. The expression of the mnxG-SubDo-03 gene is under strong control of extracellular Mn(II). Based on these findings, we assume that BAC-SubDo-03 might serve as a Mn reserve in the sponge providing the animal with the capacity to detoxify Mn in the environment. Applying the in vitro primmorph cell culture system we could demonstrate that sponge cells, that were co-incubated with BAC-SubDo-03 in the presence of Mn(II), show an increased proliferation potential. Full article
(This article belongs to the Special Issue Biosynthesis of Marine Natural Products)
Show Figures

Back to TopTop