Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = Mandra (Attica)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 7483 KiB  
Article
Soil Erosion and Landslide Susceptibility Mapping in Western Attica, Greece: A Rock Engineering System Approach
by Nikolaos Tavoularis
Geosciences 2023, 13(11), 338; https://doi.org/10.3390/geosciences13110338 - 3 Nov 2023
Cited by 5 | Viewed by 3819
Abstract
Two of the eight main soil degradation processes with which soils worldwide are confronted are soil erosion and landslides. Specifically, landslides are a major threat in particular areas across Europe, often leading to serious impacts on population, property, and infrastructure. Regarding the abovementioned [...] Read more.
Two of the eight main soil degradation processes with which soils worldwide are confronted are soil erosion and landslides. Specifically, landslides are a major threat in particular areas across Europe, often leading to serious impacts on population, property, and infrastructure. Regarding the abovementioned processes, the case study of the fatal Mandra flash flood (November 2017) in the Attica Region (Greece), which caused 24 deaths, and much infrastructure and building damage, is presented with the intention of assessing the relationship between soil erosion and landslide incidents. Investigations were executed from 2018 to 2022, and their outcomes were taken into consideration by the Technical Authority of the Attica Region. Soil erosion lines were delineated in a GIS and were validated using a previously generated regional Web-GIS landslide susceptibility map. The study presents soil erosion types from the Mandra fatal flash flood event and correlates them with already existing landslide susceptibility analyses for the Attica Region. The produced susceptibility map is a cartographic product on a regional scale (1:100,000) generated via a semiquantitative heuristic methodology named the Rock Engineering System (RES). The way in which both soil erodibility and landslide susceptibility maps were generated and validated could be the basis for proposing modeling approaches that can respond to new developments in European landslide policies. Full article
Show Figures

Figure 1

27 pages, 8213 KiB  
Article
The Effect of Flood Protection Works on Flood Risk
by Georgios Mitsopoulos, Michalis Diakakis, Aristeides Bloutsos, Efthymios Lekkas, Evangelos Baltas and Anastasios Stamou
Water 2022, 14(23), 3936; https://doi.org/10.3390/w14233936 - 3 Dec 2022
Cited by 6 | Viewed by 4468
Abstract
We pose the following research question: “what is the effect of flood protection works on flood risk?” To answer this question, we developed a flood risk assessment method that combines the typical hazard assessment via integrated hydrological and hydrodynamic calculations using HEC-HMS and [...] Read more.
We pose the following research question: “what is the effect of flood protection works on flood risk?” To answer this question, we developed a flood risk assessment method that combines the typical hazard assessment via integrated hydrological and hydrodynamic calculations using HEC-HMS and 1D/2D HEC-RAS, respectively, and an original procedure for vulnerability assessment at the building level, which we applied in the town of Mandra in Attica, Greece. We performed calculations for 15 scenarios—combinations of return periods (T = 20, 50, 100, 150, and 200 y) and rain durations (t = 6, 12, and 18 h)—for the conditions of the year 2017, when there were no flood protection works, and today with these works in place. We identified the regions with high flood risk and concluded that the presence of the works caused a decrease in the inundation areas by 53–89%, along with reductions in the maximum water depths, the maximum flow velocities, and the average flood risk in Koropouli Street—the main street of Mandra, which suffered severe damage during the 2017 flood—by 38–62%, 18–52%, and 27–74%, respectively. The effect of the flood protection works increased with the increases in the return period and rain duration, while for the same return period the effect of the rain duration was more pronounced for the smaller return periods. Full article
(This article belongs to the Special Issue Flood and Other Hydrogeomorphological Risk Management and Analysis)
Show Figures

Figure 1

15 pages, 6777 KiB  
Article
A Fast Data-Driven Tool for Flood Risk Assessment in Urban Areas
by Zafeiria Theodosopoulou, Ioannis M. Kourtis, Vasilis Bellos, Konstantinos Apostolopoulos, Chryssy Potsiou and Vassilios A. Tsihrintzis
Hydrology 2022, 9(8), 147; https://doi.org/10.3390/hydrology9080147 - 16 Aug 2022
Cited by 21 | Viewed by 4269
Abstract
Post-disaster flood risk assessment is extremely difficult owing to the great uncertainties involved in all parts of the assessment exercise, e.g., the uncertainty of hydrologic–hydraulic models and depth–damage curves. In the present study, a robust and fast data-driven tool for residential flood risk [...] Read more.
Post-disaster flood risk assessment is extremely difficult owing to the great uncertainties involved in all parts of the assessment exercise, e.g., the uncertainty of hydrologic–hydraulic models and depth–damage curves. In the present study, a robust and fast data-driven tool for residential flood risk assessment is introduced. The proposed tool can be used by scientists, practitioners and/or stakeholders as a first step for better understanding and quantifying flood risk in monetary terms. Another contribution of the present study is the fitting of an equation through depth–damage points provided by the Joint Research Center (JRC). The approach is based on hydrologic simulations for different return periods, employing a free and widely used software, HEC-HMS. Moreover, flood depths for the study area are estimated based on hydrodynamic simulations employing the HEC-RAS software and the Inverse Distance Weighting (IDW) interpolation method. Finally, flood risk, in monetary terms, is determined based on the flood depths derived by the coupling of hydrodynamic simulations and the IDW method, depth–damage curves reported in the literature, vulnerability of residential areas and the residential exposure derived by employing GIS tools. The proposed tool is applied in a highly urbanized and flood-prone area, Mandra city, in the Attica region of Greece. The results are maps of flood depths and flood risk maps for specific return periods. Overall, the results derived from the application of the proposed approach reveal that the tool can be highly effective for post-disaster flood risk management. However, it must be noted that additional information and post-disaster data are needed for the verification of the damages from floods. Additional information can result in better calibration, validation and overall performance of the proposed flood risk assessment tool. Full article
(This article belongs to the Special Issue Urban Flood Mitigation and Stormwater Management)
Show Figures

Figure 1

14 pages, 3818 KiB  
Article
Optimizing the Performance of Coupled 1D/2D Hydrodynamic Models for Early Warning of Flash Floods
by Georgios Mitsopoulos, Elpida Panagiotatou, Vasiliki Sant, Evangelos Baltas, Michalis Diakakis, Efthymios Lekkas and Anastasios Stamou
Water 2022, 14(15), 2356; https://doi.org/10.3390/w14152356 - 30 Jul 2022
Cited by 19 | Viewed by 3084
Abstract
We pose the following research question, “what are (i) the minimum required computation grid and (ii) the required form of hydrodynamic equations, i.e., shallow water equations (SWE) or diffusion wave equations (DWE), in 2D modeling to minimize the computational time while maintaining an [...] Read more.
We pose the following research question, “what are (i) the minimum required computation grid and (ii) the required form of hydrodynamic equations, i.e., shallow water equations (SWE) or diffusion wave equations (DWE), in 2D modeling to minimize the computational time while maintaining an acceptable level of error in the prediction of water depths and the extent of flood inundated areas?”. To answer this question, we apply the HEC-RAS 1D/2D model to simulate a disastrous flash flood in the town of Mandra, in Attica, Greece, in November 2017. HEC-RAS 1D/2D combines 1D modeling in the cross-sections of the two main streams of Mandra with 2D modeling in the rest of the potentially flooded area of the computational domain which has an area equal to 18.36 km2. We perform calculations for 8 scenarios that combined various grid sizes (with approximately 44,000–95,000 control volumes) with the use of the SWE or DWE. We derive the following conclusions: (i) calculated maximum water depths using DWE were equal to 60–65% of the corresponding water depths using SWE, i.e., the DWE significantly underestimated water depths; (ii) calculated total inundation areas using the SWE were approximately 4.9–7.9% larger than the corresponding inundation areas using the DWE; these differences can be considered as acceptable; and (iii) the total computation times using SWE, which ranged from 67 to 127 min, were 60–70% longer than the computation times using DWE. Full article
(This article belongs to the Special Issue Flood and Other Hydrogeomorphological Risk Management and Analysis)
Show Figures

Figure 1

21 pages, 11789 KiB  
Article
Implementation of a Nowcasting Hydrometeorological System for Studying Flash Flood Events: The Case of Mandra, Greece
by Christos Spyrou, George Varlas, Aikaterini Pappa, Angeliki Mentzafou, Petros Katsafados, Anastasios Papadopoulos, Marios N. Anagnostou and John Kalogiros
Remote Sens. 2020, 12(17), 2784; https://doi.org/10.3390/rs12172784 - 27 Aug 2020
Cited by 39 | Viewed by 5907
Abstract
Severe hydrometeorological hazards such as floods, droughts, and thunderstorms are expected to increase in the future due to climate change. Due to the significant impacts of these phenomena, it is essential to develop new and advanced early warning systems for advance preparation of [...] Read more.
Severe hydrometeorological hazards such as floods, droughts, and thunderstorms are expected to increase in the future due to climate change. Due to the significant impacts of these phenomena, it is essential to develop new and advanced early warning systems for advance preparation of the population and local authorities (civil protection, government agencies, etc.). Therefore, reliable forecasts of extreme events, with high spatial and temporal resolution and a very short time horizon are needed, due to the very fast development and localized nature of these events. In very short time-periods (up to 6 h), small-scale phenomena can be described accurately by adopting a “nowcasting” approach, providing reliable short-term forecasts and warnings. To this end, a novel nowcasting system was developed and presented in this study, combining a data assimilation system (LAPS), a large amount of observed data, including XPOL radar precipitation measurements, the Chemical Hydrological Atmospheric Ocean wave System (CHAOS), and the WRF-Hydro model. The system was evaluated on the catastrophic flash flood event that occurred in the sub-urban area of Mandra in Western Attica, Greece, on 15 November 2017. The event was one of the most catastrophic flash floods with human fatalities (24 people died) and extensive infrastructure damage. The update of the simulations with assimilated radar data improved the initial precipitation description and led to an improved simulation of the evolution of the phenomenon. Statistical evaluation and comparison with flood data from the FloodHub showed that the nowcasting system could have provided reliable early warning of the flood event 1, 2, and even to 3 h in advance, giving vital time to the local authorities to mobilize and even prevent fatalities and injuries to the local population. Full article
Show Figures

Graphical abstract

19 pages, 7641 KiB  
Article
Quantifying Land Cover Changes in a Mediterranean Environment Using Landsat TM and Support Vector Machines
by Sotiria Fragou, Kleomenis Kalogeropoulos, Nikolaos Stathopoulos, Panagiota Louka, Prashant K. Srivastava, Sotiris Karpouzas, Dionissios P. Kalivas and George P. Petropoulos
Forests 2020, 11(7), 750; https://doi.org/10.3390/f11070750 - 11 Jul 2020
Cited by 43 | Viewed by 3806
Abstract
The rapid advent in geoinformation technologies, such as Earth Observation (EO) and Geographical Information Systems (GIS), has made it possible to observe and monitor the Earth’s environment on variable geographical scales and analyze those changes in both time and space. This study explores [...] Read more.
The rapid advent in geoinformation technologies, such as Earth Observation (EO) and Geographical Information Systems (GIS), has made it possible to observe and monitor the Earth’s environment on variable geographical scales and analyze those changes in both time and space. This study explores the synergistic use of Landsat EO imagery and Support Vector Machines (SVMs) in obtaining Land Use/Land Cover (LULC) mapping and quantifying its spatio-temporal changes for the municipality of Mandra–Idyllia, Attica Region, Greece. The study area is representative of typical Mediterranean landscape in terms of physical structure and coverage of species composition. Landsat TM (Thematic Mapper) images from 1993, 2001 and 2010 were acquired, pre-processed and classified using the SVMs classifier. A total of nine basic classes were established. Eight spectral band ratios were created in order to incorporate them in the initial variables of the image. For validating the classification, in-situ data were collected for each LULC type during several field surveys that were conducted in the area. The overall classification accuracy for 1993, 2001 and 2010 Landsat images was reported as 89.85%, 91.01% and 90.24%, respectively, and with a statistical factor (K) of 0.96, 0.89 and 0.99, respectively. The classification results showed that the total extent of forests within the studied period represents the predominant LULC, despite the intense human presence and its impacts. A marginal change happened in the forest cover from 1993 to 2010, although mixed forest decreased significantly during the studied period. This information is very important for future management of the natural resources in the studied area and for understanding the pressures of the anthropogenic activities on the natural environment. All in all, the present study demonstrated the considerable promise towards the support of geoinformation technologies in sustainable environmental development and prudent resource management. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

31 pages, 16313 KiB  
Article
A Multi-Platform Hydrometeorological Analysis of the Flash Flood Event of 15 November 2017 in Attica, Greece
by George Varlas, Marios N. Anagnostou, Christos Spyrou, Anastasios Papadopoulos, John Kalogiros, Angeliki Mentzafou, Silas Michaelides, Evangelos Baltas, Efthimios Karymbalis and Petros Katsafados
Remote Sens. 2019, 11(1), 45; https://doi.org/10.3390/rs11010045 - 28 Dec 2018
Cited by 71 | Viewed by 8977
Abstract
Urban areas often experience high precipitation rates and heights associated with flash flood events. Atmospheric and hydrological models in combination with remote-sensing and surface observations are used to analyze these phenomena. This study aims to conduct a hydrometeorological analysis of a flash flood [...] Read more.
Urban areas often experience high precipitation rates and heights associated with flash flood events. Atmospheric and hydrological models in combination with remote-sensing and surface observations are used to analyze these phenomena. This study aims to conduct a hydrometeorological analysis of a flash flood event that took place in the sub-urban area of Mandra, western Attica, Greece, using remote-sensing observations and the Chemical Hydrological Atmospheric Ocean Wave System (CHAOS) modeling system that includes the Advanced Weather Research Forecasting (WRF-ARW) model and the hydrological model (WRF-Hydro). The flash flood was caused by a severe storm during the morning of 15 November 2017 around Mandra area resulting in extensive damages and 24 fatalities. The X-band dual-polarization (XPOL) weather radar of the National Observatory of Athens (NOA) observed precipitation rates reaching 140 mm/h in the core of the storm. CHAOS simulation unveils the persistent orographic convergence of humid southeasterly airflow over Pateras mountain as the dominant parameter for the evolution of the storm. WRF-Hydro simulated the flood using three different precipitation estimations as forcing data, obtained from the CHAOS simulation (CHAOS-hydro), the XPOL weather radar (XPOL-hydro) and the Global Precipitation Measurement (GMP)/Integrated Multi-satellitE Retrievals for GPM (IMERG) satellite dataset (GPM/IMERG-hydro). The findings indicate that GPM/IMERG-hydro underestimated the flood magnitude. On the other hand, XPOL-hydro simulation resulted to discharge about 115 m3/s and water level exceeding 3 m in Soures and Agia Aikaterini streams, which finally inundated. CHAOS-hydro estimated approximately the half water level and even lower discharge compared to XPOL-hydro simulation. Comparing site-detailed post-surveys of flood extent, XPOL-hydro is characterized by overestimation while CHAOS-hydro and GPM/IMERG-hydro present underestimation. However, CHAOS-hydro shows enough skill to simulate the flooded areas despite the forecast inaccuracies of numerical weather prediction. Overall, the simulation results demonstrate the potential benefit of using high-resolution observations from a X-band dual-polarization radar as an additional forcing component in model precipitation simulations. Full article
(This article belongs to the Special Issue Remote Sensing of Precipitation)
Show Figures

Graphical abstract

Back to TopTop