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Abstract: Severe hydrometeorological hazards such as floods, droughts, and thunderstorms are
expected to increase in the future due to climate change. Due to the significant impacts of these
phenomena, it is essential to develop new and advanced early warning systems for advance
preparation of the population and local authorities (civil protection, government agencies, etc.).
Therefore, reliable forecasts of extreme events, with high spatial and temporal resolution and a
very short time horizon are needed, due to the very fast development and localized nature of these
events. In very short time-periods (up to 6 h), small-scale phenomena can be described accurately by
adopting a “nowcasting” approach, providing reliable short-term forecasts and warnings. To this end,
a novel nowcasting system was developed and presented in this study, combining a data assimilation
system (LAPS), a large amount of observed data, including XPOL radar precipitation measurements,
the Chemical Hydrological Atmospheric Ocean wave System (CHAOS), and the WRF-Hydro model.
The system was evaluated on the catastrophic flash flood event that occurred in the sub-urban area of
Mandra in Western Attica, Greece, on 15 November 2017. The event was one of the most catastrophic
flash floods with human fatalities (24 people died) and extensive infrastructure damage. The update
of the simulations with assimilated radar data improved the initial precipitation description and led
to an improved simulation of the evolution of the phenomenon. Statistical evaluation and comparison
with flood data from the FloodHub showed that the nowcasting system could have provided reliable
early warning of the flood event 1, 2, and even to 3 h in advance, giving vital time to the local
authorities to mobilize and even prevent fatalities and injuries to the local population.

Keywords: nowcasting; data assimilation; flash flood; weather radar; LAPS; CHAOS; WRF

1. Introduction

One of the climate change impacts is the increase of the likelihood and intensity of extreme weather
events, such as floods, droughts, and thunderstorms [1,2] making human beings more vulnerable to
extreme weather events [3]. The most common and destructive natural disaster is flooding, especially
in a warm climate region like the Mediterranean Sea [4], causing loss of human life and substantial
damage to property and infrastructure. In fact, more people were affected by floods than any other type
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of natural disaster in the 21st century [5] and the situation is expected to become worst in warm climates,
as model simulations show that an increase in precipitation intensity is to be expected [6]. Moreover,
intertemporal human-induced land cover changes seem to favor extreme weather phenomena, either
droughts or floods, so there is the necessity to also take these into consideration in the future [7]. Early
warning systems are being developed for advance preparation of the population and local authorities
(civil protection, government agencies, etc.) to mitigate the effects of extreme weather hazards. A prime
example is the Meteoalarm system, designed to give accurate information for advance preparation
for extreme weather impacts over Europe [8]. The more recent Copernicus Emergency Management
Service (EMS, regulation 377/2014) provides information for emergency response related to various
types of hazards, from meteorological, geophysical, etc., to human-made disasters. EMS also helps
with the prevention, preparedness, response, and recovery activities.

Reliable forecasts of extreme events at all scales, with high spatial and temporal resolution and a
very short time horizon (up to 6 h) are important to reduce the risks and mitigate the effects of natural
disasters [1]. In such a short time-period, small-scale phenomena can be described accurately by
adopting a “nowcasting” approach. The term nowcasting usually describes weather forecasts in a very
short time horizon, with high spatiotemporal resolutions [9–12]. These types of short-time forecasts
are valuable to Civil Protection services and local authorities for use in early warning systems [13,14].
They give the opportunity to Civil Protection to implement immediate plans and policies, in order to
mitigate property losses and protect human lives [15].

Nowcasting methods usually focus on the estimation of precipitation [16]. Precipitation can
be measured either directly with the use of ground-based instruments (for example rain gauges) or
indirectly with the use of remotesensing techniques like radar systems, Earth-observing satellites,
TRMM (Tropical Rainfall Measuring Mission), and GPM (Global Precipitation Measurement). One of
the first attempts for nowcasting was the forward-time extrapolation of ground-based radar rainfall
data [17], which gradually expanded to include high-resolution data provided by numerical models,
using assimilation systems [18,19]. One of the first regional nowcasting systems was the Rapid
Update Cycle (RUC) in 1994, which combined an 80 km horizontal grid spacing with a 3 h radar
data acquisition [18]. The first test of such a rainfall short-time forecasting system took place in the
2000 Summer Olympics in Sydney, using only radar-data-based quantitative precipitation nowcasting
algorithms [20]. Six years later, it was found that accurate forecasts could be achieved by applying
data assimilation of real-time radar reflectivity and Doppler velocity fields [21].

Data assimilation includes a statistical combination of observations and short-term forecasts.
The state of the atmosphere is estimated through a combination of computer simulations and real
observations. The data assimilation cycle is then repeated and new observations are embodied to
make a new analysis of the atmospheric state [22]. Therefore, the purpose of this process is to combine
past knowledge of the system, in the form of numerical model fields, and new information about the
system, in the form of observations [23]. In this way, the value of hypothetical observations could be
estimated with data assimilation [24,25].

Some examples of nowcasting methods include—the object-based algorithm, Thunderstorm
Identification Tracking Analysis and Nowcasting (TITAN), which identifies and tracks storm cells [26]
and ingests radar data remapped into Cartesian coordinates. An area-based method is the Collaborative
Adaptive Sensing of the Atmosphere radar network (CASA) [27] that uses X-band weather radar
data, where the precipitation motion is estimated by the Dynamic and Adaptive Radar Tracking
of Storms (DARTS) method. The linear least squares estimation is used in the Fourier domain to
compute the precipitation pattern. Secondly, a kernel-based advection method is implemented to
estimate the motion. The Integrated Nowcasting through Comprehensive Analysis (INCA) system is a
statistical model that uses a multiple observation system and combines remotesensing data with surface
station data and topographic data [28]. An example of application of actual data with a modelling
system is the Short-Term Ensemble Prediction System (STEPS), which is a probabilistic nowcasting
system [29,30]. It blends weather radar data and forecasts from a mesoscale Numerical Weather
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Prediction (NWP) model to produce ensembles of precipitation forecasts. Similarly, the Application
of Research to Operations at Mesoscale (AROME) [31] model uses Euler equations (non-hydrostatic
versions) and a 3DVar assimilation scheme that assimilates radar and satellite data. All systems
presented above either lack a numerical weather prediction model, or a hydrological component
in their framework for precision flood warnings. In this work, a novel nowcasting methodology is
proposed, based on a well-known assimilation model, namely the Local Analysis and Prediction
System (LAPS) [32,33], coupled with the Chemical Hydrological Atmospheric Ocean wave System
(CHAOS) [34–38] currently including, among others, the Advanced Weather Research Forecasting
(WRF-ARW) version 4.0 model [39,40] as an atmospheric component and the WRF-Hydro version 3.0
model [41] as a hydrological component. The LAPS model uses WRF-ARW’s forecasts as background
fields assimilating various observations like radar data, so as to force WRF-Hydro, finally creating a
“state-of-the-art”, fast, and reliable early warning system for hydrometeorological hazards.

The developed system was used to assess very short-term precipitation and discharge predictions
in the case study of the catastrophic flash flood event that occurred in the sub-urban area of Mandra in
Western Attica, Greece, on 15 November 2017. The selection of the event was based on the severity of
the flash flood, which caused 24 people to lose their lives and inflicted extensive million-euro damages
on property and infrastructure. This event was recorded as the deadliest flood in the country, in a
period of 40 years [42], highlighting the necessity of hydrometeorological hazard early warnings at the
wider region [43]. This event was already described in detail in Varlas et al. [36], where the importance
of utilizing radar data in order to provide a reliable short-term forecast of extreme hydrometeorological
events was highlighted. Therefore, this work was the continuation of Varlas et al. [36], as the severity
of the event made it ideal for testing and evaluating the proposed nowcasting system. This manuscript
is organized as follows. In Section (2), the study area is presented, along with a short description of the
event. Section (3) describes the numerical systems and data used. In Section (4), the methodology and
experimental design are shown, while the results and evaluation are presented in Section (5). Finally,
in Section (6) we discuss the conclusions and implications of the study.

2. Study Area and Description of the Flood Event

In the morning of 15 November 2017, a severe thunderstorm caused a flash flood in the town
of Mandra in Western Attica. Mandra is located is 40 km west of Athens and is an industrial town,
with a population of approximately 13,000 people. As presented in Figure 1a, the area is bound by
the Pateras Mountain (1016 m) in the west, the Parnitha Mountain (1413 m) in the northeast, and the
Aigaleo Mountain (468 m) in the east [36]. The town is located at the apex of an alluvial fan, formed
by two streams at the western part of the Thriassio plain, which meet at the southeastern edge of the
town to form a stream that ends at the Gulf of Elefsina (Figure 1a). In Figure 1b the Agia Aikaterini,
Soures and Sarantapotamos streams near Mandra are presented, in the context of the greater area.
It is noteworthy that the town is characterized by significant morphological changes of the streams,
due to uncontrolled building and road works interrupting the streams Figure 1b, as the residential and
industrial development did not have an appropriate plan regarding flood protection and drainage
rainwater collection [44]. Human-induced morphological changes in Mandra, in combination with the
high rainfall rate, played a key role in the triggering and evolution of the flood [36,42,45].

The dominant atmospheric mechanism that led to the heavy rainfall that caused the flood,
was the convergence of humid south-southeasterly airflow over the southeastern slopes of the
Pateras Mountain [36]. Near-surface convergence was collocated with the favorable middle-upper air
conditions supporting persistent torrential rainfall, for approximately 5 h east of the Pateras Mountain,
which increased surface water runoff and stream discharge. The storm was also supported by a
stagnant spinning barometric low, preserving both the humid south-southeasterly airflow near the
surface, as well as the favorable middle-upper air conditions. A detailed analysis of the event is
presented in great detail in Varlas et al. [36] and are not repeated in this study.
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Figure 1. (a) Map of Mandra town in Western Attica and the neighboring areas. (b) The main 
drainage basins include the Soures and Agia Aikaterini streams that pass through the buildings and 
roads. 
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Figure 1. (a) Map of Mandra town in Western Attica and the neighboring areas. (b) The main drainage
basins include the Soures and Agia Aikaterini streams that pass through the buildings and roads.

3. Materials Used and System Development

The development of the early warning system presented here is based on the combination of
highly accurate and reliable measurements, a well-known and established data assimilation system
coupled with a weather model and a hydrological model. All components used are presented below.
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3.1. Local Analysis and Prediction System (LAPS) and Precipitation Advection

NOAA’s Local Analysis and Prediction System (LAPS) is an advanced mesoscale meteorological
data assimilation tool, designed to exploit all available data sources (local and global) and produce
analyzed and guessed grids [32]. LAPS can ingest a wide range of available observational data.
(a) Surface observation data including mesonet, METAR, SYNOP, maritime (Buoy/Ship), and others;
(b) profiler data like RASS, SODAR, and Wind Profilers; (c) satellite data like GOES or METEOSAT,
cloud drift winds; (d) satellite sounder data; (e) radar data like 3D Reflectivity, Doppler radars,
radar VAD Algorithm winds database, and low-level reflectivity; and (f) ACARS and PIREPS from
aircraft [46,47]. User specific datasets can also be added in the assimilation framework with some
additional coding and modifications. When the actual observational data are available, LAPS can
then use the background fields from a number of sources (GFS, ECMWF, etc.), as the first-guess
meteorological fields. The assimilation methodology was based on the traditional objective analysis
scheme, using the cost-function approach, in order to minimize differences between the analysis
and the observational fields. Barnes [48] also introduced an empirical methodology of successive
corrections, which can be used when the background field or the first guess was not available.

In the framework of LAPS, a simple advection scheme was added to forecast the movement of
rain, for a horizon of 1–3 h. The development was based on a simple first-order advection scheme in
2 dimensions (x, y):

1
∆t

(Rt+1
i, j −Rt

i, j) +
u

∆x
(Rt

i, j −Rt
i−1, j) +

v
∆y

(Rt
i, j −Rt

i, j−1) = 0 (1)

where u and v the wind components, R is the precipitation, ∆x is the grid increment in the x direction,
∆y is the grid increment in the y direction, ∆t is the timestep, and (i, j) are the grid point in the LAPS
domain. A stability analysis shows the scheme to be conditionally stable, when

CU = u
∆t
∆x
≥ 0 (2)

CV = v
∆t
∆y
≥ 0 (3)

where CU and CV the Courant numbers in the x and y directions, respectively, with restriction of
CU + CV ≤ 1. At each timestep, the Courant number was calculated in order to check if the timestep
selected assured the stability of the formulation, and by solving Equations (1)–(3), the value of the
parameter R at time t + 1 was estimated. The benefit of the applied methodology was that the updated
LAPS could overcome the ‘spin up’ period, which routinely appeared in the conventional numerical
weather prediction mesoscale models. The drawback was that the scheme was unsuitable for use
beyond the 3-h forecasting horizon, since there were no additional physical parameterizations included.
After the forecast horizon, the dynamical processes could not be ignored anymore and the results could
not be safely used (especially in small spatial scales).

For the needs of this work, LAPS was set up with a fine resolution of 2 km, covering Greece
(Figure 2). On the vertical plane, 42 constants pressure levels were defined, stretching from the surface
to the top of the atmosphere. Global geography datasets were used for topography, land fraction,
land use (U.S Geological Survey dataset with a resolution of 30 s), soil type, greenness fraction [49],
and albedo definition [50].
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Figure 2. (a) LAPS model domain and topography, (b) WRF-ARW model domain and topography of
the parent domain covering Europe. The nested WRF-ARW model over Greece (D02) is the same as (a).

LAPS is primarily designed as a data assimilation system to provide hourly analysis fields,
using background fields and actual data. LAPS analyses use the Barnes multiple iteration successive
correction method or in the process of minimizing the cost function. In this work, the Barnes approach
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is used with an influence radius (at the first step of the iteration) of 100 km. Background fields
(temperature, wind speed, geodynamical height and humidity at the surface and atmospheric column,
surface pressure and precipitation at the surface) were provided by the Chemical Hydrological
Atmospheric Ocean wave System (CHAOS) [34–38]. In its current form, CHAOS uses version 4.0 of
the Weather Research and Forecasting model (WRF-ARW) [39,40], which is fully coupled through the
OASIS3-MCT version 3.0 coupler [51,52] with the ocean Wave Model (WAM) cycle 4.5.4 [53,54]. It is
meaningful to note here that one of the advantages of CHAOS is the physically-based representation
of sea surface roughness, exploiting its two-way, atmosphere-ocean wave coupling capability, through
the ocean wave model (see more in [35,36]). The impact of airflow (originating from sea regions) on
the formation and intensification of the storm causing Mandra’s flash flood was critical, as highlighted
by Varlas et al. [36], and thus, the use of CHAOS instead of an uncoupled weather model facilitates a
more realistic simulation of the atmospheric interactions with the sea surface. The WRF-ARW was
set up in four nested domains, with a grid spacing of 9 km × 9 km (D01), 3 km × 3 km (D02), 1 km ×
1 km (D03), and 250 m × 250 m (D04), as shown in Figure 2b LAPS implemented background fields
originating from the WRF-ARW high-resolution domain D02, covering Greece (Figure 2a) Gridded
analysis and advected precipitation data estimated by LAPS, was regridded from the 2 × 2 km LAPS
grid to the 250 × 250 m WRF-ARW D04 grid, using bilinear interpolation. Afterwards, the WRF-ARW
meteorological fields, including the regridded LAPS precipitation data, were used to force the land
surface model (LSM) Noah to the same extent and resolution as the D04 domain (250 × 250 m). Noah
LSM was set at the grid with 250 × 250 m resolution. The routing processes of WRF-Hydro were
represented at a resolution of 50 × 50 m, performing aggregation/disaggregation procedures between
routing and Noah LSM schemes, as discussed by Gochis et al. [41]. Assimilated data includes (but not
limited to) metar, synop, raob, and ACARS in-situ observations. In addition to the advection routine,
a numerical process was also created in order for LAPS to assimilate remotesensing data (XPOL radar
and GPM), described in Section 3.2. Precipitation accumulation analysis was performed with XPOL
data, which was blended together with precipitation observations in the Barnes multi-pass iteration
successive correction method. As a first step, in a number of valid gauge observations-radar pairs,
the linear-regression-analysis was performed. If there were not enough valid pairs or there was not a
sufficient sample of radar data, this method was not used. In the second step, the Barnes iteration
successive correction method was employed to weigh and blend observations with the updated
background fields. The differences between observations and background, as well as the estimated
Root Mean Square (RMS) error, were calculated. Observations were given weights according to the
instrument and representativeness errors. The background point was given an “observation” increment
of zero, with an appropriate weight corresponding to the background error [33].

3.2. Data Used for Assimilation

In order for the hydro-meteorological system initializing from the best possible atmospheric
conditions (especially in respect to precipitation), a number of in-situ and remotesensed measurements
are being ingested into the LAPS model:

1. Meteorological Aerodrome Reports (METAR) observations come from surface-weather
observation stations and airports from all over the world, and are normally generated per
hour. METAR reports contain information concerning temperature, dew point, wind direction
and speed, precipitation, cloud cover and heights, visibility, and barometric pressure.

2. Surface Synoptic Observations (SYNOP) data are generated to carry more information. Comparing
METARS and SYNOP, information about the weather that is carried by METARS is less than the
one that is carried by SYNOPS [55].

3. Aircraft Communications Addressing and Reporting System (ACARS) are observation systems
that are sent as short messages from the aircraft to ground stations, via a very high frequency
(VHF) communication or satellite communication [56].
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4. RAOB data are vertical profiles of the atmosphere that are taken from radiosondes launched from
the ground and are used to measure soundings of wind, temperature, moisture, and geopotential.

5. The Global Precipitation Measurement (GPM) program is a satellite mission launched by National
Aeronautics and Space Administration (NASA) and Japan Aerospace Exploration Agency (JAXA)
in 2014 [57,58]. The main goal of this program was to improve weather forecasts, climate modeling,
and hydrological modeling, and to have a better understanding of water cycle variability and
freshwater availability [58,59]. The main GPM product is the IMERG (Integrated Multi-satellitE
Retrievals for GPM), which is an algorithm that calibrates and combines precipitation data and
generates near real-time global precipitation data [60,61].

6. X-band dual-polarization (XPOL) radar data. The XPOL ground radar is operated by the National
Observatory of Athens and is located on Penteli Mountain. The radar is located 35 km east of the
Mandra town, and provides continuous measurements of severe precipitation events, like the one
studied in this work. The radar scans the surrounding areas during precipitation events in the
plan position indicator (PPI) mode, taking measurements in a sector scan of 180◦, at 3 different
elevation sweeps (0.5◦, 1◦, and 2.5◦), with a range resolution of 120 m (65 km at maximum).
The antenna rotation rate was 6 degs/s and the time-period for a full volume scan was 3 min
or less. The Self-Consistent Optimal Parameterization-Microphysics Estimation (SCOPE-ME)
algorithm [62,63] was used to retrieve the precipitation values.

In general, the system was able to assimilate in-situ or remotesensing data from any source, but for
the scope of this work, the most pertinent data sources (as presented) were used. LAPS was also able
to distinguish which of the above measurements were available, based on runtime, so as to include
them in the assimilation and advection processes. It should also be noted that in real-time applications,
several of these data sources might not be available. However, we consider the radar data to be the
most valuable in these cases, which could be used in real-time to provide precipitation input for the
system. Additionally, the developed model had the added capability to incorporate real-time data
from systems installed specifically to support the simulations (for example, weather stations deployed
at high-risk areas that would feed data in real-time).

3.3. WRF-Hydro Hydrological Model

The soil and hydrological processes were simulated by the WRF-Hydro version 3.0 model [41],
which is the hydrological component of the CHAOS modelling system [34–38]. The WRF-Hydro model
was developed to facilitate the representation of terrestrial hydrological processes related to the spatial
redistribution of surface, subsurface, and channel waters, across the land surface, and to facilitate
the coupling of hydrological models with atmospheric models [41]. It adequately simulated the
soil–land–hydro response on atmospheric phenomena like severe storms, along various hydrological
environments and drainage basins.

WRF-Hydro was configured on a domain covering the drainage basin of Mandra at the fine
horizontal grid spacing of 50 m × 50 m (Figure 3) The construction of static input maps introducing
information about topography, channel grid, flow direction, and stream order in WRF-Hydro
simulations (for more technical details see [41]), was based on the void-filled version [64] of the Shuttle
Radar Topographic Mission (SRTM) digital elevation model (DEM) data [65] of NASA, in the native
horizontal resolution of 90 m × 90 m. Similar methodology was also followed by Papaioannou et al. [66]
during the study of a similar flash flood event in the Volos city in Greece. This version was distributed
by the Hydrological Data and Maps Based on Shuttle Elevation Derivatives at Multiple Scales
(HydroSHEDS; https://hydrosheds.cr.usgs.gov/index.php). The dataset was resampled using the
nearest-neighbor interpolation on the 50 m × 50 m horizontal grid. Initial fields for the land and
soil properties (soil temperature, moisture, and type, and land use) used in the land surface model
(LSM) NOAH of WRF-Hydro (more information in [41]), were constructed in the pre-processing stage
of the WRF-ARW model [36]. The WRF-ARW meteorological fields, as well as the regridded LAPS
precipitation fields, were given to the WRF-Hydro at the same extent and resolution (250 × 250 m),

https://hydrosheds.cr.usgs.gov/index.php
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so as to force its Noah LSM, and subsequently, the routing algorithms performed at the resolution
of 50 × 50 m. For the configuration of the WRF-Hydro model, the Manning roughness coefficient,
channel bottom width, initial water depth, and slide slope for channels were set for each stream order,
as proposed by Varlas et al. [36], who performed various calibration tests that led to the optimal
hydrological simulation of the flood event (Table 1). Regarding the Soures and Agia Aikaterini streams
that were of sixth stream order, the Manning roughness coefficient was set to a value of 0.1, the channel
bottom width was set to 8 m, the initial water depth was set to 20 cm, and the slide slope was set to 0.1.
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Figure 3. Topography of dimensions 50 m× 50 m and stream-order distribution used by the hydrological
WRF-Hydro model, as well as three areas represented by black dots—Pateras mountain, Mandra town,
and the Nea Peramos town (reconstruction of the original presented by Varlas et al. [36]).

Table 1. Manning roughness coefficient (Manning), bottom width (CBW) in meter, initial water depth
(IWD) in meter, and slide slope (CSS) of channels for each stream order (source [36]).

Stream Order Manning CBW (m) IWD (m) CSS

1 0.3 1 0.05 1.0
2 0.3 2 0.05 0.8
3 0.25 3 0.1 0.6
4 0.2 4 0.1 0.4
5 0.15 6 0.1 0.2
6 0.1 8 0.2 0.1
7 0.05 10 0.2 0.05

4. Experimental Design and Evaluation

The main aim of this study was to examine the efficiency of an early warning system comprising
the LAPS data assimilation system coupled with the WRF-Hydro model. The method was to be
evaluated for the intense flood event in Mandra on 15 November 2017. To this end, the following
procedure was adopted:

• LAPS used the output fields from the atmospheric component (WRF-ARW) of CHAOS, namely
surface and model levels fields of u-, v- components of wind, temperature, relative humidity
and 1 h accumulated precipitation as background data (first-guess). Additionally, all available
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measurements were assimilated into the system (as presented in Section 3), with the most important
being the XPOL radar data when available. LAPS ran every hour from 14 November at 14:00
UTC up to 15 November at 06:00 UTC, and produced analysis fields, as well as advected 1 h
accumulated precipitation fields for a 3 h forecasting horizon.

• These precipitation fields were then fed into the hydrological component (WRF-Hydro) of CHAOS,
which estimated the streamflow discharge, in order to potentially estimate the stream channels
that were most susceptible to extreme flooding. WRF-Hydro was forced by LAPS to run for a
1-h analysis period and a 3-h forecasting horizon (4 h in total), applying cycling and preserving
the hydrological properties in the consecutive simulations. Therefore, WRF-Hydro ran every
hour from 14 November at 13:00 UTC up to 15 November at 05:00 UTC, i.e., 1 h before the
LAPS analyses, to capture the estimation of 1 h accumulated precipitation analyses before the
3 h forecasts. The process was described schematically in Figure 4. WRF-Hydro simulations
were performed according to the setup described in Section 3.3. As described in Varlas et al. [36],
WRF-Hydro demands various forcing fields, i.e., liquid water precipitation rate, air temperature,
and specific humidity at 2 m, incoming shortwave and longwave radiation, u- and v-components
of wind at 10 m, and surface pressure.
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5. Results and Evaluation

5.1. Nowcasting of Precipitation and Discharge

The most important aspect of an early warning system is to provide reliable alarms, well in
advance, in order to give time to the local population and civil authorities to prepare. The simulations
closest to the event were evaluated in this regard. The results of the hydrometeorological simulations
are presented below in Figures 5–7. In each Figure, the simulated discharge by the WRF-Hydro
was superimposed to the 1 h accumulated precipitation for each nowcast cycle. More specifically,
in Figure 5a–d, WRF-Hydro started on 15 November at 02:00 UTC, with a 4-h forecast window up
to 06:00 UTC on hourly output increment, using hourly accumulated precipitation forcing from the
LAPS advected fields, valid for 03:00 to 06:00 UTC. WRF-Hydro started one hour before because LAPS
provides hourly accumulations starting from the previous hour (02:00 UTC in this case). Similarly,
Figures 6 and 7 present the results of the WRF-Hydro simulations, starting on 15 November 03:00 and
04:00 UTC, going up to 07:00 and 08:00 UTC, and using LAPS advected fields from 04:00 to 07:00 UTC
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and from 05:00 to 08:00 UTC, respectively. The main finding unraveled from analyzing Figure 5 was
the dependence of Mandra’s flash flood to very short-scale local rainfall characteristics. Due to the
limited extent of Agia Aikaterini and Soures drainage basins, these were prone to flash flooding under
heavy rainfall conditions. As Figure 5a depicts, the LAPS analysis for the accumulated precipitation
from 02:00 to 03:00 UTC indicated heavy rainfall at the southern slopes of the Pateras Mountain.
LAPS advected fields increased precipitation at the basins but the quantity was not enough to cause
significant runoff (Figure 5b–d). This happened because the advection routine did not include advanced
physics parameterizations or topographic effects on rain and, therefore, could not fully resolve the
phenomenon. Nevertheless, streams close to the Nea Peramos and Sarantapotamos stream at the east
of Mandra reach discharge values of 60–65 m3/s, indicating the potential of severe phenomena in the
region afterwards. In Figure 6a, LAPS analysis for precipitation from 03:00 to 04:00 UTC is shown
and it is apparent that the new data assimilated (mostly from the XPOL radar), positions the bulk of
the rain again at the south-east slopes of the Pateras Mountain, while increasing in intensity. For the
next hours (Figure 6b–d), the core precipitation remains over Mandra, allowing for more water inside
the streams, reaching a maximum discharge of 80–90 m3/s in the Soures stream and 50–60 m3/s in the
Agia Aikaterini stream, at the time of the flood (05:00–06:00 UTC), while locally exceeding 150 m3/s
in the Sarantapotamos stream at 07:00 UTC. This was a clear indication that the streams exceeded
a critical soil saturation level and they were probably going to flood. At this time, the system was
able to provide a very clear prediction, two h prior to the flooding event, which is considered to be a
significant time window for preparedness. Figure 7a–d also verified this effect one hour before the
event. In Figure 7a, the amount of rain increased even more at 05:00 UTC and this led to significant
discharges of 100–110 m3/s in the Soures stream and 70–75 m3/s in the Agia Aikaterini stream, at the
time of the flood. Again, the update of the simulations with the assimilated radar data improved the
initial precipitation description and led to an improved simulation of the evolution of the phenomenon.
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5.2. Evaluation

For evaluation, since the streams in the area were not routinely monitored, satellite remotesensing
images were used from the group of the FloodHub service of BEYOND (Building a Centre of
Excellence for Earth Observation based monitoring of Natural Disasters). The simulated flood extent
was delineated using the peak water level along the streams [67]. The process was the same as
that applied in Varlas et al. [36], in order to maintain consistency with this work and examine the
benefits of the methodology used here. Using the discharge and water level (not shown) results
from three LAPS nowcast cycles at 02:00, 03:00, and 04:00 UTC, a comparison was made for 06:00
UTC, when the flood presented its peak, against the observed flood extent, taken from the FloodHUB
service of BEYOND. Figure 8a demonstrates the results for 06:00 UTC of the WRF-Hydro simulation
(dubbed ANL03_ADV06), starting on 15 November at 02:00 UTC and using LAPS nowcasts from
03:00 to 06:00 UTC. In the same way, Figure 8b,c show the results of the WRF-Hydro simulations
(dubbed ANL04_ADV06 and dubbed ANL05_ADV06) for 06:00 UTC. The latter simulations start on
15 November at 03:00 and 04:00 UTC and use LAPS nowcasts for the periods 04:00–07:00 UTC and
05:00–08:00 UTC, respectively. For comparison, the hindcasting WRF-Hydro flood simulation with
the XPOL radar data, as shown in Varlas et al. ([36]; dubbed RAD06) is also illustrated (Figure 8b).
It should be noted that the evaluation was restricted to the area upstream of the “Attiki Odos” highway
and only the sixth-order streams were used (Figure 8a–d).

Since flood events can be treated as categorical forecasts [68], they can be evaluated using
contingency tables (Table 2), which sum up all possible combinations of forecast and observed
events [69]. The combination of verification measures and scores associated with the contingency table
used for the evaluation of forecasts in the present study were—probability of detection (PoD), false
alarm ratio (FAR), critical success index (CSI), and the frequency bias (B) [70].

Table 2. Contingency table for validation and statistical scores definitions, based on the
contingency table.

Yes No PoD = a/(a + c)

Observed event FAR = b/(a + b)

Yes
Simulated event

Hit (a) False alarm (b) CSI = a/(a + b + c)

No Miss (c) Correct non-event (d) B = (a + b)/(a + c)
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Figure 8. Flood extent produced by the three WRF-Hydro simulations (in dark blue), starting
(a) on 15 November at 02:00 UTC and going up to 06:00 UTC, forced by the LAPS nowcasts from 03:00
to 06:00 UTC; (b) starting at 03:00 UTC and going up to 06:00 UTC, forced by LAPS nowcasts from
04:00 to 06:00 UTC; (c) starting at 04:00 UTC and going up to 06:00 UTC, forced by the LAPS nowcasts
from 03:00 to 06:00 UTC. Additionally, the flood extent produced by the hindcasting WRF-Hydro flood
simulation using only the XPOL data [36] is shown in (d). Flood extent mapped by the FloodHub
group of the BEYOND project is also shown (in light blue).

The probability of detection (PoD or hit rate HR) ranged between 0 and 1, with 0 representing
failure in forecasting and 1 representing a perfect forecast. PoD is sensitive only to missed events and
not false alarms, and therefore, it is incomplete by itself [71] and can be used in relation to the false alarm
ratio (FAR) as pairs of sufficient statistics [72]. FAR ranges between 0 and 1, with 0 representing a perfect
forecast and 1 representing a failure of forecast. This score was not sensitive to missed events and it was
also an incomplete score and should be used in pairs with the PoD. The Critical Success Index (CSI or
threat score TS) ranged between 0 and 1, with 0 representing failure in forecasting, and 1 representing
a perfect forecast. CSI was sensitive to both missed events and false alarms, but was affected by the
climatological frequency of the event. Nevertheless, for evaluation of a forecast or for comparison
of the accuracy of forecasts, based on the same dataset, CSI was considered to be sufficient [70].
The frequency bias (B) was not an actual verification score, since it only compared the forecast and
observed frequencies of occurrence of the event in the sample. B values of 1 represented the best score,
values higher than 1 indicated overestimation, and values less than 1 indicated underestimation [70].

The above statistical scores were calculated using the data from the three simulations and the
FloodHUB service, and they are presented in Table 3. As a point of reference, the same scores were
calculated from the WRF-Hydro simulation, using only the XPOL radar data (as also presented in [36]).
In each column, the PoD, CSI, FAR, and B were calculated for different starting hours and for the
3 h short-term forecasts. In the table, the yellow color denoted the time of the peak flood, namely
15 November 2017 at 06:00 UTC.
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Table 3. Statistical indices for all WRF-Hydro simulations, using input data from LAPS-advected
fields. The time of the peak flood, i.e., 06:00 UTC, was noted using the yellow color. Additionally,
the comparison with the XPOL radar data presented in the bottom row was made as reference,
facilitating the assessment of the results.

Starting Date Forecast Hour PoD CSI FAR B

15/11 at 03:00
ANL03_ADV06

+0 h 0.46 0.35 0.42 0.79

+1 h 0.45 0.34 0.42 0.77

+2 h 0.48 0.35 0.42 0.82
+3 h 0.49 0.36 0.41 0.83
+0 h 0.43 0.33 0.42 0.74

+1 h 0.51 0.36 0.45 0.93
+2 h 0.61 0.42 0.42 1.05

15/11 at 04:00
ANL04_ADV06

+3 h 0.53 0.39 0.41 0.90

15/11 at 05:00
ANL05_ADV06

+0 h 0.48 0.34 0.46 0.89
+1 h 0.67 0.45 0.43 1.16
+2 h 0.58 0.41 0.42 1.00

+3 h 0.53 0.38 0.42 0.90
CHAOS - 0.43 0.33 0.43 0.75

Radar Data 15/11 at
06:00 RAD06 +0 h 0.68 0.45 0.43 1.18

The comparison of the results of the three hydrological simulations showed that 3 h before the
flood, the system had a PoD of 0.49, a CSI of 0.26, a FAR of 0.41, and a B of 0.83. These results indicated
a blurry prediction of the intense flash flood, 3 h before, but they became better, the closer we got to the
event. Thus, one hour before the peak flood at 06:00 UTC, the statistical indices were comparable to
those of the XPOL radar, reaching a PoD of 0.67, a CSI of 0.45, a FAR of 0.43, and a B of 1.16. This was
an encouraging finding because it seemed that one hour before the peak of the flood, we could have
a flash flood warning with reliable accuracy. Even 2 h before the event, there was a 61% probability
of detection (CSI of 0.42, FAR of 0.42, and B of 1.05), a sufficient result to be used for early warning.
In comparison, Varlas et al. [36] reported values of a PoD of 0.43, a CSI of 0.33, a FAR of 0.43, and a B
of 0.75 for the WRF-Hydro, driven solely from WRF-ARW’s results; the same was used in this study
as the background fields of the LAPS model. These values were considerably worse than the ones
from the WRF-Hydro driven by LAPS advections, which was to be expected due to two factors—(1)
there was no data assimilation (especially the radar data) in the WRF-ARW simulation for this case,
and (2) the short-term forecasting horizon fell into the model spin-up time, thus, diminishing the
forecasting accuracy. This was another indication of the added benefits from the methodology used
here, in contrast to typical forecasting operations that were used as a basis for early-warning systems,
namely a lone regional model (albeit a very advanced and reliable one, as was WRF-ARW).

The statistical analysis revealed that the developed system was highly accurate, 1 and 2 h before
the event, and gave an acceptable prognostic signal, even 3 h before the flood. Therefore, in an
operation-like mode (running continuously on hourly cycle), the system would be able to notify the
proper authorities, well in advance of the devastating flood, potentially 2 to 3 h ahead. It is important
to note that even a 2 h “head start” on the local authorities could have saved the people that died or
were injured, during this event. These nowcasts (1–3 h forecasts) could support operational short-term
forecasts (3–5 days) and medium-range forecasts (10–15 days), as a part of a wider early warning
system for hydrometeorological hazards. The added benefit of the system was that it demanded very
little computational power, making it possible to continuously provide results every hour, without
the need for an HPC, which is usually essential for proper regional model setups. For reference, it is
possible to run the system in a typical desktop PC or laptop, and it takes, at the most, a 20–30 min of
runtime. The preparation of alarms and warnings was also fast, keeping everything well under an
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hour. Finally, automating the data conversion and flow from the radar to the system was very fast and
no severe delays were expected, since it could be done in a few minutes.

6. Conclusions

In this study, a hydrometeorological nowcasting methodology was implemented as an early
warning system in a case study of an extreme flash flood event. The system was based on the
combination of a series of in-situ and remotesensing measurements, a data assimilation model,
namely LAPS, and the hydrological component of the “state-of-the-art” CHAOS modeling system.
The LAPS assimilation system was upgraded with the capability to use high-resolution background
fields, provided by WRF-ARW, as well as to advect the assimilated precipitation fields and, then,
to feed the WRF-Hydro component for flood prediction in short-time scales of 1 to 3 h, in advance.
The methodology used here attempted to combine all common practices for nowcasting, which usually
involved either data assimilation methodologies or high-resolution numerical models (as presented in
the introduction), with the addition of a hydrological component for proper water flow representation
and ultimately accurate flood warnings.

To test the system, the devastating flash flood event in the Mandra town, Western Attica, Greece,
on 15 November 2017 was selected, due to the severity of the phenomenon and the resulting 24 fatalities
that were recorded. The combined system used a vast number of actual data for assimilation (METARS,
SYNOP, RAOB, GPM, etc.) and most importantly accumulated precipitation estimations from the
XPOL weather radar operated by the National Observatory of Athens. The resulting fields were
advected using the methodology described in Section 3.1 and the outputs were used as input for
WRF-Hydro, which provided flood discharge and water level, in order to approximate flood extent.
The discharge values provided a clear indication of the severity of the flooding event 3 h beforehand,
with the simulations 2 h before solidifying that the Agia Aikaterini and the Soures streams near Mandra
were going to overflow and action was needed. Simulations one hour before the event verified this.
Using satellite data from the FloodHUB service, several statistical indices were calculated in order to
establish the accuracy of the system. It was found that the developed system could have provided
reliable early warning of the flood event up to 3 h in advance, giving vital time to the local authorities
to mobilize and even prevent fatalities and injuries to the local population. The closest to the event
nowcast cycle, at 05:00 UTC, showed a PoD of 0.67, a CSI of 0.45, a FAR of 0.45, and a B of 1.16 of its
hourly precipitation forecast. These scores were comparable to the relevant statistical indices of the
recorded precipitation from the XPOL weather radar, at 06:00 UTC.

Due to the nature of the system, it demanded little in terms of computing power (in contrast
to high-resolution numerical models) to provide good results, making it easy to operate constantly
and provide reliable nowcasts every hour. Another benefit was the flexibility of the model, since it
can provide nowcasts with any number of available data. This was a simulation using all available
data “post-case”. In real-time applications, several of these data sources would not be available for
use when needed. However, the most important precipitation information source was the radar data,
which could be used in real time. Additionally, the system had the added capability to incorporate
real-time data from systems installed specifically to support the simulations (for example, weather
stations deployed at high-risk areas, which would feed data in real-time). In addition, even if the
radar system (which represents the best possible representation of rain) was not operational, LAPS and
WRF-Hydro, together with background fields from WRF-ARW, would still provide early warnings,
albeit not the best possible ones.

Therefore, the developed system could be used as an early warning system or as a component
of an advanced early warning system for hydrometeorological hazards. However, even though the
scientific basis behind this work was sound, more testing is required in high-impact phenomena to fully
examine the capabilities of the system. This work is the first step where we present the development of
the system and the robustness of our methodology in a severe case. This process could also be a useful
learning tool in a broad spectrum of scientific areas, beyond atmospheric research or even academia.
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In addition, it should be noted that flood management requires not only reliable forecasts at various
timescales, but also trained forecasters, engaging water management agencies, and local or municipal
authorities, along with transport and communications operations and emergency services.
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