Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = Lake Winnipeg

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3245 KiB  
Article
Nutrient Monitoring and Comparison of On-Site Community Science Data Collection Methods for Indigenous Water Protection
by Jaclyn D. Porter, Lori Bradford, Tim D. Jardine, Myron Neapetung, Lalita A. Bharadwaj, Graham Strickert and Justin Burns
Water 2025, 17(9), 1386; https://doi.org/10.3390/w17091386 - 5 May 2025
Viewed by 512
Abstract
Excessive nutrient loading in freshwater is a water quality and safety concern for Indigenous communities, especially those with inadequate water treatment. Continuous nutrient monitoring efforts in collaboration with community members require cost-effective but information-rich methods. Data gathered through community-science approaches could enhance source [...] Read more.
Excessive nutrient loading in freshwater is a water quality and safety concern for Indigenous communities, especially those with inadequate water treatment. Continuous nutrient monitoring efforts in collaboration with community members require cost-effective but information-rich methods. Data gathered through community-science approaches could enhance source water protection programs and can provide first-hand knowledge and expertise through reciprocal information exchange with local community members. Yet, there are still misconceptions about the validity of data gathered by community scientists. This study validates the use of two inexpensive nutrient monitoring devices (YSI 9500 Photometer and the Nutrient Smartphone App) for community-based environmental research by testing the accuracy of each device, identifying nutrient hotspots, and determining if nutrient concentrations relate to precipitation patterns in a drought-prone region of Saskatchewan within the Lake Winnipeg Basin in Canada. We found that the measurement accuracy of these devices varied depending on the compound tested, with the poorest results for nitrate (r2 = 0.07) and the best results for phosphate (r2 = 0.89) when using the photometer. Seasonal nutrient concentration patterns differed between the years of moderate (2019) and low (2021) precipitation, but there was no correlation between rainfall amounts and nutrient concentrations, suggesting other drivers. This study identifies the strengths and weaknesses of cost-effective nutrient testing devices, guiding continuous monitoring efforts with communities. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

19 pages, 4247 KiB  
Article
Remote Sensing of Chlorophyll-a in Clear vs. Turbid Waters in Lakes
by Forough Fendereski, Irena F. Creed and Charles G. Trick
Remote Sens. 2024, 16(19), 3553; https://doi.org/10.3390/rs16193553 - 24 Sep 2024
Cited by 2 | Viewed by 2244
Abstract
Chlorophyll-a (Chl-a), a proxy for phytoplankton biomass, is one of the few biological water quality indices detectable using satellite observations. However, models for estimating Chl-a from satellite signals are currently unavailable for many lakes. The application of Chl-a [...] Read more.
Chlorophyll-a (Chl-a), a proxy for phytoplankton biomass, is one of the few biological water quality indices detectable using satellite observations. However, models for estimating Chl-a from satellite signals are currently unavailable for many lakes. The application of Chl-a prediction algorithms may be affected by the variance in optical complexity within lakes. Using Lake Winnipeg in Canada as a case study, we demonstrated that separating models by the lake’s basins [north basin (NB) and south basin (SB)] can improve Chl-a predictions. By calibrating more than 40 commonly used Chl-a estimation models using Landsat data for Lake Winnipeg, we achieved higher correlations between in situ and predicted Chl-a when building models with separate Landsat-to-in situ matchups from NB and SB (R2 = 0.85 and 0.76, respectively; p < 0.05), compared to using matchups from the entire lake (R2 = 0.38, p < 0.05). In the deeper, more transparent waters of the NB, a green-to-blue band ratio provided better Chl-a predictions, while in the shallower, highly turbid SB, a red-to-green band ratio was more effective. Our approach can be used for rapid Chl-a modeling in large lakes using cloud-based platforms like Google Earth Engine with any available satellite or time series length. Full article
(This article belongs to the Special Issue Remote Sensing of Aquatic Ecosystem Monitoring)
Show Figures

Figure 1

16 pages, 4157 KiB  
Article
Microbial Diversity Impacts Non-Protein Amino Acid Production in Cyanobacterial Bloom Cultures Collected from Lake Winnipeg
by Stephanie L. Bishop, Julia T. Solonenka, Ryland T. Giebelhaus, David T. R. Bakker, Isaac T. S. Li and Susan J. Murch
Toxins 2024, 16(4), 169; https://doi.org/10.3390/toxins16040169 - 26 Mar 2024
Viewed by 2110
Abstract
Lake Winnipeg in Manitoba, Canada is heavily impacted by harmful algal blooms that contain non-protein amino acids (NPAAs) produced by cyanobacteria: N-(2-aminoethyl)glycine (AEG), β-aminomethyl-L-alanine (BAMA), β-N-methylamino-L-alanine (BMAA), and 2,4-diaminobutyric acid (DAB). Our objective was to investigate the impact of microbial [...] Read more.
Lake Winnipeg in Manitoba, Canada is heavily impacted by harmful algal blooms that contain non-protein amino acids (NPAAs) produced by cyanobacteria: N-(2-aminoethyl)glycine (AEG), β-aminomethyl-L-alanine (BAMA), β-N-methylamino-L-alanine (BMAA), and 2,4-diaminobutyric acid (DAB). Our objective was to investigate the impact of microbial diversity on NPAA production by cyanobacteria using semi-purified crude cyanobacterial cultures established from field samples collected by the Lake Winnipeg Research Consortium between 2016 and 2021. NPAAs were detected and quantified by ultra-performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS) using validated analytical methods, while Shannon and Simpson alpha diversity scores were determined from 16S rRNA metagenomic sequences. Alpha diversity in isolate cultures was significantly decreased compared to crude cyanobacterial cultures (p < 0.001), indicating successful semi-purification. BMAA and AEG concentrations were higher in crude compared to isolate cultures (p < 0.0001), and AEG concentrations were correlated to the alpha diversity in cultures (r = 0.554; p < 0.0001). BAMA concentrations were increased in isolate cultures (p < 0.05), while DAB concentrations were similar in crude and isolate cultures. These results demonstrate that microbial community complexity impacts NPAA production by cyanobacteria and related organisms. Full article
Show Figures

Graphical abstract

22 pages, 4890 KiB  
Article
A Dual-Threshold Algorithm for Ice-Covered Lake Water Level Retrieval Using Sentinel-3 SAR Altimetry Waveforms
by Fucai Tang, Peng Chen, Zhiyuan An, Mingzhu Xiong, Hao Chen and Liangcai Qiu
Sensors 2023, 23(24), 9724; https://doi.org/10.3390/s23249724 - 9 Dec 2023
Viewed by 1535
Abstract
Satellite altimetry has been proven to measure water levels in lakes and rivers effectively. The Sentinel-3A satellite is equipped with a dual-frequency synthetic aperture radar altimeter (SRAL), which allows for inland water levels to be measured with higher precision and improved spatial resolution. [...] Read more.
Satellite altimetry has been proven to measure water levels in lakes and rivers effectively. The Sentinel-3A satellite is equipped with a dual-frequency synthetic aperture radar altimeter (SRAL), which allows for inland water levels to be measured with higher precision and improved spatial resolution. However, in regions at middle and high latitudes, where many lakes are covered by ice during the winter, the non-uniformity of the altimeter footprint can substantially impact the accuracy of water level estimates, resulting in abnormal readings when applying standard SRAL synthetic aperture radar (SAR) waveform retracking algorithms (retrackers). In this study, a modified method is proposed to determine the current surface type of lakes, analyzing changes in backscattering coefficients and brightness temperature. This method aligns with ground station observations and ensures consistent surface type classification. Additionally, a dual-threshold algorithm that addresses the limitations of the original bimodal algorithm by identifying multiple peaks without needing elevation correction is introduced. This innovative approach significantly enhances the precision of equivalent water level measurements for ice-covered lakes. The study retrieves and compares the water level data of nine North American lakes covered by ice from 2016–2019 using the dual-threshold and the SAMOSA-3 algorithm with in situ data. For Lake Athabasca, Cedar Lake, Great Slave Lake, Lake Winnipeg, and Lake Erie, the root mean square error (RMSE) of SAMOSA-3 is 39.58 cm, 46.18 cm, 45.75 cm, 42.64 cm, and 6.89 cm, respectively. However, the dual-threshold algorithm achieves an RMSE of 6.75 cm, 9.47 cm, 5.90 cm, 7.67 cm, and 5.01 cm, respectively, representing a decrease of 75%, 79%, 87%, 82%, and 27%, respectively, compared to SAMOSA-3. The dual-threshold algorithm can accurately estimate water levels in ice-covered lakes during winter. It offers a promising prospect for achieving long-term, continuous, and high-precision water level measurements for middle- and high-latitude lakes. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

20 pages, 2926 KiB  
Article
Seasonal Dynamics of Lake Winnipeg’s Microbial Communities Reveal Aerobic Anoxygenic Phototrophic Populations Coincide with Sunlight Availability
by Steven B. Kuzyk, Xiao Ma and Vladimir Yurkov
Microorganisms 2022, 10(9), 1690; https://doi.org/10.3390/microorganisms10091690 - 23 Aug 2022
Cited by 4 | Viewed by 2900
Abstract
In this first comprehensive study of Lake Winnipeg’s microbial communities, limnetic and littoral euphotic zones were examined during each season from 2016 through 2020. Classical cultivation and modern high-throughput sequencing techniques provided quantification and identification of key phototrophic populations, including aerobic anoxygenic phototrophs [...] Read more.
In this first comprehensive study of Lake Winnipeg’s microbial communities, limnetic and littoral euphotic zones were examined during each season from 2016 through 2020. Classical cultivation and modern high-throughput sequencing techniques provided quantification and identification of key phototrophic populations, including aerobic anoxygenic phototrophs (AAP). Annual dynamics found total heterotrophs reached 4.23 × 106 CFU/g in littoral sands, and 7.69 × 104 CFU/mL in summer littoral waters on oligotrophic media, higher counts than for copiotrophic compositions. Limnetic numbers inversely dipped to 4.34 × 103 CFU/mL midsummer. Cultured AAP did not follow heterotrophic trends, instead peaking during the spring in both littoral and limnetic waters as 19.1 and 4.7% of total copiotrophs, or 3.9 and 4.9% of oligotrophs, decreasing till autumn each year. Complementary observations came from environmental 16S V4 rRNA gene analysis, as AAP made up 1.49 and 1.02% of the littoral and limnetic sequenced communities in the spring, declining with seasonal progression. Spatial and temporal fluctuations of microbes compared to environmental factors exposed photosynthetic populations to independently and regularly fluctuate in the ecosystem. Oxygenic phototrophic numbers expectantly matched the midsummer peak of Chl a and b, oxygenic photosynthesis related carbon fixation, and water temperature. Independently, AAP particularly colonized spring littoral areas more than limnetic, and directly corresponded to habitat conditions that specifically promoted growth: the requirement of light and organic material. Full article
(This article belongs to the Special Issue Phototrophic Bacteria)
Show Figures

Figure 1

20 pages, 7331 KiB  
Article
Consistent Multi-Mission Measures of Inland Water Algal Bloom Spatial Extent Using MERIS, MODIS and OLCI
by Chuiqing Zeng and Caren E. Binding
Remote Sens. 2021, 13(17), 3349; https://doi.org/10.3390/rs13173349 - 24 Aug 2021
Cited by 12 | Viewed by 3142
Abstract
Envisat’s MERIS and its successor Sentinel OLCI have proven invaluable for documenting algal bloom conditions in coastal and inland waters. Observations over turbid eutrophic waters, in particular, have benefited from the band at 708 nm, which captures the reflectance peak associated with intense [...] Read more.
Envisat’s MERIS and its successor Sentinel OLCI have proven invaluable for documenting algal bloom conditions in coastal and inland waters. Observations over turbid eutrophic waters, in particular, have benefited from the band at 708 nm, which captures the reflectance peak associated with intense algal blooms and is key to line-height algorithms such as the Maximum Chlorophyll Index (MCI). With the MERIS mission ending in early 2012 and OLCI launched in 2016, however, time-series studies relying on these two sensors have to contend with an observation gap spanning four years. Alternate sensors, such as MODIS Aqua, offering neither the same spectral band configuration nor consistent spatial resolution, present challenges in ensuring continuity in derived bloom products. This study explores a neural network (NN) solution to fill the observation gap between MERIS and OLCI with MODIS Aqua data, delivering consistent algal bloom spatial extent products from 2002 to 2020 using these three sensors. With 14 bands of MODIS level 2 partially atmospherically corrected spectral reflectance as the NN input, the missing MERIS/OLCI band at 708 nm required for the MCI is simulated. The resulting NN-derived MODIS MCI (NNMCI) is shown to be in good agreement with MERIS and OLCI MCI in 2011 and 2017 respectively over the western basin of Lake Erie (R2 = 0.84, RMSE = 0.0032). To overcome the impact of MODIS sensor saturation over bright water targets, which otherwise renders pixels unusable for bloom detection using R-NIR wavebands, a variant NN model is employed which uses the 9 MODIS bands with the lowest probability of saturation to simulate the MCI. This variant NN predicts MCI with only a small increase in uncertainty (R2 = 0.73, RMSE = 0.005) allowing reliable estimates of bloom conditions in those previously unreported pixels. The NNMCI is shown to be robust when applied beyond the initial training dataset on Lake Erie, and when re-trained on different geographic areas (Lake Winnipeg and Lake of the Woods). Despite differences in spatial, temporal, and spectral resolution, MODIS algal bloom presence/absence was correctly classified in >92% of cases and bloom spatial extent derived within 25% uncertainty, allowing the application to the 2012–2015 time period to form a continuous and consistent multi-mission monitoring dataset from 2002 to 2020. Full article
Show Figures

Graphical abstract

25 pages, 11427 KiB  
Article
Improving the Estimation of Water Level over Freshwater Ice Cover using Altimetry Satellite Active and Passive Observations
by Jawad Ziyad, Kalifa Goïta, Ramata Magagi, Fabien Blarel and Frédéric Frappart
Remote Sens. 2020, 12(6), 967; https://doi.org/10.3390/rs12060967 - 17 Mar 2020
Cited by 13 | Viewed by 3890
Abstract
Owing to its temporal resolution of 10-day and its polar orbit allowing several crossings over large lakes, the US National Aeronautics and Space Administration (NASA) and the French Centre National d’Etudes Spatiales (CNES) missions including Topex/Poseidon, Jason-1/2/3 demonstrated strong capabilities for the continuous [...] Read more.
Owing to its temporal resolution of 10-day and its polar orbit allowing several crossings over large lakes, the US National Aeronautics and Space Administration (NASA) and the French Centre National d’Etudes Spatiales (CNES) missions including Topex/Poseidon, Jason-1/2/3 demonstrated strong capabilities for the continuous and long-term monitoring (starting in 1992) of large and medium-sized water bodies. However, the presence of heterogeneous targets in the altimeter footprint, such as ice cover in boreal areas, remains a major issue to obtain estimates of water level over subarctic lakes of similar accuracy as over other inland water bodies using satellite altimetry (i.e., R ≥ 0.9 and RMSE ≤ 10 to 20 cm when compared to in-situ water stages). In this study, we aim to automatically identify the Jason-2 altimetry measurements corresponding to open water, ice and transition (water-ice) to improve the estimations of water level during freeze and thaw periods using only the point measurements of open water. Four Canadian lakes were selected to analyze active (waveform parameters) and passive (brightness temperature) microwave data acquired by the Jason-2 radar altimetry mission: Great Slave Lake, Lake Athabasca, Lake Winnipeg, and Lake of the Woods. To determine lake surface states, backscattering coefficient and peakiness at Ku-band derived from the radar altimeter waveform and brightness temperature at 18.7 and 37 GHz measured by the microwave radiometer contained in the geophysical data records (GDR) of Jason-2 were used in two different unsupervised classification techniques to define the thresholds of discrimination between open water and ice measurements. K-means technique provided better results than hierarchical clustering based upon silhouette criteria and the Calinski-Harabz index. Thresholds of discrimination between ice and water were validated with the Normalized Difference Snow Index (NDSI) snow cover products of the MODIS satellite. The use of open water threshold resulted in improved water level estimation compared to in situ water stages, especially in the presence of ice. For the four lakes, the Pearson coefficient (r) increased on average from about 0.8 without the use of the thresholds to more than 0.90. The unbiased RMSE were generally lower than 20 cm when the threshold of open water was used and more than 22 cm over smaller lakes, without using the thresholds. Full article
(This article belongs to the Special Issue Lake Remote Sensing)
Show Figures

Graphical abstract

22 pages, 3488 KiB  
Article
A Multiplex Analysis of Potentially Toxic Cyanobacteria in Lake Winnipeg during the 2013 Bloom Season
by Katelyn M. McKindles, Paul V. Zimba, Alexander S. Chiu, Susan B. Watson, Danielle B. Gutierrez, Judy Westrick, Hedy Kling and Timothy W. Davis
Toxins 2019, 11(10), 587; https://doi.org/10.3390/toxins11100587 - 11 Oct 2019
Cited by 19 | Viewed by 4910
Abstract
Lake Winnipeg (Manitoba, Canada), the world’s 12th largest lake by area, is host to yearly cyanobacterial harmful algal blooms (cHABs) dominated by Aphanizomenon and Dolichospermum. cHABs in Lake Winnipeg are primarily a result of eutrophication but may be exacerbated by the recent [...] Read more.
Lake Winnipeg (Manitoba, Canada), the world’s 12th largest lake by area, is host to yearly cyanobacterial harmful algal blooms (cHABs) dominated by Aphanizomenon and Dolichospermum. cHABs in Lake Winnipeg are primarily a result of eutrophication but may be exacerbated by the recent introduction of dreissenid mussels. Through multiple methods to monitor the potential for toxin production in Lake Winnipeg in conjunction with environmental measures, this study defined the baseline composition of a Lake Winnipeg cHAB to measure potential changes because of dreissenid colonization. Surface water samples were collected in 2013 from 23 sites during summer and from 18 sites in fall. Genetic data and mass spectrometry cyanotoxin profiles identified microcystins (MC) as the most abundant cyanotoxin across all stations, with MC concentrations highest in the north basin. In the fall, mcyA genes were sequenced to determine which species had the potential to produce MCs, and 12 of the 18 sites were a mix of both Planktothrix and Microcystis. Current blooms in Lake Winnipeg produce low levels of MCs, but the capacity to produce cyanotoxins is widespread across both basins. If dreissenid mussels continue to colonize Lake Winnipeg, a shift in physicochemical properties of the lake because of faster water column clearance rates may yield more toxic blooms potentially dominated by microcystin producers. Full article
(This article belongs to the Special Issue Environmental Drivers of Algal and Cyanobacterial Toxin Dynamics)
Show Figures

Figure 1

17 pages, 2116 KiB  
Article
Analysing Habitat Connectivity and Home Ranges of Bigmouth Buffalo and Channel Catfish Using a Large-Scale Acoustic Receiver Network
by Eva C. Enders, Colin Charles, Douglas A. Watkinson, Colin Kovachik, Douglas R. Leroux, Henry Hansen and Mark A. Pegg
Sustainability 2019, 11(11), 3051; https://doi.org/10.3390/su11113051 - 30 May 2019
Cited by 20 | Viewed by 5305
Abstract
The determination if fish movement of potadromous species is impeded in a river system is often difficult, particularly when timing and extent of movements are unknown. Furthermore, evaluating river connectivity poses additional challenges. Here, we used large-scale, long-term fish movement to study and [...] Read more.
The determination if fish movement of potadromous species is impeded in a river system is often difficult, particularly when timing and extent of movements are unknown. Furthermore, evaluating river connectivity poses additional challenges. Here, we used large-scale, long-term fish movement to study and identify anthropogenic barriers to movements in the Lake Winnipeg basin including the Red, Winnipeg, and Assiniboine rivers. In the frame of the project, 80 Bigmouth Buffalo (Ictiobus cyprinellus) and 161 Channel Catfish (Ictalurus punctatus) were tagged with acoustic transmitters. Individual fish were detected with an acoustic telemetry network. Movements were subsequently analyzed using a continuous-time Markov model (CTMM). The study demonstrated large home ranges in the Lake Winnipeg basin and evidence of frequent transborder movements between Canada and the United States. The study also highlighted successful downstream fish passage at some barriers, whereas some barriers limited or completely blocked upstream movement. This biological knowledge on fish movements in the Lake Winnipeg basin highlights the need for fish passage solutions at different obstructions. Full article
Show Figures

Figure 1

Back to TopTop