Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline

Search Results (3)

Search Parameters:
Keywords = Lactobacillus gasseri BNR17

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1764 KiB  
Article
Effect of Probiotic Lactic Acid Bacteria (LAB) on the Quality and Safety of Greek Yogurt
by So-Young Yang and Ki-Sun Yoon
Foods 2022, 11(23), 3799; https://doi.org/10.3390/foods11233799 - 25 Nov 2022
Cited by 23 | Viewed by 12181
Abstract
Greek yogurt is a strained yogurt with a high protein content that brings nutritional benefits. To enhance the functional benefits of Greek yogurt, Greek yogurt was prepared with various combinations of probiotic lactic acid bacteria (LAB) (Streptococcus thermophilus, Lactobacillus bulgaricus, [...] Read more.
Greek yogurt is a strained yogurt with a high protein content that brings nutritional benefits. To enhance the functional benefits of Greek yogurt, Greek yogurt was prepared with various combinations of probiotic lactic acid bacteria (LAB) (Streptococcus thermophilus, Lactobacillus bulgaricus, Lactobacillus gasseri BNR17, and Lactobacillus plantarum HY7714). Effects of probiotic LAB on quality, sensory, and microbiological characteristics of Greek yogurt were then compared. Among samples, Greek yogurt fermented by S. thermophilus and L. bulgaricus showed the highest changes of pH and titratable acidity during 21 d of storage at 4 °C. Greek yogurt fermented with L. plantarum HY7714 had a higher viscosity than other samples. Greek yogurt fermented with S. thermophilus, L. bulgaricus, L. gasseri BNR17, and L. plantarum HY7714 showed superior physicochemical properties and received the highest preference score from sensory evaluation among samples. Overall, the population of enterohaemorrhagic Escherichia coli (EHEC) was more effectively reduced in Greek yogurt fermented with probiotic LAB than in commercial Greek yogurt during storage at 4, 10, and 25 °C. Thus, the addition of L. gasseri BNR17 and L. plantarum HY7714 as starter cultures could enhance the microbial safety of Greek yogurt and sensory acceptance by consumers. Full article
(This article belongs to the Special Issue Current Research on Probiotics and Fermented Products)
Show Figures

Figure 1

11 pages, 2565 KiB  
Article
Anti-Melanogenic and Antioxidant Effects of Cell-Free Supernatant from Lactobacillus gasseri BNR17
by Sol Lee, Han-Oh Park and Wonbeak Yoo
Microorganisms 2022, 10(4), 788; https://doi.org/10.3390/microorganisms10040788 - 8 Apr 2022
Cited by 19 | Viewed by 4767
Abstract
In recent years, there has been considerable interest in the use of cell-free supernatant of probiotics culture for nutritional and functional applications. In this study, we investigated the effect of the cell-free supernatant from Lactobacillus gasseri BNR17 (CFS) on anti-melanogenesis and reducing oxidative [...] Read more.
In recent years, there has been considerable interest in the use of cell-free supernatant of probiotics culture for nutritional and functional applications. In this study, we investigated the effect of the cell-free supernatant from Lactobacillus gasseri BNR17 (CFS) on anti-melanogenesis and reducing oxidative stress in B16-F10 murine melanoma cells and HaCaT human keratinocytes. Treatment with CFS significantly inhibited the production of extracellular and intracellular melanin without cytotoxicity during melanogenesis induced by the α-MSH in B16-F10 cells. The CFS dramatically reduced tyrosinase activity and the melanogenesis-related gene expression. Further, it showed antioxidative effects in a dose-dependent manner in DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) assays and significantly increased the mRNA levels of HO-1 and CAT in HaCaT cells. Furthermore, the CFS increased HO-1 and anti-oxidative-related gene expression during H2O2-induced oxidative stress in HaCaT cells. Together, this study suggests that the CFS reduces hyperpigmentation and inhibits oxidative stress, and thus can be used as a potential skincare product in the future. Full article
(This article belongs to the Special Issue Advances in Microbial Biosynthesis)
Show Figures

Figure 1

12 pages, 1296 KiB  
Communication
Effects of Synbiotic Preparation Containing Lactobacillus gasseri BNR17 on Body Fat in Obese Dogs: A Pilot Study
by Han-Joon Lee, Jae Hyoung Cho, Woo-Jae Cho, Seong-Ho Gang, Seung-Hwan Park, Bong-Jun Jung, Hyeun Bum Kim and Kun Ho Song
Animals 2022, 12(5), 642; https://doi.org/10.3390/ani12050642 - 3 Mar 2022
Cited by 6 | Viewed by 6249
Abstract
Obesity is an important health concern in humans and dogs. It can cause a variety of secondary problems, including low bacterial diversity. Several approaches have been tried to solve this problem; one of them is probiotic supplementation. Lactobacillus gasseri BNR17 is derived from [...] Read more.
Obesity is an important health concern in humans and dogs. It can cause a variety of secondary problems, including low bacterial diversity. Several approaches have been tried to solve this problem; one of them is probiotic supplementation. Lactobacillus gasseri BNR17 is derived from breast milk and has been proven to be effective for obesity in humans. However, there have been no studies using a synbiotic preparation containing L. gasseri BNR17 for obesity management in dogs. Therefore, the present study evaluated the effectiveness of a synbiotic preparation containing L. gasseri BNR17 in reducing body fat in obese dogs. A group of obese dogs were fed a synbiotic preparation for 10 weeks. Obesity variables included body weight, body condition score, subcutaneous fat thickness, subcutaneous fat mass and proportion of the fat mass. In addition, feces collected at 0-week and 10-week time points were analyzed for the intestinal microbiome. Results showed a significant decrease in body weight, body condition score, and subcutaneous fat mass and proportion at the level of the third lumbar vertebra. Diversity and functional analysis of the microbiota in obese dogs showed increased microbial diversity, and increased abundance of metabolism of carbohydrate, and lipid after supplementation with a synbiotic preparation. This study was conducted as a pilot study, and the results demonstrated that a synbiotic preparation containing L. gasseri BNR17 may play a role in reducing body fat and resolving the obesity in dogs. Full article
(This article belongs to the Special Issue The Health Problems of Obesity in Animals)
Show Figures

Figure 1

Back to TopTop