Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = LT-WGS reaction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3560 KiB  
Article
Performance of Particulate and Structured Pt/TiO2-Based Catalysts for the WGS Reaction under Realistic High- and Low-Temperature Shift Conditions
by Andreas Kouroumlidis, Georgios Bampos, Paraskevi Panagiotopoulou and Dimitris I. Kondarides
Catalysts 2023, 13(2), 372; https://doi.org/10.3390/catal13020372 - 8 Feb 2023
Cited by 1 | Viewed by 2422
Abstract
The water–gas shift (WGS) activity of Pt/TiO2-based powdered and structured catalysts was investigated using realistic feed compositions that are relevant to the high-temperature shift (HTS) and low-temperature shift (LTS) reaction conditions. The promotion of the TiO2 support with small amounts [...] Read more.
The water–gas shift (WGS) activity of Pt/TiO2-based powdered and structured catalysts was investigated using realistic feed compositions that are relevant to the high-temperature shift (HTS) and low-temperature shift (LTS) reaction conditions. The promotion of the TiO2 support with small amounts of alkali- or alkaline earth-metals resulted in the enhancement of the WGS activity of 0.5%Pt/TiO2(X) catalysts (X = Na, Cs, Ca, Sr). The use of bimetallic (Pt–M)/TiO2 catalysts (M = Ru, Cr, Fe, Cu) can also shift the CO conversion curve toward lower temperatures, but this is accompanied by the production of relatively large amounts of unwanted CH4 at temperatures above ca. 300 °C. Among the powdered catalysts investigated, Pt/TiO2(Ca) exhibited the best performance under both HTS and LTS conditions. Therefore, this material was selected for the preparation of structured catalysts in the form of pellets as well as ceramic and metallic catalyst monoliths. The 0.5%Pt/TiO2(Ca) pellet catalyst exhibited comparable activity with that of a commercial WGS pellet catalyst, and its performance was further improved when the Pt loading was increased to 1.0 wt.%. Among the structured catalysts investigated, the best results were obtained for the sample coated on the metallic monolith, which exhibited excellent WGS performance in the 300–350 °C temperature range. In conclusion, proper selection of the catalyst structure and reaction parameters can shift the CO conversion curves toward sufficiently low temperatures, rendering the Pt/TiO2(Ca) catalyst suitable for practical applications. Full article
Show Figures

Figure 1

25 pages, 20440 KiB  
Article
Influence of Cs Loading on Pt/m-ZrO2 Water–Gas Shift Catalysts
by Zahra Rajabi, Michela Martinelli, Caleb D. Watson, Donald C. Cronauer, A. Jeremy Kropf and Gary Jacobs
Catalysts 2021, 11(5), 570; https://doi.org/10.3390/catal11050570 - 29 Apr 2021
Cited by 9 | Viewed by 2706
Abstract
Certain alkali metals (Na, K) at targeted loadings have been shown in recent decades to significantly promote the LT-WGS reaction. This occurs at alkali doping levels where a redshift in the C-H band of formate occurs, indicating electronic weakening of the bond. The [...] Read more.
Certain alkali metals (Na, K) at targeted loadings have been shown in recent decades to significantly promote the LT-WGS reaction. This occurs at alkali doping levels where a redshift in the C-H band of formate occurs, indicating electronic weakening of the bond. The C-H bond breaking of formate is the proposed rate-limiting step of the formate associative mechanism, lending support to the occurrence of this mechanism in H2-rich environments of the LT-WGS stage of fuel processors. Continuing in this vein of research, 2%Pt/m-ZrO2 was promoted with various levels of Cs in order to explore its influence on the rate of formate intermediate decomposition, as well as that of LT-WGS in a fixed bed reactor. In situ DRIFTS experiments revealed that Cs promoter loadings of 3.87% to 7.22% resulted in significant acceleration of the forward formate decomposition in steam at 130 °C. Of all of the alkali metals tested to date, the redshift in the formate ν(CH) band with the incorporation of Cs was the greatest. XANES difference experiments at the Pt L2 and L3 edges indicated that the electronic effect was not likely due to an enrichment of electronic density on Pt. CO2 TPD experiments revealed that, unlike Na and K promoters, Cs behaves more like Rb in that the decomposition of the second intermediate in LT-WGS, carbonate species, is hindered due to (1) increased basicity of Cs, (2) the tendency of Cs to cover Pt sites that facilitate CO2 decomposition, and (3) the tendency of Cs to increase Pt particle size as shown by EXAFS results, resulting in fewer Pt sites that facilitate CO2 decomposition. As such, the LT-WGS rate was hindered overall and the rate-limiting step shifted to carbonate decomposition (CO2 removal). Like its Rb counterpart, low levels of added Cs (e.g., 0.72%Cs) were found to improve the stability of the catalyst relative to the unpromoted catalyst; the stability comparison was made at similar CO conversion level as well as similar space velocity. Full article
(This article belongs to the Special Issue CO and CO2 Conversion over Heterogeneous Catalysts)
Show Figures

Figure 1

30 pages, 16558 KiB  
Article
Low Temperature Water-Gas Shift: Enhancing Stability through Optimizing Rb Loading on Pt/ZrO2
by Caleb Daniel Watson, Michela Martinelli, Donald Charles Cronauer, A. Jeremy Kropf and Gary Jacobs
Catalysts 2021, 11(2), 210; https://doi.org/10.3390/catal11020210 - 5 Feb 2021
Cited by 10 | Viewed by 3404
Abstract
Recent studies have shown that appropriate levels of alkali promotion can significantly improve the rate of low-temperature water gas shift (LT-WGS) on a range of catalysts. At sufficient loadings, the alkali metal can weaken the formate C–H bond and promote formate dehydrogenation, which [...] Read more.
Recent studies have shown that appropriate levels of alkali promotion can significantly improve the rate of low-temperature water gas shift (LT-WGS) on a range of catalysts. At sufficient loadings, the alkali metal can weaken the formate C–H bond and promote formate dehydrogenation, which is the proposed rate determining step in the formate associative mechanism. In a continuation of these studies, the effect of Rb promotion on Pt/ZrO2 is examined herein. Pt/ZrO2 catalysts were prepared with several different Rb loadings and characterized using temperature programmed reduction mass spectrometry (TPR-MS), temperature programmed desorption (TPD), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), an X-ray absorption near edge spectroscopy (XANES) difference procedure, extended X-ray absorption fine structure spectroscopy (EXAFS) fitting, TPR-EXAFS/XANES, and reactor testing. At loadings of 2.79% Rb or higher, a significant shift was seen in the formate ν(CH) band. The results showed that a Rb loading of 4.65%, significantly improves the rate of formate decomposition in the presence of steam via weakening the formate C–H bond. However, excessive rubidium loading led to the increase in stability of a second intermediate, carbonate and inhibited hydrogen transfer reactions on Pt through surface blocking and accelerated agglomeration during catalyst activation. Optimal catalytic performance was achieved with loadings in the range of 0.55–0.93% Rb, where the catalyst maintained high activity and exhibited higher stability in comparison with the unpromoted catalyst. Full article
(This article belongs to the Special Issue Catalysts for Water-Gas Shift Reaction)
Show Figures

Figure 1

15 pages, 4520 KiB  
Article
Investigation on the Stability of Supported Gold Nanoparticles
by Michela Signoretto, Federica Menegazzo, Valentina Trevisan, Francesco Pinna, Maela Manzoli and Flora Boccuzzi
Catalysts 2013, 3(3), 656-670; https://doi.org/10.3390/catal3030656 - 21 Aug 2013
Cited by 12 | Viewed by 9001
Abstract
The procedures leading to the preservation of catalytic performances of Au/ZrO2 samples have been investigated. The three potential causes of deactivation, namely the particle growth by sintering of gold nanoparticles, the metal leaching and the formation of un-reactive species which inhibit the [...] Read more.
The procedures leading to the preservation of catalytic performances of Au/ZrO2 samples have been investigated. The three potential causes of deactivation, namely the particle growth by sintering of gold nanoparticles, the metal leaching and the formation of un-reactive species which inhibit the reaction, have been evaluated. In particular, this paper deals with the stability of gold nanoparticles: (1) under storage conditions; (2) with time on stream for a gas phase reaction (LT-WGSR); (3) with time on stream for a liquid phase reaction (furfural oxidative esterification). Full article
(This article belongs to the Special Issue New Trends in Gold Catalysts)
Show Figures

Figure 1

Back to TopTop