Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = Kolmogorov axioms of probability theory

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 319 KB  
Article
Extending Kolmogorov’s Axioms for a Generalized Probability Theory on Collections of Contexts
by Karl Svozil
Entropy 2022, 24(9), 1285; https://doi.org/10.3390/e24091285 - 12 Sep 2022
Cited by 4 | Viewed by 2448
Abstract
Kolmogorov’s axioms of probability theory are extended to conditional probabilities among distinct (and sometimes intertwining) contexts. Formally, this amounts to row stochastic matrices whose entries characterize the conditional probability to find some observable (postselection) in one context, given an observable (preselection) in another [...] Read more.
Kolmogorov’s axioms of probability theory are extended to conditional probabilities among distinct (and sometimes intertwining) contexts. Formally, this amounts to row stochastic matrices whose entries characterize the conditional probability to find some observable (postselection) in one context, given an observable (preselection) in another context. As the respective probabilities need not (but, depending on the physical/model realization, can) be of the Born rule type, this generalizes approaches to quantum probabilities by Aufféves and Grangier, which in turn are inspired by Gleason’s theorem. Full article
(This article belongs to the Special Issue Quantum Information and Probability: From Foundations to Engineering)
Show Figures

Figure 1

13 pages, 390 KB  
Article
An Application of Quantum Logic to Experimental Behavioral Science
by Louis Narens
Quantum Rep. 2021, 3(4), 643-655; https://doi.org/10.3390/quantum3040040 - 7 Oct 2021
Viewed by 3178
Abstract
In 1933, Kolmogorov synthesized the basic concepts of probability that were in general use at the time into concepts and deductions from a simple set of axioms that said probability was a σ-additive function from a boolean algebra of events into [0, [...] Read more.
In 1933, Kolmogorov synthesized the basic concepts of probability that were in general use at the time into concepts and deductions from a simple set of axioms that said probability was a σ-additive function from a boolean algebra of events into [0, 1]. In 1932, von Neumann realized that the use of probability in quantum mechanics required a different concept that he formulated as a σ-additive function from the closed subspaces of a Hilbert space onto [0,1]. In 1935, Birkhoff & von Neumann replaced Hilbert space with an algebraic generalization. Today, a slight modification of the Birkhoff-von Neumann generalization is called “quantum logic”. A central problem in the philosophy of probability is the justification of the definition of probability used in a given application. This is usually done by arguing for the rationality of that approach to the situation under consideration. A version of the Dutch book argument given by de Finetti in 1972 is often used to justify the Kolmogorov theory, especially in scientific applications. As von Neumann in 1955 noted, and his criticisms still hold, there is no acceptable foundation for quantum logic. While it is not argued here that a rational approach has been carried out for quantum physics, it is argued that (1) for many important situations found in behavioral science that quantum probability theory is a reasonable choice, and (2) that it has an arguably rational foundation to certain areas of behavioral science, for example, the behavioral paradigm of Between Subjects experiments. Full article
Show Figures

Figure 1

11 pages, 1098 KB  
Article
Quantum-Like Sampling
by Andreas Wichert
Mathematics 2021, 9(17), 2036; https://doi.org/10.3390/math9172036 - 24 Aug 2021
Viewed by 2350
Abstract
Probability theory is built around Kolmogorov’s axioms. To each event, a numerical degree of belief between 0 and 1 is assigned, which provides a way of summarizing the uncertainty. Kolmogorov’s probabilities of events are added, the sum of all possible events is one. [...] Read more.
Probability theory is built around Kolmogorov’s axioms. To each event, a numerical degree of belief between 0 and 1 is assigned, which provides a way of summarizing the uncertainty. Kolmogorov’s probabilities of events are added, the sum of all possible events is one. The numerical degrees of belief can be estimated from a sample by its true fraction. The frequency of an event in a sample is counted and normalized resulting in a linear relation. We introduce quantum-like sampling. The resulting Kolmogorov’s probabilities are in a sigmoid relation. The sigmoid relation offers a better importability since it induces the bell-shaped distribution, it leads also to less uncertainty when computing the Shannon’s entropy. Additionally, we conducted 100 empirical experiments by quantum-like sampling 100 times a random training sets and validation sets out of the Titanic data set using the Naïve Bayes classifier. In the mean the accuracy increased from 78.84% to 79.46%. Full article
(This article belongs to the Special Issue Advances in Quantum Artificial Intelligence and Machine Learning)
Show Figures

Figure 1

10 pages, 300 KB  
Article
Probability Axioms and Set Theory Paradoxes
by Ari Herman and John Caughman
Symmetry 2021, 13(2), 179; https://doi.org/10.3390/sym13020179 - 22 Jan 2021
Viewed by 2758
Abstract
In this paper, we show that Zermelo–Fraenkel set theory with Choice (ZFC) conflicts with basic intuitions about randomness. Our background assumptions are the Zermelo–Fraenekel axioms without Choice (ZF) together with a fragment of Kolmogorov’s probability theory. Using these minimal assumptions, we prove that [...] Read more.
In this paper, we show that Zermelo–Fraenkel set theory with Choice (ZFC) conflicts with basic intuitions about randomness. Our background assumptions are the Zermelo–Fraenekel axioms without Choice (ZF) together with a fragment of Kolmogorov’s probability theory. Using these minimal assumptions, we prove that a weak form of Choice contradicts two common sense assumptions about probability—both based on simple notions of symmetry and independence. Full article
(This article belongs to the Section Mathematics)
36 pages, 3473 KB  
Article
The P–T Probability Framework for Semantic Communication, Falsification, Confirmation, and Bayesian Reasoning
by Chenguang Lu
Philosophies 2020, 5(4), 25; https://doi.org/10.3390/philosophies5040025 - 2 Oct 2020
Cited by 9 | Viewed by 6416
Abstract
Many researchers want to unify probability and logic by defining logical probability or probabilistic logic reasonably. This paper tries to unify statistics and logic so that we can use both statistical probability and logical probability at the same time. For this purpose, this [...] Read more.
Many researchers want to unify probability and logic by defining logical probability or probabilistic logic reasonably. This paper tries to unify statistics and logic so that we can use both statistical probability and logical probability at the same time. For this purpose, this paper proposes the P–T probability framework, which is assembled with Shannon’s statistical probability framework for communication, Kolmogorov’s probability axioms for logical probability, and Zadeh’s membership functions used as truth functions. Two kinds of probabilities are connected by an extended Bayes’ theorem, with which we can convert a likelihood function and a truth function from one to another. Hence, we can train truth functions (in logic) by sampling distributions (in statistics). This probability framework was developed in the author’s long-term studies on semantic information, statistical learning, and color vision. This paper first proposes the P–T probability framework and explains different probabilities in it by its applications to semantic information theory. Then, this framework and the semantic information methods are applied to statistical learning, statistical mechanics, hypothesis evaluation (including falsification), confirmation, and Bayesian reasoning. Theoretical applications illustrate the reasonability and practicability of this framework. This framework is helpful for interpretable AI. To interpret neural networks, we need further study. Full article
(This article belongs to the Special Issue Logic and Science)
Show Figures

Graphical abstract

36 pages, 347 KB  
Article
Foundations of Inference
by Kevin H. Knuth and John Skilling
Axioms 2012, 1(1), 38-73; https://doi.org/10.3390/axioms1010038 - 15 Jun 2012
Cited by 43 | Viewed by 14292
Abstract
We present a simple and clear foundation for finite inference that unites and significantly extends the approaches of Kolmogorov and Cox. Our approach is based on quantifying lattices of logical statements in a way that satisfies general lattice symmetries. With other applications such [...] Read more.
We present a simple and clear foundation for finite inference that unites and significantly extends the approaches of Kolmogorov and Cox. Our approach is based on quantifying lattices of logical statements in a way that satisfies general lattice symmetries. With other applications such as measure theory in mind, our derivations assume minimal symmetries, relying on neither negation nor continuity nor differentiability. Each relevant symmetry corresponds to an axiom of quantification, and these axioms are used to derive a unique set of quantifying rules that form the familiar probability calculus. We also derive a unique quantification of divergence, entropy and information. Full article
(This article belongs to the Special Issue Axioms: Feature Papers)
Show Figures

Graphical abstract

Back to TopTop