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Abstract: Probability theory is built around Kolmogorov’s axioms. To each event, a numerical
degree of belief between 0 and 1 is assigned, which provides a way of summarizing the uncertainty.
Kolmogorov’s probabilities of events are added, the sum of all possible events is one. The numerical
degrees of belief can be estimated from a sample by its true fraction. The frequency of an event in a
sample is counted and normalized resulting in a linear relation. We introduce quantum-like sampling.
The resulting Kolmogorov’s probabilities are in a sigmoid relation. The sigmoid relation offers a
better importability since it induces the bell-shaped distribution, it leads also to less uncertainty
when computing the Shannon’s entropy. Additionally, we conducted 100 empirical experiments by
quantum-like sampling 100 times a random training sets and validation sets out of the Titanic data
set using the Naïve Bayes classifier. In the mean the accuracy increased from 78.84% to 79.46%.

Keywords: quantum probabilities; sampling; quantum cognition; naïve bayes

1. Introduction

Quantum algorithms are based on different principles than classical algorithm. Here
we investigate a simple quantum-like algorithm that is motivated by quantum physics. The
incapability between Kolmogorov’s probabilities and quantum probabilities results from
the different norms that are used. In quantum probabilities the length of the vector in l2
norm representing the amplitudes of all events is one. Usually, Kolmogorov’s probabilities
are converted in Quantum-like probabilities by the squared root operation, it is difficult to
attach any meaning to the squared root operation. Motivated by the lack of interpretability
we define quantum-like sampling, the l2 sampling. The resulting Kolmogorov’s probabili-
ties are not any more linear but related to the sigmoid function. In the following we will
introduce the traditional l1 sampling Then we will introduce the quantum-like sampling,
the l2 sampling. We will indicate the relation between the l2 sampling, the sigmoid function
and the normal distribution. The quantum-like sampling leads to less uncertainty. We
fortify this hypothesis by empirical experiments with a simple Naïve Bayes classifier on
the Titanic dataset.

2. Kolmogorovs Probabilities

Probability theory is built around Kolmogorov’s axioms (first published in 1933 [1]).
All probabilities are between 0 and 1. For any proposition x,

0 ≤ p(x) ≤ 1

and
p(true) = 1, p( f alse) = 0.

To each sentence, a numerical degree of belief between 0 and 1 is assigned, which
provides a way of summarizing the uncertainty. The last axiom expresses the probability
of disjunction and is given by

p(x ∨ y) = p(x) + p(y)− p(x ∧ y)
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where do these numerical degrees of belief come from?

• Humans can believe in a subjective viewpoint, which can be determined by some
empirical psychological experiments. This approach is a very subjective way to
determine the numerical degree of belief.

• For a finite sample we can estimate the true fraction. We count the frequency of an
event in a sample. We do not know the true value because we cannot access the whole
population of events. This approach is called frequentist.

• It appears that the true values can be determined from the true nature of the universe,
for example, for a fair coin, the probability of heads is 0.5. This approach is related to
the Platonic world of ideas. However, we can never verify whether a fair coin exists.

Frequentist Approach and l1 Sampling

Relying on the frequentist approach, one can determine the probability of an event
x by counting. If Ω is the set of all possible events, p(Ω) = 1 and the cardinality card(Ω)
determines the number of elements of a set Ω and card(x) is the number of elements of the
set x and with x ∈ Ω

p(x) =
card(x)
card(Ω)

. (1)

This kind of sampling is the l1 sampling. With n events x1, x2, ..., xn that describe all
possible events of the set Ω,

0 ≤ card(xi)

card(Ω)
,

n

∑
i=1

card(xi)

card(Ω)
= 1⇔

n

∑
i=1

card(xi) = card(Ω)

We can interpret card(ωi)
card(Ω)

as dimension of an n dimensional vector with the vector being


card(x1)
card(Ω)
card(x2)
card(Ω)

· · ·
card(xn)
card(Ω)

. (2)

with the l1 norm
‖x‖1 = |x1|+ |x2|+ · · ·+ |xn| (3)

it is as a unit-length vector in the norm l1∣∣∣∣card(x1)

card(Ω)

∣∣∣∣+ ∣∣∣∣card(x2)

card(Ω)

∣∣∣∣+ · · ·+ ∣∣∣∣card(xn)

card(Ω)

∣∣∣∣ = 1. (4)

3. Quantum Probabilities

Quantum physics evaluates a probability p(x) of a state x as the squared magnitude
of a probability amplitude A(x), which is represented by a complex number

p(x) = |A(x)|2 = A(x)∗ · A(x). (5)

This is because the product of complex number with its conjugate is always a real
number. With

A(x) = α + β · i (6)

A(x)∗ · A(x) = (α− β · i) · (α + β · i) (7)

A(x)∗ · A(x) = α2 + β2 = |A(x)|2. (8)
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Quantum physics by itself does not offer any justification or explanation beside the
statement that it just works fine, see [2]. This quantum probabilities are as well called
von Neumann probabilities. Converting two amplitudes into probabilities leads to an
interference term 2 · <(A(x) · A∗(y)),

|A(x) + A(y)|2 = |A(x)|2 + |A(y)|2 + 2 · <(A(x) · A∗(y))
|A(x) + A(y)|2 = p(x) + p(y) + 2 · <(A(x) · A∗(y)),

(9)

making both approaches, in general, incompatible

|A(x) + A(y)|2 6= p(x) + p(y). (10)

In other words, the summation rule of classical probability theory is violated, resulting
in one of the most fundamental laws of quantum mechanics, see [2]. In quantum physics
we interpret A(xi) as dimension of an n dimensional vector with the vector being

A(x1)
A(x2)
· · ·

A(xn)

. (11)

In quantum physics the unit-length vector is computed in the in the norm l2

‖x‖2 =
√
(|x1|2 + |x2|2 + · · ·+ |xn|2) (12)

instead of the norm l1 with a unit-length vector in the norm l2

|A(x1)|2 + |A(x2)|2 + · · ·+ |A(xn)|2 = 1. (13)

By replacing the l1 norm by the Euclidean l2 norm in the classical probability theory
(Kolmogorov probabilities), we obtain quantum mechanics [3] with all the corresponding
laws. The incapability between the Kolmogorov’s probabilities and quantum probabilities
results from the simple fact

‖x‖2 ≤ ‖x‖1. (14)

This incapability is as well the basis for quantum cognition. Quantum cognition is
motivated by clues from psychology indicate that human cognition is based on quantum
probability rather than the traditional probability theory as explained by Kolmogorov’s
axioms, see [4–7]. Empirical findings show that, under uncertainty, humans tend to violate
the expected utility theory and consequently the laws of classical probability theory (e.g.,
the law of total probability [6–8]), In [4,9–14] leading to what is known as the “disjunction
effect” which, in turn, leads to violation of the Sure Thing Principle. The violation results
from an additional interference that influences the classical probabilities.

Conversion

The amplitude is the root of the belief multiplied with the corresponding phase [11–13]
θ ∈ [0, 2 · π)

A(x) = a(x, θ) =
√

p(x) · ei·θ . (15)

With l1 sampling it is difficult to attach any meaning to
√

card(x),

a(x, θ) =

√
card(x)
card(Ω)

· ei·θ . (16)
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Motivated by the lack of interpretability we define the quantum-like sampling, the l2
sampling with n events x1, x2, ..., xn that describe all possible events

Φ = |card(x1)|2 + |card(x2)|2 + · · ·+ |card(xn)|2 (17)

p(xi) =
|card(xi)|2

Φ
,

n

∑
i=1

|card(ωi)|2
Φ

= 1 (18)

and

a(x, θ) =
card(x)√
card(Φ)

· ei·θ . (19)

with
Ω ≤ Φ ≤ Ω2. (20)

The l2 sampling leads to an interpretation of the amplitudes as a normalized frequency
of occurrence of an event multiplied by the phase. Φ is dependent on the distribution
of all values card(xi). When developing empirical experiments that are explained by
quantum cognition models l2 sampling should be used rather than l1 sampling. What is
the interpretation of |card(xi)|2 outside quantum interpretation?

4. Quantum-Like Sampling and the Sigmoid Function

To understand the difference between l1 sampling and l2 sampling (quantum-like
sampling) we will analyze a simple binary event x

p(x) + p(¬x) = 1.

For l1 sampling p(x) and p(¬x) is defined as

p(x) =
card(x)
card(Ω)

, p(¬x) =
Ω− card(x)

card(Ω)

and for l2 sampling

p(x) =
card(x)2

card(x)2 + (Ω− card(x))2 , p(¬x) =
(Ω− card(x))2

card(x)2 + (Ω− card(x))2 .

with
ω = card(x)

we can define the functions for binary l1 and l2 sampling as

f (ω) =
ω

Ω
(21)

and

g(ω) =
ω2

ω2 + (Ω−ω)2 , (22)

In Figure 1 f (ω) = ω
Ω is compared to g(ω) = ω2

ω2+(Ω−ω)2 for Ω, (a) Ω = 4, (b) Ω = 10,
(c) Ω = 100 and (d) Ω = 1000. With growing size of Ω the function g(ω) converge to
a continuous sigmoid function. In Figure 2 the sigmoid function g(x) with Ω = 10 is
compared to the well known scaled to the logistic function.
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(a) (b)

(c) (d)

Figure 1. f (ω) = ω
Ω compared to g(ω) = ω2

ω2+(Ω−ω)2 for Ω, (a) Ω = 4, (b) Ω = 10, (c) Ω = 100 and
(d) Ω = 1000. With growing size of Ω the function g(x) converge to a sigmoid function.

Figure 2. Sigmoid functions: g(x) = x2

x2+(10−x)2 versus logistic function σ(x) = 1
1+e−0.9523·(x−5) .

The derivative of the sigmoid function g(x) is a bell-shaped function. For the continu-
ous function g(x), the derivative is similar to the Gaussian distribution. The central limit
theorem states that under certain (fairly common) conditions, the sum of many random
variables will have an approximately Gausssian distribution. In Figure 3 the derivative
of g(x) = x2

x2+(10−x)2 with Ω = 10, g′(x) = − 5(−10+x)x
50−10x+x2)2 is indicated and compared to

Gaussian distribution N with µ = 5 and σ2 = 1.92.

(a) (b)

Figure 3. (a) g(x) = x2

x2+(10−x)2 and g′(x) = − 5(−10+x)x
50−10x+x2)2 ; (b) g′(x) = − 5(−10+x)x

50−10x+x2)2 ver-

sus N (x|5, 1.92) = 1
1.9∗
√

2∗π · e
− 1

2 ·(
x−5
1.9 )

2

.
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The derivative of the sigmoid function g(ω) is less similar to the probability mass
function of the the binomial distribution.

The l2 sampling leads to natural sigmoid representation of probabilities that reflects the
nature of Gaussian/Normal distribution. This leads to less uncertainty using l2 compared
to l1 sampling represented by Shannon’s entropy.

H = −p(x) · log2 p(x)− p(¬x) · log2 p(¬x) (23)

as can be seen in Figure 4 for Ω = 100.

Figure 4. Shannon’s entropy H with Ω = 100, blue discrete plot for l1 sampling and yellow discrete
plot l2 sampling.

Combination

Depending on l1 or l2 sampling we get different results when we combine probabilities.
Multiplying two independent sampled events x and y results in the joint distribution

pl1(x, y) =
x

10
· y

10
(24)

when l1 sampled with Ω = 10 and

pl2(x, y) =
x2

x2 + (10− x)2 ·
y2

y2 + (10− y)2 (25)

when l2 sampled with Ω = 10 as indicated in the Figure 5. The same applies for
weighted sum of information, corresponding to the Shannon’s entropy as used in the
ID3 algorithm [15–17] for symbolical machine learning to preform a greedy search for
small decision trees. Computing

Hl1 = − x
10
· log2

x
10
− 10− x

10
· log2

10− x
10

− y
10
· log2

y
10
− 10− y

10
· log2

10− y
10

(26)

when l1 sampled with Ω = 10 and

Hl2 = − x2

x2 + (10− x)2 · log2
x2

x2 + (10− x)2−(
1− x2

x2 + (10− x)2

)
· log2

(
1− x2

x2 + (10− x)2

)
−

x2

x2 + (10− x)2 · log2
x2

x2 + (10− x)2−(
1− x2

x2 + (10− x)2

)
· log2

(
1− x2

x2 + (10− x)2

)
(27)
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when l2 sampled with Ω = 10 leads to different H1 and H2 values as indicated in the
Figure 6.

(a) (b)

(c) (d)

Figure 5. Multiplying two independent sampled events x and y with Ω = 10 leads to different
results: (a) pl1(x, y), (b) pl2(x, y), (c) counterplot of pl1(x, y), (d) counterplot of pl2(x, y).

(a) (b)

(c) (d)

Figure 6. Different H1 and H2 values for sampled events x and y with Ω = 10: (a) H1(x, y),
(b) H2(x, y), (c) counterplot of H1(x, y), (d) counterplot of H2(x, y).

Less uncertainty would lead to better results in machine learning. We preform empiri-
cal experiments with a simple Naïve Bayes classifier to fortify this hypothesis.

5. Naïve Bayes Classifier

For a target function f : X → h, where each instance x described by attributes
a1, a2 · · · an Most probable value of f (x) is:

hmap = arg max
hi

p(hi|a1, a2, a3, .., an) =
p(a1, a2, a3, ..., an|hi) · P(hi)

P(a1, a2, a3, ..., an)

The likelihood of the conditional probability p(a1, a2, a3, ..., an|hi) is described by 2n

possible combinations. For n possible variables, the exponential growth of combinations
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being true or false becomes an intractable problem for large n since all 2n − 1 possible
combinations must be known. The decomposition of large probabilistic domains into
weakly connected subsets via conditional independence,

p(a1, a2, a3, ..., an|hi) =
n

∏
j=1

p(aj|hi).

is known as the Naïve Bayes assumption and is one of the most important developments
in the recent history of Artificial Intelligence [16]. It assumes that a single cause directly
influences a number of events, all of which are conditionally independent. The Naïve
Bayes classifier is defined as

hmap = arg max
hi

n

∏
j=1

P(aj|hi) · P(hi).

Titanic Dataset

When the Titanic sank it killed 1502 out of 2224 passengers and crew. We are using a
file titanic.cvs processed file from https://gist.github.com/michhar/ accessed on 1 July
2021 that corresponds to the file train.cvs from kaggle https://www.kaggle.com/c/titanic/
data?select=train.csv accessed on 1 July 2021 that contains data for 891 of the real Titanic
passengers. Each row represents one person. The columns describe different attributes
about the person including their PassengerId, whether they Survived, heir passenger-class
Pclass, their Name, their Sex, their Age, and other six attributes, see Figure 7. In our
experiment we will only use the attributes Survived, Pclass, Sex and Age.

Figure 7. The Titanic data set is represented in an Excel table that contains data for 891 of the real
Titanic passengers, some entries are not defined.

The binary attribute Survived (=s) will be our target h resulting in the prior p(s) and
p(¬s). Out of the 891 passengers 342 survived and 549 did not survive. The attribute
Pclass has three values 1 for upper class, 2 for middle class and 3 for lower class. It will be
binarized into the attribute c indicating if the person had a lower class cabin by

c = 1 i f Pclass == 3 else c = 0,

in the case Pclass is not defined the default value is 0. The attribute Sex has two binary
values represented by the binary attribute m

m = 1 i f Sex == male else m = 0,

https://gist.github.com/michhar/
https://www.kaggle.com/c/titanic/data?select=train.csv
https://www.kaggle.com/c/titanic/data?select=train.csv
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in the case Sex is not defined the default value is 0. The attribute Age will be binarized into
the attribute g indicating if the person is a child or grown up by

g = 0 i f Age < 18 else g = 1,

in the case Age is not defined the default value is 1.
Using the l1 sampling over the whole data set we get the values for the priors

p(s) = 0.3838, p(¬s) = 0.6162,

and for the likelihoods,

p(c|s) = 0.3480, p(¬c|s) = 0.6520, p(c|¬s) = 0.6776, p(¬c|¬s) = 0.3224,

p(m|s) = 0.3187, p(¬m|s) = 0.6813, p(m|¬s) = 0.8525, p(¬m|¬s) = 0.14755,

p(g|s) = 0.8216, p(¬g|s) = 0.178363, p(g|¬s) = 0.9053, p(¬g|¬s) = 0.0947.

Using the l2 sampling over the whole data set we get the values for the priors

p(s) = 0.27957406, p(¬s) = 0.72042594

and for the likelihoods,

p(c|s) = 0.2217, p(¬c|s) = 0.7783, p(c|¬s) = 0.8154, p(¬c|¬s) = 0.1846,

p(m|s) = 0.1796, p(¬m|s) = 0.8524, p(m|¬s) = 0.9709, p(¬m|¬s) = 0.0291,

p(g|s) = 0.95499, p(¬g|s) = 0.04501, p(g|¬s) = 0.9892, p(¬g|¬s) = 0.0108.

The sampled probability values are quite different.
We measure the accuracy of our algorithm by dividing the number of entries it

correctly classified by the total number of entries. For l1 sampling there 190 are entries
wrong classified resulting in the accuracy of 78.66%, for the l2 sampling 179 entries are
wrong classified resulting in the accuracy of 79.91%.

In the next step we separate our data set in a training set and a validation set resulting
in 295 elements in the validation set We use sklearn.model_selection accessed on 1 July 2021
import train_test_split accessed on 1 July 2021 with the parameters train_test_split(XH,yy,
test_size=0.33,random_state=42) accessed on 1 July 2021. The later is used to validate how
well our algorithm is doing. For l1 sampling 60 entries are wrong classified resulting in
the accuracy of 79.66%, for the l2 sampling 55 entries are wrong classified resulting in the
accuracy of 81.36%.

In the next we sample the 100 times a random training set and validation set We use
sklearn.model_selection accessed on 1 July 2021 import train_test_split accessed on 1 July
2021 with the parameters train_test_split(XH,yy,test_size=0.33) accessed on 1 July 2021. For
l1 sampling there were in the mean 62.42 entries wrong classified resulting in the accuracy
of 78.84%, for the l2 sampling there were 60.59 entries wrong classified resulting in the
accuracy of 79.46%.

The trend from this simple evaluation indicates that l2 sampling leads to better results
compared to l1 sampling in the empirical experiments.

So far we looked at the performance of classification models in terms of accuracy.
Specifically, we measured error based on the fraction of mistakes. However, in some tasks,
there are some types of mistakes that are worse than others. However in our simple task the
correctly classified results when l1 sampled are also correctly classified when l2 sampled.

sklearn.model_selection
train_test_split
train_test_split(XH, yy, test_size=0.33, random_state=42)
train_test_split(XH, yy, test_size=0.33, random_state=42)
sklearn.model_selection
sklearn.model_selection
train_test_split
train_test_split(XH, yy, test_size=0.33)
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6. Conclusions

We introduced quantum-like sampling also called the l2 sampling. The l2 sampling
leads to an interpretation of the amplitudes as a normalized frequency of occurrence of an
event multiplied by the phase

a(x, θ) =
card(x)√
card(Φ)

· ei·θ ,

Φ is dependent on the distribution of all values card(xi). When developing empirical
experiments that are explained by quantum cognition models l2 sampling should be used
rather than l1 sampling.

The quantum inspired l2 sampling maps the probability values to a natural continuous
sigmoid function, its derivative is is a bell-shaped function that is similar to the Gaussian
distribution of events. The l2 sampling improves the classification accuracy in machine
learning models that are based on sampling as indicated by empirical experiments with
Naïve Bayes classifier.
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