Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (53)

Search Parameters:
Keywords = Kelvin cell

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4189 KiB  
Article
Cross-Scale Simulation Study of Porous Medium Heat Exchangers Based on Reliable Cell Selection
by Yiqiang Liang, Jun Zhang, Yu Liu, Mingrui Sun and Yongchen Song
Energies 2025, 18(13), 3510; https://doi.org/10.3390/en18133510 - 3 Jul 2025
Viewed by 318
Abstract
This study compares the heat transfer and pressure drop of three cell structures, namely Kelvin cells (KCs), ellipsoidal Kelvin cells (EKCs), and body-centered cubic (BCC) structures, at the cell scale in order to identify the superior configuration. Then, we conducted numerical simulations on [...] Read more.
This study compares the heat transfer and pressure drop of three cell structures, namely Kelvin cells (KCs), ellipsoidal Kelvin cells (EKCs), and body-centered cubic (BCC) structures, at the cell scale in order to identify the superior configuration. Then, we conducted numerical simulations on the heat exchangers based on porous media, and evaluate their comprehensive performance. It is shown that KCs have a superior heat transfer. Their volumetric heat transfer coefficient (hV) is more than 50% higher than that of EKCs and more than 100% higher than that of BCC structures. EKCs exhibit a lower pressure drop. In the heat exchanger performance optimization study, the Kelvin structure demonstrated significant heat transfer characteristics. Simulation data show that the heat transfer performance at the hot end of the Kelvin heat exchanger (KCHE) is enhanced by more than 40% compared to the conventional plate-fin structure (FHE), but its flow channel pressure drop characteristics show a significant nonlinear increase. It is noteworthy that the improved Kelvin heat exchanger (EKCHE), optimized by introducing elliptic cell topology, maintains heat transfer while keeping the pressure loss increase within 1.22 times that of the conventional structure. The evaluation of the heat transfer and pressure drop characteristics is consistent for both scales. In addition, the EKC configuration exhibits a superior overall heat transfer capacity. To summarize, this work proposes a systematic numerical framework encompassing cell unit screening through heat exchanger design, offering valuable guidance for the structured development and analysis of porous media heat exchangers in relevant engineering domains. Full article
(This article belongs to the Collection Advances in Heat Transfer Enhancement)
Show Figures

Figure 1

13 pages, 5000 KiB  
Article
Comprehensive Analysis of Shear Deformation Cytometry Based on Numerical Simulation Method
by Jun Wang, Jiahe Chen, Wenlai Tang and Shu Zhu
Biosensors 2025, 15(6), 389; https://doi.org/10.3390/bios15060389 - 17 Jun 2025
Viewed by 456
Abstract
The deformability of cells reflects their capacity for shape changes under external forces; however, the systematic investigation of deformation-influencing factors remains conspicuously underdeveloped. In this work, by using an incompressible neo-Hookean viscoelastic solid model, coupled with the Kelvin–Voigt model, the effects of flow [...] Read more.
The deformability of cells reflects their capacity for shape changes under external forces; however, the systematic investigation of deformation-influencing factors remains conspicuously underdeveloped. In this work, by using an incompressible neo-Hookean viscoelastic solid model, coupled with the Kelvin–Voigt model, the effects of flow rate, fluid viscosity, cell diameter, and shear modulus on cell deformability were systematically calculated and simulated. Additionally, the relationship between cell deformability and relaxation time within a dissipative process was also simulated. The results indicate that cell deformation is positively correlated with flow rate, with an approximate linear relationship between the deformation index and flow velocity. Fluid viscosity also significantly affects cell deformation, as an approximate linear relationship with the deformation index is observed. Cell diameter has a more prominent impact on cell deformability than do flow rate or fluid viscosity, with the deformation index increasing more rapidly than the cell diameter. As the Young’s modulus increases, cell deformation decreases non-linearly. Cell deformation in the channel also gradually decreases with the increase in relaxation time. These findings enhance the understanding of cell biophysical characteristics and provide a basis for the precise control of cell deformation in deformability cytometry. This research holds significant implications for cell analysis-based animal health monitoring in the field of agriculture, as well as for other related areas. Full article
(This article belongs to the Section Nano- and Micro-Technologies in Biosensors)
Show Figures

Figure 1

29 pages, 12630 KiB  
Article
LPBF-Produced Elastomeric Lattice Structures for Personal Protection Equipment: Mechanical Performance Versus Comfort-Related Attributes
by William Turnier Trottier, Antoine Collin, Thierry Krick and Vladimir Brailovski
J. Manuf. Mater. Process. 2025, 9(6), 182; https://doi.org/10.3390/jmmp9060182 - 29 May 2025
Viewed by 1238
Abstract
This study focuses on the energy absorption and wearer comfort attributes of regular lattice structures fabricated by laser powder bed fusion from two elastomeric materials, namely TPU1301 and TPE300, for use in personal protective equipment (PPE). This study compares Body-Centered Cubic (BCC), Face-Centered [...] Read more.
This study focuses on the energy absorption and wearer comfort attributes of regular lattice structures fabricated by laser powder bed fusion from two elastomeric materials, namely TPU1301 and TPE300, for use in personal protective equipment (PPE). This study compares Body-Centered Cubic (BCC), Face-Centered Cubic (FCC) and Kelvin (KE) lattice structures with density varying from 0.15 to 0.25 g/cm3, cell size varying from 10 to 14 mm and feature size varying from 1 to 3 mm. Quasi-static and dynamic compression testing confirmed that among the studied geometries, KE structures printed with TPE300 powders provide the best combination of reduced peak acceleration and increased compliance, thereby improving both safety and comfort. Using the protection–comfort maps built on the basis of this study enables the design of lightweight and compact protective structures. For example, if a safety layer protecting a 100 mm2 surface area can be manufactured from either TPE300 or TPU1100 powders using either KE or FCC structures, the KE TPE300 layer will be 1.5 times thinner and 2.5 times lighter than its FCC TPU1301 equivalent. The results of this study thus provide a basis for the optimization of lattice structures in 3D-printed PPE to meet both service and manufacturing requirements. Full article
Show Figures

Graphical abstract

14 pages, 6582 KiB  
Article
Fabrication of PVTF/COL Composite Films and Its Impact on Osteogenic Differentiation
by Haoqing Liu, Chengwei Wu, Weimin Lin, Xiaoyi Chen, Wenjian Weng, Xingyan Yu and Kui Cheng
Coatings 2025, 15(4), 416; https://doi.org/10.3390/coatings15040416 - 1 Apr 2025
Viewed by 466
Abstract
Bone tissue is intrinsically electroactive, and electrical signaling is one of its key regulatory mechanisms. The electroactive poly (vinylidene fluoride trifluoroethylene) (PVTF), due to its piezoelectricity, can provide electrical stimulation to cells, regulating their proliferation and osteogenic differentiation. Collagen I (COL) is the [...] Read more.
Bone tissue is intrinsically electroactive, and electrical signaling is one of its key regulatory mechanisms. The electroactive poly (vinylidene fluoride trifluoroethylene) (PVTF), due to its piezoelectricity, can provide electrical stimulation to cells, regulating their proliferation and osteogenic differentiation. Collagen I (COL) is the main organic component of bone and is involved in various physiological processes of bone. A crucial question that remains to be explored is whether electroactive materials can meet the requirements for GBR membranes and what synergistic effects electrical signals and collagen’s biochemical signals might have on cellular behavior. In this study, PVTF/COL composite films were prepared using polydopamine (PDA). It was found that collagen modification could increase the surface Kelvin potential of PVTF from −5.07 V to 2.22 V, reduce the WCA from 98.9° to 33.2°, and maintain the tensile strength of PVTF at 24.94 MPa. Additionally, the composite film significantly promoted the adhesion and proliferation of bone marrow stem cells (BMSCs), and the ALP activity on PPC3 films after 7 days was 5.6 times higher than that on P films. This study presents a novel and effective approach for surface modification of PVTF and explores its potential applications in GBR. Full article
Show Figures

Figure 1

19 pages, 12311 KiB  
Article
Rapid and Efficient Polymer/Contaminant Removal from Single-Layer Graphene via Aqueous Sodium Nitrite Rinsing for Enhanced Electronic Applications
by Kimin Lee, Juneyoung Kil, JaeWoo Park, Sui Yang and Byoungchoo Park
Polymers 2025, 17(5), 689; https://doi.org/10.3390/polym17050689 - 4 Mar 2025
Viewed by 1259
Abstract
The removal of surface residues from single-layer graphene (SLG), including poly(methyl methacrylate) (PMMA) polymers and Cl ions, during the transfer process remains a significant challenge with regard to preserving the intrinsic properties of SLG, with the process often leading to unintended doping [...] Read more.
The removal of surface residues from single-layer graphene (SLG), including poly(methyl methacrylate) (PMMA) polymers and Cl ions, during the transfer process remains a significant challenge with regard to preserving the intrinsic properties of SLG, with the process often leading to unintended doping and reduced electronic performance capabilities. This study presents a rapid and efficient surface treatment method that relies on an aqueous sodium nitrite (NaNO2) solution to remove such contaminants effectively. The NaNO2 solution rinse leverages reactive nitric oxide (NO) species to neutralize ionic contaminants (e.g., Cl) and partially oxidize polymer residues in less than 10 min, thereby facilitating a more thorough final cleaning while preserving the intrinsic properties of graphene. Characterization techniques, including atomic force microscopy (AFM), Kelvin probe force microscopy (KPFM), and X-ray photoelectron spectroscopy (XPS), demonstrated substantial reductions in the levels of surface residues. The treatment restored the work function of the SLG to approximately 4.79 eV, close to that of pristine graphene (~4.5–4.8 eV), compared to the value of nearly 5.09 eV for conventional SLG samples treated with deionized (DI) water. Raman spectroscopy confirmed the reduced doping effects and improved structural integrity of the rinsed SLG. This effective rinsing process enhances the reproducibility and performance of SLG, enabling its integration into advanced electronic devices such as organic light-emitting diodes (OLEDs), photovoltaic (PV) cells, and transistors. Furthermore, the technique is broadly applicable to other two-dimensional (2D) materials, paving the way for next-generation (opto)electronic technologies. Full article
(This article belongs to the Special Issue Graphene-Based Polymer Composites and Their Applications II)
Show Figures

Figure 1

13 pages, 4962 KiB  
Article
Production of Al Alloys with Kelvin Cells Using the Lost-PLA Technique and Their Mechanical Characterization via Compression Tests
by Alessandra Ceci, Corrado Cerini, Girolamo Costanza and Maria Elisa Tata
Materials 2025, 18(2), 296; https://doi.org/10.3390/ma18020296 - 10 Jan 2025
Cited by 2 | Viewed by 744
Abstract
The mechanical behavior of AA6082 Kelvin cell foams under compressive tests has been investigated in this work. The lost-PLA replication technique, a simple and cheap technique, has been adopted as the production method. Six Al alloy samples have been made and successively subjected [...] Read more.
The mechanical behavior of AA6082 Kelvin cell foams under compressive tests has been investigated in this work. The lost-PLA replication technique, a simple and cheap technique, has been adopted as the production method. Six Al alloy samples have been made and successively subjected to compressive tests in order to examine the mechanical response and the repeatability too. The manufactured foams show good morphology and surface finishing, replicating the PLA 3D-printed foams with adequate accuracy. The experimental density of the foam has been found in good agreement with the theoretical one. When subjected to static compression, the Kelvin cell foams exhibit a load–strain diagram characterized by the initial linear stage followed by two plateaus at successively increasing load levels. Final densification occurs when there is no more space available for further plastic deformation and the load sharply increases. The specific absorbed energy has been calculated from load–strain curves: the average measured value was found to be 2.3 J/cm3, and standard deviation in the six compression tests was 0.3 J/cm3. Full article
(This article belongs to the Special Issue Advances in Porous Lightweight Materials and Lattice Structures)
Show Figures

Figure 1

22 pages, 12075 KiB  
Article
Influence of Structural Optimization on the Physical Properties of an Innovative FDM 3D Printed Thermal Barrier
by Beata Anwajler, Jacek Iwko, Anna Piwowar, Roman Wróblewski and Piotr Szulc
Materials 2024, 17(24), 6293; https://doi.org/10.3390/ma17246293 - 23 Dec 2024
Cited by 1 | Viewed by 1259
Abstract
This article describes an innovative thermal insulation barrier in the form of a sandwich panel manufactured using 3D FDM printing technology. The internal structure (core structure) of the barrier is based on the Kelvin foam model. This paper presents the influence of the [...] Read more.
This article describes an innovative thermal insulation barrier in the form of a sandwich panel manufactured using 3D FDM printing technology. The internal structure (core structure) of the barrier is based on the Kelvin foam model. This paper presents the influence of the parameters (the height h and the porosity P of a single core cell) of the barrier on its properties (thermal conductivity, thermal resistance, compressive strength, and quasi-static indentation strength). The dominant influence of the porosity of the structure on the determined physical properties of the fabricated samples was demonstrated. The best insulation results were obtained for single-layer composites with a cell height of 4 mm and a porosity of 90%, where the thermal conductivity coefficient was 0.038 W/(m·K) and the thermal resistance 0.537 (m2·K)/W. In contrast, the best compressive strength properties were obtained for the 50% porosity samples and amounted to about 350 MPa, while the moduli for the 90% porosity samples were 14 times lower and amounted to about 26 MPa. The porosity (P) of the composite structure also had a significant effect on the punch shear strength of the samples produced, and the values obtained for the 90% porosity samples did not exceed 1 MPa. In conclusion, the test showed that the resulting 3D cellular composites offer an innovative and environmentally friendly approach to thermal insulation. Full article
Show Figures

Figure 1

21 pages, 15856 KiB  
Article
Compressive Behavior of Inconel 625 and Ti-6Al-4V Strut Lattices Fabricated by LPBF
by Mihaela Raluca Condruz, Teodor Adrian Badea and Alexandru Paraschiv
Appl. Sci. 2024, 14(24), 11909; https://doi.org/10.3390/app142411909 - 19 Dec 2024
Cited by 1 | Viewed by 1454
Abstract
The present study assessed the compression performance of four strut lattices manufactured via laser powder bed fusion (LPBF), namely selective laser melting (SLM) from Inconel 625 and Ti-6Al-4V. Static finite element analysis and mechanical testing were performed, and it was concluded that the [...] Read more.
The present study assessed the compression performance of four strut lattices manufactured via laser powder bed fusion (LPBF), namely selective laser melting (SLM) from Inconel 625 and Ti-6Al-4V. Static finite element analysis and mechanical testing were performed, and it was concluded that the experimentally determined performance trend was in good agreement with that obtained by numerical methods. The cell type greatly influences the compressive performance of the lattices, regardless of the material used for manufacturing. The best compressive performances were recorded for the octet lattice, followed by the truncated octahedron, Kelvin, and re-entrant lattices. Regarding material performance, for the first maximum compressive strength, similar results were recorded for both materials; a difference was recorded in the case of yield strength, with higher values were recorded for Ti-6Al-4V compared to Inconel 625. The average first maximum compressive strength for the Ti-6Al-4V lattice was between 30.39 and 290.17 MPa, and it was within a range of 16.22–258.71 MPa for Inconel 625. The elastic modulus was between 1.74 and 4.72 GPa for Ti-6Al-4V, and 1.13 and 4.46 GPa for Inconel 625. A more ductile behavior was registered for the nickel-based superalloy than for the titanium alloy; the Inconel 625 specimens were characterized by a bending-dominant damage mode, and Ti-6Al-4V specimens were characterized more by a stretch-dominant damage mode. Full article
(This article belongs to the Section Additive Manufacturing Technologies)
Show Figures

Figure 1

16 pages, 8772 KiB  
Article
The Influence of Exogenous Particles on the Behavior of Non-Newtonian Mucus Fluid
by Agata Penconek, Urszula Michalczuk, Małgorzata Magnuska and Arkadiusz Moskal
Processes 2024, 12(12), 2765; https://doi.org/10.3390/pr12122765 - 5 Dec 2024
Viewed by 760
Abstract
Every day, approximately 7 m3 of air flows through the lungs of an adult, which comes into contact with 80 m2 of the lung surface. This air contains both natural and anthropogenic particles, which can deposit on the surface of the [...] Read more.
Every day, approximately 7 m3 of air flows through the lungs of an adult, which comes into contact with 80 m2 of the lung surface. This air contains both natural and anthropogenic particles, which can deposit on the surface of the mucus lining the respiratory tract. The presence of particles in the mucus leads to changes in its rheology and, consequently, in its functions. Therefore, this research aimed to determine how a non-Newtonian fluid suspension will behave during flow, illustrating the movement of mucus during coughing. The model mucus was an aqueous solution of carboxymethylcellulose (CMC). The tested particles suspended in a non-Newtonian fluid were Arizona Fine Dust, diesel exhaust particles, polyethylene microparticles, and pine pollen. It was noticed that as the fluid viscosity increases, the number of Kelvin–Helmholtz instabilities increases. The fluid’s expansion angle at the output of the measuring cell decreased, and the values of parameters characterizing the aerosol generated at the outlet decrease for selected particles present in the fluid. The research shows that the deposition of particles from polluted air in the respiratory tract, although they do not enter the bloodstream, may affect the human body. Deposited particles can change the behavior of mucus, which may translate into its functions. Full article
(This article belongs to the Special Issue Technological Processes for Chemical and Related Industries)
Show Figures

Figure 1

26 pages, 13041 KiB  
Article
Carbon-Free H2 Production from Ammonia Decomposition over 3D-Printed Ni-Alloy Structures Activated with a Ru/Al2O3 Catalyst
by Cristina Italiano, Gabriel Marino, Minju Thomas, Benjamin Hary, Steve Nardone, Simon Richard, Assia Saker, Damien Tasso, Nicolas Meynet, Pierre Olivier, Fausto Gallucci and Antonio Vita
Processes 2024, 12(12), 2663; https://doi.org/10.3390/pr12122663 - 26 Nov 2024
Viewed by 2470
Abstract
Hydrogen, with its high energy density and zero greenhouse gas emissions, is an exceptional energy vector, pivotal for a sustainable energy future. Ammonia, serving as a practical and cost-effective hydrogen carrier, offers a secure method for hydrogen storage and transport. The decomposition of [...] Read more.
Hydrogen, with its high energy density and zero greenhouse gas emissions, is an exceptional energy vector, pivotal for a sustainable energy future. Ammonia, serving as a practical and cost-effective hydrogen carrier, offers a secure method for hydrogen storage and transport. The decomposition of ammonia into hydrogen is a crucial process for producing green hydrogen, enabling its use in applications ranging from clean energy generation to fueling hydrogen-powered vehicles, thereby advancing the transition to a carbon-free energy economy. This study investigates the catalytic performance of various 3D-printed porous supports based on periodic open cellular structures (POCS) and triply periodic minimal surface (TPMS) architecture manufactured from IN625 nickel alloy powder using the laser powder bed fusion (LPBF) technique. The POCS and TPMS, featuring geometries including BCC, Kelvin, and Gyroid, were analyzed for cell size, strut/sheet diameter, porosity, and specific surface area. Pressure drop analyses demonstrated correlations between structural parameters and fluid dynamics, with BCC structures exhibiting lower pressure drops due to their higher porosity and the open channel network. The dip/spin coating method was successfully applied to activate the supports with a commercial Ru/Al2O3 catalyst, achieving uniform coverage crucial for catalytic performance. Among the tested geometries, the Gyroid structure showed superior catalytic activity towards ammonia decomposition, attributed to its efficient mass transfer pathways. This study highlights the importance of structural design in optimizing catalytic processes and suggests the Gyroid structure as a promising candidate for improving reactor efficiency and compactness in hydrogen production systems. Full article
Show Figures

Figure 1

20 pages, 9094 KiB  
Article
The Impact of 3D Printing Technology on the Improvement of External Wall Thermal Efficiency—An Experimental Study
by Beata Anwajler and Piotr Szulc
J. Compos. Sci. 2024, 8(10), 389; https://doi.org/10.3390/jcs8100389 - 30 Sep 2024
Cited by 4 | Viewed by 1877
Abstract
Three-dimensional printing technology continues to evolve, enabling new applications in manufacturing. Extensive research in the field of biomimetics underscores the significant impact of the internal geometry of building envelopes on their thermal performance. Although 3D printing holds great promise for improving thermal efficiency [...] Read more.
Three-dimensional printing technology continues to evolve, enabling new applications in manufacturing. Extensive research in the field of biomimetics underscores the significant impact of the internal geometry of building envelopes on their thermal performance. Although 3D printing holds great promise for improving thermal efficiency in construction, its full potential has yet to be realized, and the thermal performance of printed building components remains unexplored. The aim of this paper is to experimentally examine the thermal insulation characteristics of prototype cellular materials created using 3D additive manufacturing technologies (SLS and DLP). This study concentrates on exploring advanced thermal insulation solutions that could enhance the energy efficiency of buildings, cooling systems, appliances, or equipment. To this end, virtual models of sandwich composites with an open-cell foam core modeled after a Kelvin cell were created. They were characterized by a constant porosity of 0.95 and a pore diameter of the inner core of the composites of 6 mm. The independent variables included the different material from which the composites were made, the non-uniform number of layers in the composite (one, two, three, and five layers) and the total thickness of the composite (20, 40, 60, 80, and 100 mm). The impact of three independent parameters defining the prototype composite on its thermal insulation properties was assessed, including the heat flux (q) and the heat transfer coefficient (U). According to the experimental tests, a five-layer composite with a thickness of 100 mm made of soybean oil-based resin obtained the lowest coefficient with a value of U = 0.147 W/m2·K. Full article
(This article belongs to the Special Issue Sustainable Composite Construction Materials, Volume II)
Show Figures

Figure 1

11 pages, 4530 KiB  
Article
Investigation of Persistent Photoconductivity of Gallium Nitride Semiconductor and Differentiation of Primary Neural Stem Cells
by Yu Meng, Xiaowei Du, Shang Zhou, Jiangting Li, Rongrong Feng, Huaiwei Zhang, Qianhui Xu, Weidong Zhao, Zheng Liu and Haijian Zhong
Molecules 2024, 29(18), 4439; https://doi.org/10.3390/molecules29184439 - 19 Sep 2024
Viewed by 1723
Abstract
A gallium nitride (GaN) semiconductor is one of the most promising materials integrated into biomedical devices to play the roles of connecting, monitoring, and manipulating the activity of biological components, due to its excellent photoelectric properties, chemical stability, and biocompatibility. In this work, [...] Read more.
A gallium nitride (GaN) semiconductor is one of the most promising materials integrated into biomedical devices to play the roles of connecting, monitoring, and manipulating the activity of biological components, due to its excellent photoelectric properties, chemical stability, and biocompatibility. In this work, it was found that the photogenerated free charge carriers of the GaN substrate, as an exogenous stimulus, served to promote neural stem cells (NSCs) to differentiate into neurons. This was observed through the systematic investigation of the effect of the persistent photoconductivity (PPC) of GaN on the differentiation of primary NSCs from the embryonic rat cerebral cortex. NSCs were directly cultured on the GaN surface with and without ultraviolet (UV) irradiation, with a control sample consisting of tissue culture polystyrene (TCPS) in the presence of fetal bovine serum (FBS) medium. Through optical microscopy, the morphology showed a greater number of neurons with the branching structures of axons and dendrites on GaN with UV irradiation. The immunocytochemical results demonstrated that GaN with UV irradiation could promote the NSCs to differentiate into neurons. Western blot analysis showed that GaN with UV irradiation significantly upregulated the expression of two neuron-related markers, βIII-tubulin (Tuj-1) and microtubule-associated protein 2 (MAP-2), suggesting that neurite formation and the proliferation of NSCs during differentiation were enhanced by GaN with UV irradiation. Finally, the results of the Kelvin probe force microscope (KPFM) experiments showed that the NSCs cultured on GaN with UV irradiation displayed about 50 mV higher potential than those cultured on GaN without irradiation. The increase in cell membrane potential may have been due to the larger number of photogenerated free charges on the GaN surface with UV irradiation. These results could benefit topical research and the application of GaN as a biomedical material integrated into neural interface systems or other bioelectronic devices. Full article
Show Figures

Graphical abstract

17 pages, 5709 KiB  
Article
Settlement of a Pile Foundation Considering Linear and Rheological Properties of Soils
by Armen Z. Ter-Martirosyan, Lyubov Yu. Ermoshina and George O. Anzhelo
Buildings 2024, 14(9), 2830; https://doi.org/10.3390/buildings14092830 - 8 Sep 2024
Viewed by 1487
Abstract
Despite numerous studies of single piles and practical experience with their application, methods for calculating settlements of pile foundations remain limited. The existing objective need for specialized methods of pile foundation settlement calculation that take into account the rheological properties of the base [...] Read more.
Despite numerous studies of single piles and practical experience with their application, methods for calculating settlements of pile foundations remain limited. The existing objective need for specialized methods of pile foundation settlement calculation that take into account the rheological properties of the base soils is becoming more and more important, especially in the construction of unique objects in complex ground conditions. When predicting the stress–strain state of the pile–raft-surrounding soil mass system, it is allowed to consider not the entire pile foundation as a whole, but only a part of it—the computational cell. In the present work, we have solved the problems of determining the strains of the computational cell consisting of the pile, the raft and the surrounding soil according to the column pile scheme and hanging pile scheme, on the basis of the Kelvin–Voigt rheological model, which is a model of a viscoelastic body consisting of parallel connected elements: Hooke’s elastic spring and Newtonian fluid. According to our results, we obtained graphs of the dependence of strains of the computational cell on time at different pile spacing and different values of coefficients of viscosity of the surrounding soil, and a formula for calculating the reduced modulus of deformation of the pile. The results of the present study can significantly improve the accuracy of calculations during construction on clayey soils with pronounced rheological properties and, as a result, increase the reliability of pile structures in general. Full article
(This article belongs to the Special Issue Building Foundation Analysis: Soil–Structure Interaction)
Show Figures

Figure 1

11 pages, 2151 KiB  
Article
Influence of Hole Transport Layers on Buried Interface in Wide-Bandgap Perovskite Phase Segregation
by Fangfang Cao, Liming Du, Yongjie Jiang, Yangyang Gou, Xirui Liu, Haodong Wu, Junchuan Zhang, Zhiheng Qiu, Can Li, Jichun Ye, Zhen Li and Chuanxiao Xiao
Nanomaterials 2024, 14(11), 963; https://doi.org/10.3390/nano14110963 - 1 Jun 2024
Cited by 1 | Viewed by 1616
Abstract
Light-induced phase segregation, particularly when incorporating bromine to widen the bandgap, presents significant challenges to the stability and commercialization of perovskite solar cells. This study explores the influence of hole transport layers, specifically poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine (PTAA) and [4-(3,6-dimethyl-9H-carbazol-9-yl)butyl]phosphonic acid (Me-4PACz), on the dynamics of [...] Read more.
Light-induced phase segregation, particularly when incorporating bromine to widen the bandgap, presents significant challenges to the stability and commercialization of perovskite solar cells. This study explores the influence of hole transport layers, specifically poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine (PTAA) and [4-(3,6-dimethyl-9H-carbazol-9-yl)butyl]phosphonic acid (Me-4PACz), on the dynamics of phase segregation. Through detailed characterization of the buried interface, we demonstrate that Me-4PACz enhances perovskite photostability, surpassing the performance of PTAA. Nanoscale analyses using in situ Kelvin probe force microscopy and quantitative nanomechanical mapping techniques elucidate defect distribution at the buried interface during phase segregation, highlighting the critical role of substrate wettability in perovskite growth and interface integrity. The integration of these characterization techniques provides a thorough understanding of the impact of the buried bottom interface on perovskite growth and phase segregation. Full article
Show Figures

Figure 1

21 pages, 16801 KiB  
Article
Non-Conventional Wing Structure Design with Lattice Infilled through Design for Additive Manufacturing
by Numan Khan, Valerio Acanfora and Aniello Riccio
Materials 2024, 17(7), 1470; https://doi.org/10.3390/ma17071470 - 23 Mar 2024
Cited by 14 | Viewed by 4122
Abstract
Lightweight structures with a high stiffness-to-weight ratio always play a significant role in weight reduction in the aerospace sector. The exploration of non-conventional structures for aerospace applications has been a point of interest over the past few decades. The adaptation of lattice structure [...] Read more.
Lightweight structures with a high stiffness-to-weight ratio always play a significant role in weight reduction in the aerospace sector. The exploration of non-conventional structures for aerospace applications has been a point of interest over the past few decades. The adaptation of lattice structure and additive manufacturing in the design can lead to improvement in mechanical properties and significant weight reduction. The practicality of the non-conventional wing structure with lattices infilled as a replacement for the conventional spar–ribs wing is determined through finite element analysis. The optimal lattice-infilled wing structures are obtained via an automated iterative method using the commercial implicit modeling tool nTop and an ANSYS workbench. Among five different types of optimized lattice-infilled structures, the Kelvin lattice structure is considered the best choice for current applications, with comparatively minimal wing-tip deflection, weight, and stress. Furthermore, the stress distribution dependency on the lattice-unit cell type and arrangement is also established. Conclusively, the lattice-infilled structures have shown an alternative innovative design approach for lightweight wing structures. Full article
Show Figures

Graphical abstract

Back to TopTop