Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = Kcv channels

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 8979 KB  
Article
Effect of Texture on the Ductile–Brittle Transition Range and Fracture Mechanisms of the Ultrafine-Grained Two-Phase Ti-6Al-4V Titanium Alloy
by Iuliia M. Modina, Grigory S. Dyakonov, Alexander V. Polyakov, Andrey G. Stotskiy and Irina P. Semenova
Metals 2024, 14(1), 36; https://doi.org/10.3390/met14010036 - 28 Dec 2023
Cited by 4 | Viewed by 2537
Abstract
In this work, the technique of equal-channel angular pressing (ECAP) that enables producing bulk billets was used to form a UFG structure in Ti-6Al-4V alloy. A subsequent warm upsetting simulates die forging and the production of a part. We studied the evolution of [...] Read more.
In this work, the technique of equal-channel angular pressing (ECAP) that enables producing bulk billets was used to form a UFG structure in Ti-6Al-4V alloy. A subsequent warm upsetting simulates die forging and the production of a part. We studied the evolution of the UFG alloy’s crystallographic texture in the process of deformation during the production of a semi-product and/or a part, as well as its effect on the ductile–brittle transition region in the temperature range from −196 °C to 500 °C and the material’s fracture mechanisms. To test Charpy impact strength, standard samples of square cross-section with a V-shape notch were used (KCV). It was found that the impact toughness anisotropy is caused by textural effects and has a pronounced character at temperatures in the ductile–brittle transition range. Up to 100 °C the KCV values are close in the specimens processed by ECAP and ECAP+upsetting (along and perpendicularly to the upsetting axis—along the Z-axis and along the Y-axis, respectively), while a large difference is observed at test temperatures of 200 °C and higher. At a temperature of 500 °C, the impact toughness of the UFG Ti-6Al-4V alloy after ECAP reaches a level of that after ECAP+upsetting in the fracture direction along the Z-axis (1.60 and 1.77 MJ/m2, respectively). Additionally, an additional ECAP upsetting after ECAP decreases the ductile–brittle transition temperature of the UFG Ti-6Al-4V alloy, which increases the temperature margin of the toughness of the structural material and reduces the risk of the catastrophic failure of a product. The fractographic analysis of the fracture surface of the specimens after Charpy tests in a wide temperature range revealed the features of crack propagation depending on the type of the alloy’s microstructure and texture in the fracture direction. Full article
(This article belongs to the Section Metal Failure Analysis)
Show Figures

Figure 1

14 pages, 11992 KB  
Article
A Functional K+ Channel from Tetraselmis Virus 1, a Member of the Mimiviridae
by Kerri Kukovetz, Brigitte Hertel, Christopher R. Schvarcz, Andrea Saponaro, Mirja Manthey, Ulrike Burk, Timo Greiner, Grieg F. Steward, James L. Van Etten, Anna Moroni, Gerhard Thiel and Oliver Rauh
Viruses 2020, 12(10), 1107; https://doi.org/10.3390/v12101107 - 29 Sep 2020
Cited by 7 | Viewed by 4860
Abstract
Potassium ion (K+) channels have been observed in diverse viruses that infect eukaryotic marine and freshwater algae. However, experimental evidence for functional K+ channels among these alga-infecting viruses has thus far been restricted to members of the family Phycodnaviridae, which [...] Read more.
Potassium ion (K+) channels have been observed in diverse viruses that infect eukaryotic marine and freshwater algae. However, experimental evidence for functional K+ channels among these alga-infecting viruses has thus far been restricted to members of the family Phycodnaviridae, which are large, double-stranded DNA viruses within the phylum Nucleocytoviricota. Recent sequencing projects revealed that alga-infecting members of Mimiviridae, another family within this phylum, may also contain genes encoding K+ channels. Here we examine the structural features and the functional properties of putative K+ channels from four cultivated members of Mimiviridae. While all four proteins contain variations of the conserved selectivity filter sequence of K+ channels, structural prediction algorithms suggest that only two of them have the required number and position of two transmembrane domains that are present in all K+ channels. After in vitro translation and reconstitution of the four proteins in planar lipid bilayers, we confirmed that one of them, a 79 amino acid protein from the virus Tetraselmis virus 1 (TetV-1), forms a functional ion channel with a distinct selectivity for K+ over Na+ and a sensitivity to Ba2+. Thus, virus-encoded K+ channels are not limited to Phycodnaviridae but also occur in the members of Mimiviridae. The large sequence diversity among the viral K+ channels implies multiple events of lateral gene transfer. Full article
(This article belongs to the Collection Unconventional Viruses)
Show Figures

Figure 1

33 pages, 7148 KB  
Article
Genetic Diversity of Potassium Ion Channel Proteins Encoded by Chloroviruses That Infect Chlorella heliozoae
by Carter R. Murry, Irina V. Agarkova, Jayadri S. Ghosh, Fiona C. Fitzgerald, Roger M. Carlson, Brigitte Hertel, Kerri Kukovetz, Oliver Rauh, Gerhard Thiel and James L. Van Etten
Viruses 2020, 12(6), 678; https://doi.org/10.3390/v12060678 - 23 Jun 2020
Cited by 5 | Viewed by 3712
Abstract
Chloroviruses are large, plaque-forming, dsDNA viruses that infect chlorella-like green algae that live in a symbiotic relationship with protists. Chloroviruses have genomes from 290 to 370 kb, and they encode as many as 400 proteins. One interesting feature of chloroviruses is that they [...] Read more.
Chloroviruses are large, plaque-forming, dsDNA viruses that infect chlorella-like green algae that live in a symbiotic relationship with protists. Chloroviruses have genomes from 290 to 370 kb, and they encode as many as 400 proteins. One interesting feature of chloroviruses is that they encode a potassium ion (K+) channel protein named Kcv. The Kcv protein encoded by SAG chlorovirus ATCV-1 is one of the smallest known functional K+ channel proteins consisting of 82 amino acids. The KcvATCV-1 protein has similarities to the family of two transmembrane domain K+ channel proteins; it consists of two transmembrane α-helixes with a pore region in the middle, making it an ideal model for studying K+ channels. To assess their genetic diversity, kcv genes were sequenced from 103 geographically distinct SAG chlorovirus isolates. Of the 103 kcv genes, there were 42 unique DNA sequences that translated into 26 new Kcv channels. The new predicted Kcv proteins differed from KcvATCV-1 by 1 to 55 amino acids. The most conserved region of the Kcv protein was the filter, the turret and the pore helix were fairly well conserved, and the outer and the inner transmembrane domains of the protein were the most variable. Two of the new predicted channels were shown to be functional K+ channels. Full article
(This article belongs to the Section Viruses of Plants, Fungi and Protozoa)
Show Figures

Figure 1

12 pages, 1797 KB  
Article
Engineering a Ca++-Sensitive (Bio)Sensor from the Pore-Module of a Potassium Channel
by Mattia Lorenzo DiFrancesco, Sabrina Gazzarrini, Cristina Arrigoni, Giulia Romani, Gerhard Thiel and Anna Moroni
Sensors 2015, 15(3), 4913-4924; https://doi.org/10.3390/s150304913 - 27 Feb 2015
Cited by 4 | Viewed by 6919
Abstract
Signals recorded at the cell membrane are meaningful indicators of the physiological vs. pathological state of a cell and will become useful diagnostic elements in nanomedicine. In this project we present a coherent strategy for the design and fabrication of a bio-nano-sensor that [...] Read more.
Signals recorded at the cell membrane are meaningful indicators of the physiological vs. pathological state of a cell and will become useful diagnostic elements in nanomedicine. In this project we present a coherent strategy for the design and fabrication of a bio-nano-sensor that monitors changes in intracellular cell calcium concentration and allows an easy read out by converting the calcium signal into an electrical current in the range of microampere that can be easily measured by conventional cell electrophysiology apparatus. Full article
(This article belongs to the Special Issue State-of-the-Art Sensors Technology in Italy 2014)
Show Figures

Figure 1

Back to TopTop