Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Kalmia angustifolia

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2642 KiB  
Article
Post-Fire Habitat Heterogeneity Leads to Black Spruce–Kalmia L. Shrub Savannah Alternate State
by Azim U. Mallik
Forests 2022, 13(4), 570; https://doi.org/10.3390/f13040570 - 4 Apr 2022
Cited by 4 | Viewed by 2388
Abstract
Many nutrient-poor coarse-textured Kalmia L.–black spruce forest sites in eastern Canada turn to ericaceous heath dominated by Kalmia angustifolia L. after clearcutting and fire. While the mechanisms of post-fire forest and heath formation have been well documented, the origin of shrub savanna vegetation [...] Read more.
Many nutrient-poor coarse-textured Kalmia L.–black spruce forest sites in eastern Canada turn to ericaceous heath dominated by Kalmia angustifolia L. after clearcutting and fire. While the mechanisms of post-fire forest and heath formation have been well documented, the origin of shrub savanna vegetation has received limited attention. This study demonstrates the significance of post-fire island regeneration of black spruce in Kalmia heath to the origin of shrub savannah alternate state. The study was conducted in Three Brooks, 10 km west of Grand Falls-Windsor, Newfoundland (48°51′ N; 55°37′ E). Black spruce forest in the site was clearcut, then a wildfire burned the area, and the site was subsequently planted with black spruce. Plant species cover, black spruce growth (stem density, stem height, basal diameter, and yearly volume increment), and foliar nutrients of planted spruce and soil properties (pH, humus and Ae horizon depth, and nutrients) in tree islands were compared with adjacent Kalmia heath. Black spruce islands had significantly lower cover of Kalmia and higher stem density of black spruce compared to Kalmia heath (7100 stems/ha in islands vs. 1920 stems/ha in heath). Height, basal diameter, and yearly volume increment of black spruce were more than three times higher in spruce islands than in Kalmia heath. Foliar nutrients of black spruce growing in Kalmia heath had significantly lower N and Mg (33 and 38%, respectively) but had significantly higher Mn and Zn (46 and 33%, respectively) than in black spruce islands. Black spruce growth inhibition in Kalmia heath is attributed to soil nutrient imbalance due to Kalmia evidenced by reduced concentrations of N and Mg and increased concentrations of Al, Fe, and other inorganic ions in the foliage. These results suggest that post-fire black spruce islands in severely burned patches provide “safe sites” for spruce regeneration, whereas Kalmia heath developing in non-severe burn area inhibits spruce regeneration and creates shrub savannah community as an alternate vegetation state. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

16 pages, 1876 KiB  
Article
Antioxidant, Anti-Inflammatory, and Anti-Aging Potential of a Kalmia angustifolia Extract and Identification of Some Major Compounds
by Alexe Grenier, Jean Legault, André Pichette, Lorry Jean, Audrey Bélanger and Roxane Pouliot
Antioxidants 2021, 10(9), 1373; https://doi.org/10.3390/antiox10091373 - 28 Aug 2021
Cited by 17 | Viewed by 4564
Abstract
Skin aging is the most visible element of the aging process, giving rise to a major concern for many people. Plants from the Ericaceae family generally have antioxidant and anti-inflammatory properties, making them potential anti-aging active ingredients. This study aimed to evaluate the [...] Read more.
Skin aging is the most visible element of the aging process, giving rise to a major concern for many people. Plants from the Ericaceae family generally have antioxidant and anti-inflammatory properties, making them potential anti-aging active ingredients. This study aimed to evaluate the safety and anti-aging efficacy of a Kalmia angustifolia extract using reconstructed skin substitutes. The safety evaluation was performed using a 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay, while the efficacy was determined by assessing antioxidant and anti-inflammatory activity and analyzing skin substitutes reconstructed according to the self-assembly method by histology and immunofluorescence staining (elastin, collagen-1, collagen-3, aquaporin-3). The cell viability assay established the safety of the extract at a concentration up to 200 μg/mL. The Oxygen Radical Absorbance Capacity (ORAC) assay and a cell-based assay using 2’,7’-dichlorofluorescein-diacetate (DCFH-DA) revealed a strong antioxidant activity with an ORAC value of 16 µmol Trolox Equivalent/mg and a half-maximal inhibitory concentration (IC50) of 0.37 ± 0.02 μg/mL, while an interesting anti-inflammatory activity was found in the inhibition of NO production, with an inhibition percentage of NO production of 49 ± 2% at 80 µg/mL. The isolation and characterization of the extract allowed the identification of compounds that could be responsible for these biological activities, with two of them being identified for the first time in K. angustifolia: avicularin and epicatechin-(2β-O-7, 4β-6)-ent-epicatechin. Histological analyses of skin substitutes treated with the extract showed an increase in dermal thickness compared with the controls. K. angustifolia extract enhanced the expression of elastin and collagen-1, which are usually decreased with skin aging. These results suggest that K. angustifolia has promising antioxidant efficacy and anti-aging potential. Full article
(This article belongs to the Special Issue Antioxidant and Biological Properties of Plant Extracts)
Show Figures

Graphical abstract

19 pages, 3890 KiB  
Article
Foliar Spectra and Traits of Bog Plants across Nitrogen Deposition Gradients
by Alizée Girard, Anna K. Schweiger, Alexis Carteron, Margaret Kalacska and Etienne Laliberté
Remote Sens. 2020, 12(15), 2448; https://doi.org/10.3390/rs12152448 - 30 Jul 2020
Cited by 18 | Viewed by 5075
Abstract
Bogs, as nutrient-poor ecosystems, are particularly sensitive to atmospheric nitrogen (N) deposition. Nitrogen deposition alters bog plant community composition and can limit their ability to sequester carbon (C). Spectroscopy is a promising approach for studying how N deposition affects bogs because of its [...] Read more.
Bogs, as nutrient-poor ecosystems, are particularly sensitive to atmospheric nitrogen (N) deposition. Nitrogen deposition alters bog plant community composition and can limit their ability to sequester carbon (C). Spectroscopy is a promising approach for studying how N deposition affects bogs because of its ability to remotely determine changes in plant species composition in the long term as well as shorter-term changes in foliar chemistry. However, there is limited knowledge on the extent to which bog plants differ in their foliar spectral properties, how N deposition might affect those properties, and whether subtle inter- or intraspecific changes in foliar traits can be spectrally detected. The objective of the study was to assess the effect of N deposition on foliar traits and spectra. Using an integrating sphere fitted to a field spectrometer, we measured spectral properties of leaves from the four most common vascular plant species (Chamaedaphne calyculata, Kalmia angustifolia, Rhododendron groenlandicum and Eriophorum vaginatum) in three bogs in southern Québec and Ontario, Canada, exposed to different atmospheric N deposition levels, including one subjected to a 18-year N fertilization experiment. We also measured chemical and morphological properties of those leaves. We found detectable intraspecific changes in leaf structural traits and chemistry (namely chlorophyll b and N concentrations) with increasing N deposition and identified spectral regions that helped distinguish the site-specific populations within each species. Most of the variation in leaf spectral, chemical, and morphological properties was among species. As such, species had distinct spectral foliar signatures, allowing us to identify them with high accuracy with partial least squares discriminant analyses (PLSDA). Predictions of foliar traits from spectra using partial least squares regression (PLSR) were generally accurate, particularly for the concentrations of N and C, soluble C, leaf water, and dry matter content (<10% RMSEP). However, these multi-species PLSR models were not accurate within species, where the range of values was narrow. To improve the detection of short-term intraspecific changes in functional traits, models should be trained with more species-specific data. Our field study showing clear differences in foliar spectra and traits among species, and some within-species differences due to N deposition, suggest that spectroscopy is a promising approach for assessing long-term vegetation changes in bogs subject to atmospheric pollution. Full article
(This article belongs to the Special Issue Hyperspectral Remote Sensing for Biodiversity Mapping)
Show Figures

Graphical abstract

25 pages, 3736 KiB  
Article
Fire Behaviour Observation in Shrublands in Nova Scotia, Canada and Assessment of Aids to Operational Fire Behaviour Prediction
by Anne-Claude Pepin and Mike Wotton
Fire 2020, 3(3), 34; https://doi.org/10.3390/fire3030034 - 26 Jul 2020
Cited by 6 | Viewed by 4843
Abstract
Parks Canada, in collaboration with Nova Scotia Lands and Forests and Natural Resources Canada, documented shrub fire behaviour in multiple plots burned over two periods: a spring period in June 2014 and a summer period in July 2017. The study area, located within [...] Read more.
Parks Canada, in collaboration with Nova Scotia Lands and Forests and Natural Resources Canada, documented shrub fire behaviour in multiple plots burned over two periods: a spring period in June 2014 and a summer period in July 2017. The study area, located within Cape Breton Highlands National Park, comprised fifteen burn units (20 m by 20 m in size). Each unit was ignited by line ignition and burned under a wide range of conditions. Pre-burn fuel characteristics were measured across the site and used to estimate pre-fire fuel load and post-fire fuel consumption. This fuel complex was similar to many flammable shrub types around the world, results show that this shrub fuel type had high elevated fuel loads (3.17 ± 0.84 kg/m2) composed of exposed live and dead stunted black spruce as well as ericaceous shrubs, mainly Kalmia angustifolia (evergreen) and Rhodora canadensis (deciduous). Data show that the dead moisture content in this fuel complex is systematically lower than expected from the traditional relationship between FFMC and moisture content in the Canadian Fire Weather Index System but was statistically correlated with Equilibrium Moisture Content. A significant inverse relationship between bulk density and fire rate of spread was observed as well as a clear seasonal effect between the spring burns and the summer burns, which is likely attributable to the increase in bulk density in the summer. Unlike most shrub research, wind and dead moisture content did not have a statistically significant association with fire spread rates. However, we believe this to be due to noise in wind data and small dataset. Rate of spread as high as 14 m/min and flame lengths over 4 m were recorded under Initial Spread Index values of 6.4 and relative humidity of 54%. A comparison with a number of well-known shrubland spread rate prediction models was made. An aid to operational fire prediction behaviour is proposed, using a fuel type from the Canadian Fire Prediction System (O-1b) and a modified estimate of fuel moisture of the elevated fuel in the fuel complex. Full article
(This article belongs to the Special Issue Boreal Fire-Fuels Interactions)
Show Figures

Graphical abstract

19 pages, 1450 KiB  
Review
Managing Understory Vegetation for Maintaining Productivity in Black Spruce Forests: A Synthesis within a Multi-Scale Research Model
by Nelson Thiffault, Nicole J. Fenton, Alison D. Munson, François Hébert, Richard A. Fournier, Osvaldo Valeria, Robert L. Bradley, Yves Bergeron, Pierre Grondin, David Paré and Gilles Joanisse
Forests 2013, 4(3), 613-631; https://doi.org/10.3390/f4030613 - 23 Jul 2013
Cited by 36 | Viewed by 10596
Abstract
Sustainable management of boreal ecosystems involves the establishment of vigorous tree regeneration after harvest. However, two groups of understory plants influence regeneration success in eastern boreal Canada. Ericaceous shrubs are recognized to rapidly dominate susceptible boreal sites after harvest. Such dominance reduces recruitment [...] Read more.
Sustainable management of boreal ecosystems involves the establishment of vigorous tree regeneration after harvest. However, two groups of understory plants influence regeneration success in eastern boreal Canada. Ericaceous shrubs are recognized to rapidly dominate susceptible boreal sites after harvest. Such dominance reduces recruitment and causes stagnant conifer growth, lasting decades on some sites. Additionally, peat accumulation due to Sphagnum growth after harvest forces the roots of regenerating conifers out of the relatively nutrient rich and warm mineral soil into the relatively nutrient poor and cool organic layer, with drastic effects on growth. Shifts from once productive black spruce forests to ericaceous heaths or paludified forests affect forest productivity and biodiversity. Under natural disturbance dynamics, fires severe enough to substantially reduce the organic layer thickness and affect ground cover species are required to establish a productive regeneration layer on such sites. We succinctly review how understory vegetation influences black spruce ecosystem dynamics in eastern boreal Canada, and present a multi-scale research model to understand, limit the loss and restore productive and diverse ecosystems in this region. Our model integrates knowledge of plant-level mechanisms in the development of silvicultural tools to sustain productivity. Fundamental knowledge is integrated at stand, landscape, regional and provincial levels to understand the distribution and dynamics of ericaceous shrubs and paludification processes and to support tactical and strategic forest management. The model can be adapted and applied to other natural resource management problems, in other biomes. Full article
(This article belongs to the Special Issue Forest Restoration and Regeneration)
Show Figures

Figure 1

Back to TopTop