Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = KVEIK yeast

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1716 KiB  
Article
Co-Fermentations of Kveik with Non-Conventional Yeasts for Targeted Aroma Modulation
by Kevin Dippel, Katrin Matti, Judith Muno-Bender, Florian Michling, Silvia Brezina, Heike Semmler, Doris Rauhut and Jürgen Wendland
Microorganisms 2022, 10(10), 1922; https://doi.org/10.3390/microorganisms10101922 - 27 Sep 2022
Cited by 8 | Viewed by 2844
Abstract
Kveik are consortia of yeast used for farmhouse ale production in Western Norway. Yeast strains derived from these mixtures are known, for example, for their high fermentation rate, thermotolerance, lack of phenolic off flavor production (POF-) and strong flocculation phenotype. In this study, [...] Read more.
Kveik are consortia of yeast used for farmhouse ale production in Western Norway. Yeast strains derived from these mixtures are known, for example, for their high fermentation rate, thermotolerance, lack of phenolic off flavor production (POF-) and strong flocculation phenotype. In this study, we used five single cell yeast isolates from different Kveik yeasts, analyzed their fermentation and flavor production, and compared it with a typical yeast used in distilleries using 20 °C and 28 °C as the fermentation temperatures. One of the isolates, Kveik No 3, showed an impairment of maltotriose utilization and thus a reduced ethanol yield. Kveik fermentations for spirit production often harbor bacteria for flavor enrichment. We sought to improve Kveik fermentations with non-conventional yeasts (NCY). To this end we co-fermented Kveik isolates with Hanseniaspora uvarum, Meyerozyma guilliermondii and Pichia kudriavzevii using 5:1 ratios (Kveik vs. NCY) at 20 °C. The combinations of Kveik No 1 with P. kudriavzevii and Kveik No 1 with Hanseniaspora uvarum showed substantially increased amounts of specific volatile aroma compounds that were previously identified in the NCYs. Our results indicate that Kveik isolates appear to be suitable for co-fermentations with certain NCY to enhance beer or spirit fermentations, increasing the potential of these yeasts for beverage productions. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

9 pages, 706 KiB  
Article
Pseudo-Lager—Brewing with Lutra® Kveik Yeast
by Kristina Habschied, Vinko Krstanović, Goran Šarić, Ivana Ćosić and Krešimir Mastanjević
Fermentation 2022, 8(8), 410; https://doi.org/10.3390/fermentation8080410 - 19 Aug 2022
Cited by 5 | Viewed by 7562
Abstract
Brewers commonly produce ales since the ale yeast is more resilient, ferments quicker and requires higher temperatures, which are easier to ensure as opposed to lager and pilsner, which require lower temperatures and longer lagering time. However, Kveik yeasts are also resilient, ferment [...] Read more.
Brewers commonly produce ales since the ale yeast is more resilient, ferments quicker and requires higher temperatures, which are easier to ensure as opposed to lager and pilsner, which require lower temperatures and longer lagering time. However, Kveik yeasts are also resilient, ferment at fairly high temperatures (up to 35 °C), and can provide light, lager-like beers, but more quickly, in shorter lagering time, and with reduced off flavors. Diacetyl rest is not needed. The intention of this paper was to assess the possibility of producing pseudo-lager by using Lutra® Kveik. A batch (120 L) was divided into six fermenting vessels and inoculated with Lutra® yeast. To test its possibility to result in lager-like beer at higher temperature, we conducted fermentation at two temperatures (21 and 35 °C). Fermentation subjected to 21 °C lasted for 9 days, while at 35 °C, fermentation was finished in 2 days. After fermentation, both beers were stored in cold temperatures (4 °C) and then kegged, carbonized, and analyzed (pH, ethanol, polyphenols, color, bitterness, clarity). Alongside the sensory evaluation, a GC-MS analysis was also conducted in order to determine if there are any difference between the samples. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
Show Figures

Figure 1

18 pages, 287 KiB  
Article
Characteristics of New England India Pale Ale Beer Produced with the Use of Norwegian KVEIK Yeast
by Joanna Kawa-Rygielska, Kinga Adamenko, Witold Pietrzak, Justyna Paszkot, Adam Głowacki and Alan Gasiński
Molecules 2022, 27(7), 2291; https://doi.org/10.3390/molecules27072291 - 31 Mar 2022
Cited by 9 | Viewed by 3437
Abstract
The aim of this research was to determine the potential of four unconventional Norwegian yeasts of the KVEIK type to produce NEIPA beer. The influence of yeast strains on fermentation process, physicochemical properties, antioxidant potential, volatile compounds, and sensory properties was investigated. The [...] Read more.
The aim of this research was to determine the potential of four unconventional Norwegian yeasts of the KVEIK type to produce NEIPA beer. The influence of yeast strains on fermentation process, physicochemical properties, antioxidant potential, volatile compounds, and sensory properties was investigated. The KVEIK-fermented beer did not differ in terms of physicochemical parameters from the beer produced with the commercial variants of US-05 yeast. The yeast strain influenced the sensory quality (taste and aroma) of the beers, with KVEIK-fermented beer rating significantly higher. The antioxidant activity of the tested beers also significantly depended on the yeast strain applied. The beers fermented with KVEIK had a significantly higher antioxidant potential (ABTS•+) than those fermented with US-05. The strongest antioxidant activity was found in the beer brewed with the Lida KVEIK yeast. The use of KVEIK to produce NEIPA beer allowed enrichment of the finished products with volatile compounds isobutanol, 2-pentanol, 3-methylobutanol, ethyl octanoate, and ethyl decanoate. Full article
16 pages, 425 KiB  
Article
The Potential of Traditional Norwegian KVEIK Yeast for Brewing Novel Beer on the Example of Foreign Extra Stout
by Joanna Kawa-Rygielska, Kinga Adamenko, Witold Pietrzak, Justyna Paszkot, Adam Głowacki, Alan Gasiński and Przemysław Leszczyński
Biomolecules 2021, 11(12), 1778; https://doi.org/10.3390/biom11121778 - 26 Nov 2021
Cited by 13 | Viewed by 3563
Abstract
The development of craft brewing has spurred huge interest in unusual and traditional technologies and ingredients allowing the production of beers that would fulfil consumers’ growing demands. In this study, we evaluated the brewing performance of traditional Norwegian KVEIK yeast during the production [...] Read more.
The development of craft brewing has spurred huge interest in unusual and traditional technologies and ingredients allowing the production of beers that would fulfil consumers’ growing demands. In this study, we evaluated the brewing performance of traditional Norwegian KVEIK yeast during the production of Foreign Extra Stout beer. The content of alcohol of the KVEIK-fermented beer was 5.11–5.58% v/v, the extract content was 5.05–6.66% w/w, and the pH value was 4.53–4.83. The KVEIK yeast was able to completely consume maltose and maltotriose. The mean concentration of glycerol in KVEIK-fermented beers was higher than in the control sample (1.51 g/L vs. 1.12 g/L, respectively). The use of KVEIK-type yeast can offer a viable method for increasing the concentration of phenolic compounds in beer and for boosting its antioxidative potential. The beers produced with KVEIK-type yeast had a total phenol content of 446.9–598.7 mg GAE/L, exhibited antioxidative potential of 0.63–1.08 mM TE/L in the DPPH assay and 3.85–5.16 mM TE/L in the ABTS•+ assay, and showed a ferric ion reducing capacity (FRAP) of 3.54–4.14 mM TE/L. The KVEIK-fermented bears contained various levels of volatile compounds (lower or higher depending on the yeast strain) and especially of higher alcohols, such as 3-metylobutanol, 2-metylobutanol, and 1-propanol, or ethyl esters, such as ethyl acetate or decanoate, compared to the control beers. In addition, they featured a richer fruity aroma (apricot, dried fruit, apples) than the control beers fermented with a commercial US-05 strain. Full article
Show Figures

Figure 1

15 pages, 2283 KiB  
Article
Characterization of the Fermentation and Sensory Profiles of Novel Yeast-Fermented Acid Whey Beverages
by Siyi (Rossie) Luo, Timothy A. DeMarsh, Dana deRiancho, Alina Stelick and Samuel D. Alcaine
Foods 2021, 10(6), 1204; https://doi.org/10.3390/foods10061204 - 27 May 2021
Cited by 21 | Viewed by 5915
Abstract
Acid whey is a by-product generated in large quantities during dairy processing, and is characterized by its low pH and high chemical oxygen demand. Due to a lack of reliable disposal pathways, acid whey currently presents a major sustainability challenge to the dairy [...] Read more.
Acid whey is a by-product generated in large quantities during dairy processing, and is characterized by its low pH and high chemical oxygen demand. Due to a lack of reliable disposal pathways, acid whey currently presents a major sustainability challenge to the dairy industry. The study presented in this paper proposes a solution to this issue by transforming yogurt acid whey (YAW) into potentially palatable and marketable beverages through yeast fermentation. In this study, five prototypes were developed and fermented by Kluyveromyces marxianus, Brettanomyces bruxellensis, Brettanomyces claussenii, Saccharomyces cerevisiae (strain: Hornindal kveik), and IOC Be Fruits (IOCBF) S. cerevisiae, respectively. Their fermentation profiles were characterized by changes in density, pH, cell count, and concentrations of ethanol and organic acids. The prototypes were also evaluated on 26 sensory attributes, which were generated through a training session with 14 participants. While S. cerevisiae (IOCBF) underwent the fastest fermentation (8 days) and B. claussenii the slowest (21 days), K. marxianus and S. cerevisiae (Hornindal kveik) showed similar fermentation rates, finishing on day 20. The change in pH of the fermentate was similar for all five strains (from around 4.45 to between 4.25 and 4.31). Cell counts remained stable throughout the fermentation for all five strains (at around 6 log colony-forming units (CFU)/mL) except in the case of S. cerevisiae (Hornindal kveik), which ultimately decreased by 1.63 log CFU/mL. B. bruxellensis was the only strain unable to utilize all of the sugars in the substrate, with residual galactose remaining after fermentation. While both S. cerevisiae (IOCBF)- and B. claussenii-fermented samples were characterized by a fruity apple aroma, the former also had an aroma characteristic of lactic acid, dairy products, bakeries and yeast. A chemical odor characteristic of petroleum, gasoline or solvents, was perceived in samples fermented by B. bruxellensis and K. marxianus. An aroma of poorly aged or rancid cheese or milk also resulted from B. bruxellensis fermentation. In terms of appearance and mouthfeel, the S. cerevisiae (IOCBF)-fermented sample was rated the cloudiest, with the heaviest body. This study provides a toolkit for product development in a potential dairy-based category of fermented alcoholic beverages, which can increase revenue for the dairy industry by upcycling the common waste product YAW. Full article
(This article belongs to the Section Dairy)
Show Figures

Figure 1

Back to TopTop