Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = KISMET

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5918 KiB  
Article
Kismet/CHD7/CHD8 and Amyloid Precursor Protein-like Regulate Synaptic Levels of Rab11 at the Drosophila Neuromuscular Junction
by Emily L. Hendricks, Nicole Linskey, Ireland R. Smith and Faith L. W. Liebl
Int. J. Mol. Sci. 2024, 25(15), 8429; https://doi.org/10.3390/ijms25158429 - 1 Aug 2024
Viewed by 2008
Abstract
The transmembrane protein β-amyloid precursor protein (APP) is central to the pathophysiology of Alzheimer’s disease (AD). The β-amyloid hypothesis posits that aberrant processing of APP forms neurotoxic β-amyloid aggregates, which lead to the cognitive impairments observed in AD. Although numerous additional factors contribute [...] Read more.
The transmembrane protein β-amyloid precursor protein (APP) is central to the pathophysiology of Alzheimer’s disease (AD). The β-amyloid hypothesis posits that aberrant processing of APP forms neurotoxic β-amyloid aggregates, which lead to the cognitive impairments observed in AD. Although numerous additional factors contribute to AD, there is a need to better understand the synaptic function of APP. We have found that Drosophila APP-like (APPL) has both shared and non-shared roles at the synapse with Kismet (Kis), a chromatin helicase binding domain (CHD) protein. Kis is the homolog of CHD7 and CHD8, both of which are implicated in neurodevelopmental disorders including CHARGE Syndrome and autism spectrum disorders, respectively. Loss of function mutations in kis and animals expressing human APP and BACE in their central nervous system show reductions in the glutamate receptor subunit, GluRIIC, the GTPase Rab11, and the bone morphogenetic protein (BMP), pMad, at the Drosophila larval neuromuscular junction (NMJ). Similarly, processes like endocytosis, larval locomotion, and neurotransmission are deficient in these animals. Our pharmacological and epistasis experiments indicate that there is a functional relationship between Kis and APPL, but Kis does not regulate appl expression at the larval NMJ. Instead, Kis likely influences the synaptic localization of APPL, possibly by promoting rab11 transcription. These data identify a potential mechanistic connection between chromatin remodeling proteins and aberrant synaptic function in AD. Full article
(This article belongs to the Special Issue Drosophila: A Model System for Human Disease Research)
Show Figures

Figure 1

19 pages, 4431 KiB  
Article
The CHD Protein Kismet Restricts the Synaptic Localization of Cell Adhesion Molecules at the Drosophila Neuromuscular Junction
by Ireland R. Smith, Emily L. Hendricks, Nina K. Latcheva, Daniel R. Marenda and Faith L. W. Liebl
Int. J. Mol. Sci. 2024, 25(5), 3074; https://doi.org/10.3390/ijms25053074 - 6 Mar 2024
Cited by 2 | Viewed by 2339
Abstract
The appropriate expression and localization of cell surface cell adhesion molecules must be tightly regulated for optimal synaptic growth and function. How neuronal plasma membrane proteins, including cell adhesion molecules, cycle between early endosomes and the plasma membrane is poorly understood. Here we [...] Read more.
The appropriate expression and localization of cell surface cell adhesion molecules must be tightly regulated for optimal synaptic growth and function. How neuronal plasma membrane proteins, including cell adhesion molecules, cycle between early endosomes and the plasma membrane is poorly understood. Here we show that the Drosophila homolog of the chromatin remodeling enzymes CHD7 and CHD8, Kismet, represses the synaptic levels of several cell adhesion molecules. Neuroligins 1 and 3 and the integrins αPS2 and βPS are increased at kismet mutant synapses but Kismet only directly regulates transcription of neuroligin 2. Kismet may therefore regulate synaptic CAMs indirectly by activating transcription of gene products that promote intracellular vesicle trafficking including endophilin B (endoB) and/or rab11. Knock down of EndoB in all tissues or neurons increases synaptic FasII while knock down of EndoB in kis mutants does not produce an additive increase in FasII. In contrast, neuronal expression of Rab11, which is deficient in kis mutants, leads to a further increase in synaptic FasII in kis mutants. These data support the hypothesis that Kis influences the synaptic localization of FasII by promoting intracellular vesicle trafficking through the early endosome. Full article
Show Figures

Figure 1

22 pages, 2158 KiB  
Article
Broad-Spectrum, Potent, and Durable Ceria Nanoparticles Inactivate RNA Virus Infectivity by Targeting Virion Surfaces and Disrupting Virus–Receptor Interactions
by Candace R. Fox, Kritika Kedarinath, Craig J. Neal, Jeremy Sheiber, Elayaraja Kolanthai, Udit Kumar, Christina Drake, Sudipta Seal and Griffith D. Parks
Molecules 2023, 28(13), 5190; https://doi.org/10.3390/molecules28135190 - 4 Jul 2023
Cited by 5 | Viewed by 2758
Abstract
There is intense interest in developing long-lasting, potent, and broad-spectrum antiviral disinfectants. Ceria nanoparticles (CNPs) can undergo surface redox reactions (Ce3+ ↔ Ce4+) to generate ROS without requiring an external driving force. Here, we tested the mechanism behind our prior [...] Read more.
There is intense interest in developing long-lasting, potent, and broad-spectrum antiviral disinfectants. Ceria nanoparticles (CNPs) can undergo surface redox reactions (Ce3+ ↔ Ce4+) to generate ROS without requiring an external driving force. Here, we tested the mechanism behind our prior finding of potent inactivation of enveloped and non-enveloped RNA viruses by silver-modified CNPs, AgCNP1 and AgCNP2. Treatment of human respiratory viruses, coronavirus OC43 and parainfluenza virus type 5 (PIV5) with AgCNP1 and 2, respectively, prevented virus interactions with host cell receptors and resulted in virion aggregation. Rhinovirus 14 (RV14) mutants were selected to be resistant to inactivation by AgCNP2. Sequence analysis of the resistant virus genomes predicted two amino acid changes in surface-located residues D91V and F177L within capsid protein VP1. Consistent with the regenerative properties of CNPs, surface-applied AgCNP1 and 2 inactivated a wide range of structurally diverse viruses, including enveloped (OC43, SARS-CoV-2, and PIV5) and non-enveloped RNA viruses (RV14 and feline calicivirus; FCV). Remarkably, a single application of AgCNP1 and 2 potently inactivated up to four sequential rounds of virus challenge. Our results show broad-spectrum and long-lasting anti-viral activity of AgCNP nanoparticles, due to targeting of viral surface proteins to disrupt interactions with cellular receptors. Full article
(This article belongs to the Special Issue Recent Advances in Antiviral Drugs Discovery)
Show Figures

Figure 1

21 pages, 4346 KiB  
Article
Mathematical Modelling of Glioblastomas Invasion within the Brain: A 3D Multi-Scale Moving-Boundary Approach
by Szabolcs Suveges, Kismet Hossain-Ibrahim, J. Douglas Steele, Raluca Eftimie and Dumitru Trucu
Mathematics 2021, 9(18), 2214; https://doi.org/10.3390/math9182214 - 9 Sep 2021
Cited by 11 | Viewed by 3526
Abstract
Brain-related experiments are limited by nature, and so biological insights are often limited or absent. This is particularly problematic in the context of brain cancers, which have very poor survival rates. To generate and test new biological hypotheses, researchers have started using mathematical [...] Read more.
Brain-related experiments are limited by nature, and so biological insights are often limited or absent. This is particularly problematic in the context of brain cancers, which have very poor survival rates. To generate and test new biological hypotheses, researchers have started using mathematical models that can simulate tumour evolution. However, most of these models focus on single-scale 2D cell dynamics, and cannot capture the complex multi-scale tumour invasion patterns in 3D brains. A particular role in these invasion patterns is likely played by the distribution of micro-fibres. To investigate the explicit role of brain micro-fibres in 3D invading tumours, in this study, we extended a previously introduced 2D multi-scale moving-boundary framework to take into account 3D multi-scale tumour dynamics. T1 weighted and DTI scans are used as initial conditions for our model, and to parametrise the diffusion tensor. Numerical results show that including an anisotropic diffusion term may lead in some cases (for specific micro-fibre distributions) to significant changes in tumour morphology, while in other cases, it has no effect. This may be caused by the underlying brain structure and its microscopic fibre representation, which seems to influence cancer-invasion patterns through the underlying cell-adhesion process that overshadows the diffusion process. Full article
(This article belongs to the Special Issue Mathematical Models for Cell Migration and Spread)
Show Figures

Figure 1

13 pages, 1700 KiB  
Article
Drosophila O-GlcNAcase Mutants Reveal an Expanded Glycoproteome and Novel Growth and Longevity Phenotypes
by Ilhan Akan, Adnan Halim, Sergey Y. Vakhrushev, Henrik Clausen and John A. Hanover
Cells 2021, 10(5), 1026; https://doi.org/10.3390/cells10051026 - 27 Apr 2021
Cited by 7 | Viewed by 3838
Abstract
The reversible posttranslational O-GlcNAc modification of serine or threonine residues of intracellular proteins is involved in many cellular events from signaling cascades to epigenetic and transcriptional regulation. O-GlcNAcylation is a conserved nutrient-dependent process involving two enzymes, with O-GlcNAc transferase (OGT) [...] Read more.
The reversible posttranslational O-GlcNAc modification of serine or threonine residues of intracellular proteins is involved in many cellular events from signaling cascades to epigenetic and transcriptional regulation. O-GlcNAcylation is a conserved nutrient-dependent process involving two enzymes, with O-GlcNAc transferase (OGT) adding O-GlcNAc and with O-GlcNAcase (OGA) removing it in a manner that’s protein- and context-dependent. O-GlcNAcylation is essential for epigenetic regulation of gene expression through its action on Polycomb and Trithorax and COMPASS complexes. However, the important role of O-GlcNAc in adult life and health span has been largely unexplored, mainly due the lack of available model systems. Cataloging the O-GlcNAc proteome has proven useful in understanding the biology of this modification in vivo. In this study, we leveraged a recently developed oga knockout fly mutant to identify the O-GlcNAcylated proteins in adult Drosophilamelanogaster. The adult O-GlcNAc proteome revealed many proteins related to cell and organismal growth, development, differentiation, and epigenetics. We identified many O-GlcNAcylated proteins that play a role in increased growth and decreased longevity, including HCF, SIN3A, LOLA, KISMET, ATX2, SHOT, and FOXO. Interestingly, oga mutant flies are larger and have a shorter life span compared to wild type flies, suggesting increased O-GlcNAc results in increased growth. Our results suggest that O-GlcNAc alters the function of many proteins related to transcription, epigenetic modification and signaling pathways that regulate growth rate and longevity. Therefore, our findings highlight the importance of O-GlcNAc in growth and life span in adult Drosophila. Full article
(This article belongs to the Special Issue Glycosylation and Deglycosylation in Animal Development)
Show Figures

Figure 1

15 pages, 8542 KiB  
Article
Change of Mechanical Properties of Powder Recyclate Reinforced Polyolefin Based on Gamma Radiation
by Yilmaz Kismet
Polymers 2017, 9(9), 384; https://doi.org/10.3390/polym9090384 - 23 Aug 2017
Cited by 14 | Viewed by 5466
Abstract
In this study, the changes observed in the mechanical properties of standard test specimens that were produced with powder coating reinforced polyolefin (polyethylene and polypropylene) due to gamma radiation were examined. Matrix material of these specimens included low density polyethylene and polypropylene and [...] Read more.
In this study, the changes observed in the mechanical properties of standard test specimens that were produced with powder coating reinforced polyolefin (polyethylene and polypropylene) due to gamma radiation were examined. Matrix material of these specimens included low density polyethylene and polypropylene and 5%, 10%, 20%, 30%, 40% and 50% electrostatic powder coating waste by weight, and the samples were exposed to 44 kGry gamma-radiation for twenty four hours. Mechanical tests applied to the specimens after radiation demonstrated that the physical bonding mechanism between matrix material and filler material was reinforced. In the mechanical tests, tensile strength, three-point bending strength, and Izod impact strength of the samples were investigated and the results were compared to the results obtained in the mechanical tests when they were not radiated. Thus, the effects of gamma radiation on the mechanical properties of the filler material, and the electrostatic powder coating reinforced polyethylene and polypropylene were determined. Furthermore, section images of the radiated samples were taken with a scanning electron microscope and compared to the section images of irradiated samples to observe the physical bonding mechanism. Full article
Show Figures

Graphical abstract

Back to TopTop