Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (127)

Search Parameters:
Keywords = Joule heating analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 6682 KB  
Article
Study on Live Temperature Rise and Electrical Characteristics of Composite Insulators with Internal Conductive Defects
by Jianghai Geng, Zhongfeng He, Yuming Zhang, Hao Zhang, Zheng Zhong and Ping Wang
Coatings 2025, 15(8), 945; https://doi.org/10.3390/coatings15080945 - 13 Aug 2025
Viewed by 355
Abstract
Internal conductive defects in composite insulators severely degrade their insulation performance and are considered concealed defects, posing a significant threat to the safe and stable operation of the power grid. Focusing on this issue, this study develops an electro-thermal multi-physical field simulation model [...] Read more.
Internal conductive defects in composite insulators severely degrade their insulation performance and are considered concealed defects, posing a significant threat to the safe and stable operation of the power grid. Focusing on this issue, this study develops an electro-thermal multi-physical field simulation model and uses finite element analysis to investigate the electric field distribution and temperature rise characteristics. Composite insulator specimens with varying defect lengths were fabricated using the electrical erosion test. Charged tests were then conducted on these defective specimens, as well as on field-decommissioned specimens. The impact of internal conductive defects on the infrared, ultraviolet, and electric field distribution characteristics of composite insulators during operation was analyzed. The results indicate that the surface electric field of composite insulators with internal conductive defects becomes highly concentrated along the defect path, with a significant increase in electric field strength at the defect’s end. The maximum field strength migrates toward the grounded end as the defect length increases. Conductive defects lead to partial discharge and abnormal temperature rise at the defect’s end and the bending points of the composite insulator. The temperature rise predominantly manifests as “bar-form temperature rise,” with temperature rise regions correlating well with discharge areas. Conductive defects accelerate the decay-like degradation process of composite insulators through a positive feedback loop formed by the coupling of electric field distortion, Joule heating, material degradation, and discharge activity. This study identifies the key characteristics of electrical and temperature rise changes in insulators with conductive defects, reveals the deterioration evolution process and degradation mechanisms of insulators, and provides effective criteria for on-site diagnosis of conductive defects. Full article
Show Figures

Figure 1

19 pages, 4765 KB  
Article
Dehydration-Driven Changes in Solid Polymer Electrolytes: Implications for Titanium Anodizing Efficiency
by Andrea Valencia-Cadena, Maria Belén García-Blanco, Pablo Santamaría and Joan Josep Roa
Materials 2025, 18(15), 3645; https://doi.org/10.3390/ma18153645 - 3 Aug 2025
Viewed by 337
Abstract
This study investigates the thermal stability and microstructural evolution of the solid electrolyte medium used in DLyte® dry electropolishing and dry anodizing processes. Samples were thermally aged between 30 °C and 45 °C to simulate Joule heating during industrial operation. Visual and [...] Read more.
This study investigates the thermal stability and microstructural evolution of the solid electrolyte medium used in DLyte® dry electropolishing and dry anodizing processes. Samples were thermally aged between 30 °C and 45 °C to simulate Joule heating during industrial operation. Visual and SEM analyses revealed shape deformation and microcrack formation at temperatures above 40 °C, potentially reducing particle packing efficiency and electrolyte performance. Particle size distribution shifted from bimodal to trimodal upon aging, with an overall size reduction of up to 39.5% due to dehydration effects, impacting ionic transport properties. Weight-loss measurements indicated a diffusion-limited dehydration mechanism, stabilizing at 15–16% mass loss. Fourier transform infrared analysis confirmed water removal while maintaining the essential sulfonic acid groups responsible for ionic conductivity. In dry anodizing tests on titanium, aged electrolytes enhanced process efficiency, producing TiO2 films with improved optical properties—color and brightness—while preserving thickness and uniformity (~70 nm). The results highlight the need to carefully control thermal exposure to maintain electrolyte integrity and ensure consistent process performance. Full article
(This article belongs to the Special Issue Novel Materials and Techniques for Dental Implants)
Show Figures

Figure 1

10 pages, 609 KB  
Communication
Scalable Synthesis of 2D TiNCl via Flash Joule Heating
by Gabriel A. Silvestrin, Marco Andreoli, Edson P. Soares, Elita F. Urano de Carvalho, Almir Oliveira Neto and Rodrigo Fernando Brambilla de Souza
Physchem 2025, 5(3), 30; https://doi.org/10.3390/physchem5030030 - 28 Jul 2025
Viewed by 401
Abstract
A scalable synthesis of two-dimensional titanium nitride chloride (TiNCl) via flash Joule heating (FJH) using titanium tetrachloride (TiCl4) precursor has been developed. This single-step method overcomes traditional synthesis challenges, including high energy consumption, multi-step procedures, and hazardous reagent requirements. The structural [...] Read more.
A scalable synthesis of two-dimensional titanium nitride chloride (TiNCl) via flash Joule heating (FJH) using titanium tetrachloride (TiCl4) precursor has been developed. This single-step method overcomes traditional synthesis challenges, including high energy consumption, multi-step procedures, and hazardous reagent requirements. The structural and chemical properties of the synthesized TiNCl were characterized through multiple analytical techniques. X-ray diffraction (XRD) patterns confirmed the presence of TiNCl phase, while Raman spectroscopy data showed no detectable oxide impurities. Fourier transform infrared spectroscopy (FTIR) analysis revealed characteristic Ti–N stretching vibrations, further confirming successful titanium nitride synthesis. Transmission electron microscopy (TEM) imaging revealed thin, plate-like nanostructures with high electron transparency. These analyses confirmed the formation of highly crystalline TiNCl flakes with nanoscale dimensions and minimal structural defects. The material exhibits excellent structural integrity and phase purity, demonstrating potential for applications in photocatalysis, electronics, and energy storage. This work establishes FJH as a sustainable and scalable approach for producing MXenes with controlled properties, facilitating their integration into emerging technologies. Unlike conventional methods, FJH enables rapid, energy-efficient synthesis while maintaining material quality, providing a viable route for industrial-scale production of two-dimensional materials. Full article
(This article belongs to the Section Nanoscience)
Show Figures

Figure 1

14 pages, 2967 KB  
Article
Gradient Joule Heating Curing Performance of Steel-Fiber-Reinforced High-Performance Concrete in Severe Cold Environments: A Preliminary Attempt for Deep-Cold Concrete Construction
by Xinyu Liu, Jinghui Wang, Zheng Zhou, Lei Zhang and Qiang Fu
Materials 2025, 18(12), 2909; https://doi.org/10.3390/ma18122909 - 19 Jun 2025
Viewed by 354
Abstract
Winter concrete construction in cold regions faces significant challenges due to extreme subzero temperatures, and the harsh environment presents new requirement for cement-based materials to resist this hostile external condition. To address this gap, this study proposes gradient Joule heating (GJH) curing for [...] Read more.
Winter concrete construction in cold regions faces significant challenges due to extreme subzero temperatures, and the harsh environment presents new requirement for cement-based materials to resist this hostile external condition. To address this gap, this study proposes gradient Joule heating (GJH) curing for steel-fiber-reinforced high-performance concrete (SFR-HPC) in subzero environments (−20 °C to −60 °C). Compared to room-temperature (RT) curing, GJH enabled specimens at −20 °C to −50 °C to achieve equivalent mechanical properties within a short curing duration; the compressive strength of the specimens cured at such low environmental temperature still reached up to that of the specimen cured by RT curing. Moreover, the compressive strength of the specimens cured at −60 °C retained >60 MPa despite reduced performance. Specifically, the specimens cured at −20 °C, −30 °C, −40 °C, and −50 °C for 2 days exhibited compressive strengths of 75.8 MPa, 79.2 MPa, 77.6 MPa, and 75.4 MPa, respectively. FTIR/XRD confirmed that the specimens cured by GJH showed hydration product integrity akin to RT-cured specimens. Moreover, it should be noted that early pore structure deteriorated with decreasing temperatures, but prolonged curing mitigated these differences. These results validate GJH as a viable method for in situ HPC production in extreme cold, addressing critical limitations of conventional winter construction techniques. Full article
Show Figures

Figure 1

18 pages, 5262 KB  
Article
A Novel Microelectrode Based on Joule Heating and Impedance Spectroscopy for Inducing and Monitoring the Aggregation of HCV-Specific Probes
by Reda Abdelbaset, Omar E. Morsy, Mariam Hossam Eldin, Sherif M. Shawky, Yehya H. Ghallab and Yehea Ismail
Sensors 2025, 25(11), 3312; https://doi.org/10.3390/s25113312 - 24 May 2025
Viewed by 594
Abstract
The world urgently needs new methods to quickly and efficiently detect mutated viruses. An RNA-AuNP-based colorimetric biosensor is a highly sensitive, specific, and cost-effective tool that enables rapid, visual detection of target molecules for applications in disease diagnostics, environmental monitoring, and forensic analysis. [...] Read more.
The world urgently needs new methods to quickly and efficiently detect mutated viruses. An RNA-AuNP-based colorimetric biosensor is a highly sensitive, specific, and cost-effective tool that enables rapid, visual detection of target molecules for applications in disease diagnostics, environmental monitoring, and forensic analysis. An RNA-AuNP-based colorimetric biosensor requires precise control over nanoparticle dispersion and aggregation, which can be achieved using temperature regulation. A novel on-chip microelectrode is proposed to induce and monitor the aggregation of RNA-attached gold nanoparticles (AuNPs) through Joule heating and impedance spectroscopy. The proposed platform is implemented based on printed circuit board (PCB) technology, which has many advantages, such as fast and easy design and fabrication, low power consumption, and low costs. Joule heating is the process in which the energy of an electric current is converted into heat as it flows through a resistance. Impedance spectroscopy is an analytical technique that measures a system’s electrical response to an applied AC signal across a range of frequencies, providing insights into a sample’s dielectric properties. The results validate that the fabricated microelectrode is capable of heating a 20 µL droplet to 75 °C within 30 s, utilizing a low power input of only 3.75 watts and successfully inducing a color change based on the presence of hepatitis C virus (HCV) RNA, while impedance readings are used to monitor the aggregation. Full article
(This article belongs to the Special Issue Advances in Energy Harvesting and Sensor Systems)
Show Figures

Graphical abstract

23 pages, 8506 KB  
Article
Destructive and Non-Destructive Analysis of Lightning-Induced Damage in Protected and Painted Composite Aircraft Laminates
by Audrey Bigand, Christine Espinosa and Jean-Marc Bauchire
Aerospace 2025, 12(5), 446; https://doi.org/10.3390/aerospace12050446 - 19 May 2025
Cited by 2 | Viewed by 541
Abstract
The use of CFRP composite increased significantly since the last 40 years for aircraft structure. Unfortunately, such structures are subjected to significant damages if struck by lightning compared to metallic structure. This is mainly due to the low conductivity of this material, which [...] Read more.
The use of CFRP composite increased significantly since the last 40 years for aircraft structure. Unfortunately, such structures are subjected to significant damages if struck by lightning compared to metallic structure. This is mainly due to the low conductivity of this material, which cannot evacuate the current without high Joule heating. Lightning strike-induced damage in a composite laminate is composed of in-depth delamination, fibre breakage, and resin deterioration due to the surface explosion and the core current flow linked to interaction of the arc with the surface. But very rare previous studies dedicated to the analysis of damage as a direct effect of lightning have considered the spurious effect of the paint that always covers real aeronautic structures neither on the thermal nor the mechanical loads that are the root cause of these damages. We present in this paper a coupled non-destructive and destructive damage analysis to support the proposition of damage scenarios depending on the presence and thickness of the paint. The mechanical and thermal sources contribution in the global loading on the core damage is discussed, which confirms previous studies’ analysis and modelling and is in accordance with existing works in the literature. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

15 pages, 4350 KB  
Article
Investigation of Thermal Runaway in Prismatic Batteries with Dual-Parallel Jelly-Roll Architecture Under Thermal Abuse Conditions
by Jinmei Li, Dong Li, Xin Li, Ting Sun and Qiang Li
Batteries 2025, 11(5), 196; https://doi.org/10.3390/batteries11050196 - 16 May 2025
Cited by 1 | Viewed by 826
Abstract
In response to the increasingly serious global warming crisis, new energy batteries have progressively replaced highly polluting primary energy sources. Lithium-ion batteries (LIBs) are widely implemented due to their high safety and energy density. Although LIBs exhibit enhanced safety features, significant fire risks [...] Read more.
In response to the increasingly serious global warming crisis, new energy batteries have progressively replaced highly polluting primary energy sources. Lithium-ion batteries (LIBs) are widely implemented due to their high safety and energy density. Although LIBs exhibit enhanced safety features, significant fire risks persist during thermal runaway (TR) events occurring in charging/discharging processes. To elucidate dual-parallel jelly-roll architecture TR characteristics of LIBs under varied operational conditions, this study integrates theoretical analysis with experimental methods, conducting thermal abuse tests under four distinct working conditions: open circuit, constant-current charging, constant-voltage charging, and discharging. The results demonstrate substantial differences in TR characteristics across operational conditions. A thermodynamic equilibrium-based triggering model proved capable of qualitatively evaluating TR risk levels under these conditions. Furthermore, the established TR triggering model reveals that the intensified Joule heating and polarization effects during constant-current charging account for its elevated fire risk compared to other states. These findings provide operational guidelines for optimizing safety strategies in energy storage power stations. Full article
Show Figures

Figure 1

15 pages, 8916 KB  
Article
Preheating Modeling of Forming Region and Design of Electrode Structure During Integral Electric Hot Incremental Forming
by Zhengfang Li, Lijia Liu, Jiangpeng Song, Shuang Wu, Li Liu and Xinhao Zhai
Nanomaterials 2025, 15(9), 698; https://doi.org/10.3390/nano15090698 - 6 May 2025
Viewed by 385
Abstract
Recently, integral electric hot incremental forming technology has been proposed to form hard-to-form sheet metals and to eliminate some defects obtained through the local heating method via current, such as inhomogeneous temperature distribution, arc burns for the sheet and the tool, unsuitability for [...] Read more.
Recently, integral electric hot incremental forming technology has been proposed to form hard-to-form sheet metals and to eliminate some defects obtained through the local heating method via current, such as inhomogeneous temperature distribution, arc burns for the sheet and the tool, unsuitability for multistage forming, etc. However, the simulation of integral electric hot incremental forming involves coupled electro-thermal-mechanical analysis, which is difficult through existing simulation software. Meanwhile, the effect of the electrode structure on temperature distribution is not clear; therefore, a preheating flux model for Joule heat was proposed to simulate the temperature distribution of Ti-6Al-4V titanium alloy sheet in this work, which could simplify the coupled electro-thermal-mechanical analysis to the coupled thermal–mechanical simulation. Meanwhile, the effect of the electrode section and length on the temperature distribution was analyzed in detail, and then a design criterion for the electrode length was obtained during integral electric hot incremental forming. Full article
(This article belongs to the Special Issue The Interaction of Electron Phenomena on the Mesoscopic Scale)
Show Figures

Figure 1

37 pages, 8477 KB  
Review
Thermal Management for Unmanned Aerial Vehicle Payloads: Mechanisms, Systems, and Applications
by Ganapathi Pamula and Ashwin Ramachandran
Drones 2025, 9(5), 350; https://doi.org/10.3390/drones9050350 - 5 May 2025
Viewed by 3891
Abstract
Unmanned aerial vehicles (UAVs) are emerging as powerful tools for transporting temperature-sensitive payloads, including medical supplies, biological samples, and research materials, to remote or hard-to-reach locations. Effective thermal management is essential for maintaining payload integrity, especially during extended flights or harsh environmental conditions. [...] Read more.
Unmanned aerial vehicles (UAVs) are emerging as powerful tools for transporting temperature-sensitive payloads, including medical supplies, biological samples, and research materials, to remote or hard-to-reach locations. Effective thermal management is essential for maintaining payload integrity, especially during extended flights or harsh environmental conditions. This review presents a comprehensive analysis of temperature control mechanisms for UAV payloads, covering both passive and active strategies. Passive systems, such as phase-change materials and high-performance insulation, provide energy-efficient solutions for short-duration flights. In contrast, active systems, including thermoelectric cooling modules and Joule heating elements, offer precise temperature regulation for more demanding applications. We examined case studies that highlight the integration of these technologies in real-world UAV applications, such as vaccine delivery, blood sample transport, and in-flight polymerase chain reaction diagnostics. Additionally, we discussed critical design considerations, including power efficiency, payload capacity, and the impact of thermal management on flight endurance. We then presented an outlook on emerging technologies, such as hybrid power systems and smart feedback control loops, which promise to enhance UAV-based thermal management. This work aimed to guide researchers and practitioners in advancing thermal control technologies, enabling reliable, efficient, and scalable solutions for temperature-sensitive deliveries using UAVs. Full article
Show Figures

Figure 1

21 pages, 12040 KB  
Article
Electrically Conductive Nanoparticle-Enhanced Epoxy Adhesives for Localised Joule Heating-Based Curing in Composite Bonding
by Karina Dragasiute, Gediminas Monastyreckis and Daiva Zeleniakiene
Polymers 2025, 17(9), 1176; https://doi.org/10.3390/polym17091176 - 25 Apr 2025
Viewed by 747
Abstract
This study investigates the application of carbon nanotube (CNT)-enhanced epoxy adhesives for localised Joule heating-based curing in composite bonding. The electrical, thermal, and mechanical properties of epoxy with 0.25–1 wt% CNT loadings were evaluated. A simple CNT alignment method using DC voltage showed [...] Read more.
This study investigates the application of carbon nanotube (CNT)-enhanced epoxy adhesives for localised Joule heating-based curing in composite bonding. The electrical, thermal, and mechanical properties of epoxy with 0.25–1 wt% CNT loadings were evaluated. A simple CNT alignment method using DC voltage showed improved electrical conductivity, greatly reducing the percolation threshold. Transient thermal analysis using finite element modelling of representative volume elements revealed that aligned CNTs led to increased localised temperatures near the CNT clusters. The model was validated with infrared thermal imaging analysis, which also showed similar non-linear heat distribution and more uniform heating under higher CNT loading. Additionally, power distribution mapping was evaluated through inverse modelling techniques, suggesting different conductivity zones and cluster distribution within the single-lap joint. The numerical and experimental results demonstrated that CNT alignment significantly enhanced localised conductivity, thereby improving curing efficiency at lower voltages. The lap shear test results showed a peak shear strength of 10.16 MPa at 0.5 wt% CNT loading, 9% higher than pure epoxy. Scanning electron microscopy analysis confirmed the formation of aligned CNT clusters, and how CNT loading affected the failure modes, transitioning from cohesive to void-rich fracture patterns at a higher wt%. These findings establish CNT-enhanced Joule heating as a viable and scalable alternative for efficient composite bonding in aerospace and structural applications. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

18 pages, 2921 KB  
Article
Thermodynamics Analysis of Cryogenic Supercritical Hydrogen Storage System Based on Multi-Stage Joule–Brayton Cycle
by Ruiqi Wan, Tenglong Yue, Jingxuan Xu, Wenjie Wu, Xi Chen and Binlin Dou
Cryo 2025, 1(2), 6; https://doi.org/10.3390/cryo1020006 - 25 Apr 2025
Cited by 1 | Viewed by 474
Abstract
The cryogenic supercritical hydrogen storage system offers notable advantages including heightened hydrogen storage density and operation under relatively moderate conditions compared to conventional hydrogen storage methodologies. In this study, a cryogenic supercritical hydrogen storage system based on the multi-stage Joule–Brayton refrigeration cycle is [...] Read more.
The cryogenic supercritical hydrogen storage system offers notable advantages including heightened hydrogen storage density and operation under relatively moderate conditions compared to conventional hydrogen storage methodologies. In this study, a cryogenic supercritical hydrogen storage system based on the multi-stage Joule–Brayton refrigeration cycle is presented, analyzed, and optimized. The proposed system employs a five-stage cascade cycle, each stage utilizes a distinct refrigerant, including propane, ethylene, methane, and hydrogen, facilitated by Joule–Brayton cycles, with expanders employed for mechanical work recovery, which is capable of effectively cooling hydrogen from ambient temperature and atmospheric pressure to a cryogenic supercritical state of −223.15 °C (50 K), 18,000 kPa, exhibiting a density of 73.46 kg/m3 and a hydrogen processing capacity of 2 kgH2/s. The genetic algorithm is applied to optimize 25 key parameters in the system, encompassing temperature, pressure, and flow rate, with the objective function is specific energy consumption. Consequently, the specific energy consumption of the system is 5.71 kWh/kgH2 with an exergy efficiency of 56.2%. Comprehensive energy analysis, heat transfer analysis, and exergy analysis are conducted based on the optimized system parameters, yielding insights crucial for the development of medium- and large-scale supercritical hydrogen storage systems. Full article
(This article belongs to the Special Issue Efficient Production, Storage and Transportation of Liquid Hydrogen)
Show Figures

Figure 1

24 pages, 6825 KB  
Article
Numerical Analysis on Cooling Performances for Connectors Using Immersion Cooling in Ultra-Fast Chargers for Electric Vehicles
by Seong-Guk Hwang, Moo-Yeon Lee and Beom-Seok Ko
Symmetry 2025, 17(4), 624; https://doi.org/10.3390/sym17040624 - 20 Apr 2025
Cited by 2 | Viewed by 839
Abstract
The increasing demand for ultra-fast charging in electric vehicles (EVs) necessitates advancements in thermal management strategies to mitigate Joule heating, which arises due to electrical resistance in charging connectors and cable cores. This study presents a numerical analysis of immersion cooling performance for [...] Read more.
The increasing demand for ultra-fast charging in electric vehicles (EVs) necessitates advancements in thermal management strategies to mitigate Joule heating, which arises due to electrical resistance in charging connectors and cable cores. This study presents a numerical analysis of immersion cooling performance for ultra-fast chargers under realistic charging conditions. The simulated results are validated by experiments with a maximum deviation of 5.5% at 600 A and 700 A currents. The novelty of this work lies in the consideration of a realistic charging cable length of 5 m, the evaluation of temperature characteristics in the charger connector, and the analysis of geometric symmetry in the charging cable and coolant configuration to ensure uniform heat distribution. Key operating conditions were systematically analyzed, including applied currents, ambient temperatures, coolant flow rates, cable core cross-sectional areas, and different types of coolants. Results indicate that increasing the applied current from 400 A to 800 A raised the connector temperature from 60.73 °C to 97.33 °C. As the ambient temperature increased from 20 °C to 50 °C, the connector temperature rose significantly from 42.71 °C to 74.99 °C, while the maximum cable core temperature increased from 65.26 °C to 100.61 °C. Increasing the cable core cross-sectional area from 20 mm2 to 30 mm2 reduced the connector temperature from 77.20 °C to 74.99 °C. Meanwhile, increasing the coolant flow rate from 2 LPM to 5 LPM had a negligible effect on the connector temperature. Among the three tested coolants, Novec 7500 exhibited the highest cooling efficiency, achieving the lowest contact temperature (74.76 °C) and the highest performance evaluation criteria (PEC) value of 3.8. This study provides valuable guidelines for enhancing symmetry-driven thermal management systems and demonstrates the potential of immersion cooling to improve efficiency, safety, and operational reliability in next-generation high-power EV chargers. Full article
(This article belongs to the Special Issue Symmetry in Power Systems and Thermal Engineering)
Show Figures

Figure 1

21 pages, 7270 KB  
Article
Overcoming Power Limitations of Electric Heating in a Solar Salt Thermal Storage by Microwave Heating
by Roberto Grena, Mattia Cagnoli, Roberto Zanino and Michela Lanchi
Energies 2025, 18(8), 2059; https://doi.org/10.3390/en18082059 - 17 Apr 2025
Viewed by 510
Abstract
The expected increase in energy production from VRE (Variable Renewable Energy) requires a significant increase in energy storage capacity, with thermal storage potentially offering a key contribution. However, heat transfer mechanisms can limit the maximum power instantaneously transferable to the storage medium, posing [...] Read more.
The expected increase in energy production from VRE (Variable Renewable Energy) requires a significant increase in energy storage capacity, with thermal storage potentially offering a key contribution. However, heat transfer mechanisms can limit the maximum power instantaneously transferable to the storage medium, posing a significant operational challenge. An analysis is presented here of the power limitations that arise when molten salt thermal storage adopting Solar Salt (NaNO3/KNO3, 60/40%wt) is heated by electrical resistances (Joule heating), and a possible alternative—the volumetric heating of the salt mass by microwaves—is discussed. Results show that microwave heating is an interesting path to overcome the power limitations of Joule heating. A first, theoretical analysis indicates a potential increase of more than 10 times in the maximum power transferable per unit area. Thermal-fluid-dynamic and electromagnetic models have been developed to numerically test the performance of a one-tank thermocline system endowed with a microwave heater. The proposed heating system showed limitations in terms of the maximum power that can be transferred to the salt because of the high temperatures established in the boundary layer. Finally, it performs in a comparable way with respect to an (ideal) heating system based on the Joule effect. However, many design improvements can still be adopted to enhance the performance of the proposed technology, likely overcoming the performance reachable using Joule heating systems. Full article
(This article belongs to the Special Issue Advanced Solar Technologies and Thermal Energy Storage)
Show Figures

Figure 1

22 pages, 2571 KB  
Article
Numerical Analysis of Steady-State Multi-Field Coupling in Electro-Fused Magnesia Furnace
by Cunjian Weng, Zhen Wang, Xianping Luo and Hui Li
Materials 2025, 18(5), 1049; https://doi.org/10.3390/ma18051049 - 27 Feb 2025
Viewed by 753
Abstract
The internal conditions of the high-temperature molten pool in an electro-fused magnesia furnace (EFMF) are difficult to measure, and the temperature distribution–energy conservation relationship in the EFMF cannot be effectively evaluated. Assuming that the feeding speed is constant, the heat absorbed by the [...] Read more.
The internal conditions of the high-temperature molten pool in an electro-fused magnesia furnace (EFMF) are difficult to measure, and the temperature distribution–energy conservation relationship in the EFMF cannot be effectively evaluated. Assuming that the feeding speed is constant, the heat absorbed by the newly added raw materials is equal to the rated power minus the heating power required to maintain thermal balance. Therefore, the EFMF can be approximately described by a steady-state model. In order to analyze the state of the molten pool of EFMF at different smelting stages, this study first constructed a three-dimensional steady-state multi-physics field numerical simulation model. The calculations show that the equivalent resistance of the molten pool varies approximately between 1 mΩ and 0.4 mΩ. Furthermore, the equivalent reactance produced by the whole conductive circuit is almost of the same order as the resistance. The Reynolds number of the convection inside the molten pool exceeds 105, which means that the flow inside the molten pool is forced convection dominated by the Lorentz force. Moreover, the turbulence makes the temperature uniformity of the molten pool (the temperature gradient near the solid–liquid interface is approximately within 300 K/m) far greater than that of the unmelted raw materials with very low thermal conductivity (the average temperature gradient reaches over 1000 K/m); the respective proportions of arc power and Joule heating power can be predicted by the model. When the molten pool size is small, the proportion of Joule heating power is high, reaching about 20% of the rated power (3700 kVA); as the molten pool size increases, the convection effect is relatively weakened, and the proportion of Joule heating power also decreases accordingly, only 5% to 10%; the model prediction and experimental estimation results are in good agreement, which makes it feasible to conduct a quantitative analysis of the power distribution in different smelting stages. Full article
Show Figures

Figure 1

13 pages, 427 KB  
Article
Existence of Solutions to the Variable Order Caputo Fractional Thermistor Problem
by John R. Graef, Kadda Maazouz, Sandra Pinelas, Zineb Bellabes and Naima Boussekkine
Fractal Fract. 2025, 9(3), 139; https://doi.org/10.3390/fractalfract9030139 - 22 Feb 2025
Viewed by 701
Abstract
The thermistor model captures the complex interaction between heat dissipation, electrical current conduction, and Joule heat generation. Our research examines the diverse properties and implications of employing fractional calculus in the analysis with a focus on fixed-point principles. This paper addresses the existence [...] Read more.
The thermistor model captures the complex interaction between heat dissipation, electrical current conduction, and Joule heat generation. Our research examines the diverse properties and implications of employing fractional calculus in the analysis with a focus on fixed-point principles. This paper addresses the existence and uniqueness of solutions to a variable order Caputo fractional thermistor problem by applying Schauder’s fixed-point theorem. Full article
Show Figures

Figure 1

Back to TopTop