Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (111)

Search Parameters:
Keywords = Information-Centric Networking (ICN)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 875 KiB  
Review
A Survey of Quality-of-Service and Quality-of-Experience Provisioning in Information-Centric Networks
by Nazmus Sadat and Rui Dai
Network 2025, 5(2), 10; https://doi.org/10.3390/network5020010 - 14 Apr 2025
Viewed by 845
Abstract
Information-centric networking (ICN) is a promising approach to address the limitations of current host-centric IP-based networking. ICN models feature ubiquitous in-network caching to provide faster and more reliable content delivery, name-based routing to provide better scalability, and self-certifying contents to ensure better security. [...] Read more.
Information-centric networking (ICN) is a promising approach to address the limitations of current host-centric IP-based networking. ICN models feature ubiquitous in-network caching to provide faster and more reliable content delivery, name-based routing to provide better scalability, and self-certifying contents to ensure better security. Due to the differences in the core architecture of ICN compared to existing IP-based networks, it requires special considerations to provide quality-of-service (QoS) or quality-of-experience (QoE) support for applications based on ICNs. This paper discusses the latest advances in QoS and QoE research for ICNs. First, an overview of ICN architectures is given, followed by a summary of different factors that influence QoS and QoE. Approaches for improving QoS and QoE in ICNs are then discussed in five main categories: in-network caching, name resolution and routing, transmission and flow control, software-defined networking, and media-streaming-based strategies. Finally, open research questions for providing QoS and QoE support in ICNs are outlined for future research. Full article
Show Figures

Figure 1

29 pages, 965 KiB  
Article
Reputation Consensus Mechanism for Blockchain Based on Information-Centric Networking
by Yufei Zhou, Rui Han and Yang Li
Electronics 2025, 14(6), 1099; https://doi.org/10.3390/electronics14061099 - 11 Mar 2025
Cited by 1 | Viewed by 1550
Abstract
The integration of blockchain with Information-Centric Networking (ICN) enhances content distribution efficiency in areas such as the Internet of Things (IoT) and 5G/6G communications. This integration implies that the network state information of ICN can significantly impact consensus efficiency. However, the Ethereum Casper [...] Read more.
The integration of blockchain with Information-Centric Networking (ICN) enhances content distribution efficiency in areas such as the Internet of Things (IoT) and 5G/6G communications. This integration implies that the network state information of ICN can significantly impact consensus efficiency. However, the Ethereum Casper FFG consensus algorithm overlooks the network heterogeneity among consensus nodes, leading to a potential bottleneck in consensus efficiency, especially when nodes with inferior network quality participate. To address this issue, this paper proposes a multidimensional reputation model based on an ICN-enabled blockchain architecture. The model combines on-chain stake and network contributions to evaluate the reputation of ICN consensus nodes. Furthermore, a reputation-based hybrid consensus mechanism, RepuICN, is introduced, which enhances the network layer of the Casper FFG algorithm. This mechanism selects higher-reputation ICN consensus nodes as proposers for checkpoint blocks, mitigating the impact of network latency fluctuations on block propagation. Additionally, RepuICN improves block propagation efficiency through ICN multicast and caching techniques. Simulation results show that, under identical conditions with a network of 5000 nodes and 2% ICN nodes, RepuICN reduces broadcast latency by 17% for regular blocks and 61.4% for checkpoint blocks and achieves 3.4 times higher transaction throughput than Casper FFG. Full article
(This article belongs to the Section Networks)
Show Figures

Figure 1

27 pages, 4401 KiB  
Article
An Efficient Multipath-Based Caching Strategy for Information-Centric Networks
by Wancai Zhang and Rui Han
Electronics 2025, 14(3), 439; https://doi.org/10.3390/electronics14030439 - 22 Jan 2025
Cited by 1 | Viewed by 975
Abstract
The growing demand for large-scale data distribution and sharing presents significant challenges to content transmission within the current TCP/IP network architecture. To address these challenges, Information-Centric Networking (ICN) has emerged as a promising alternative, offering inherent support for multipath forwarding and in-network caching [...] Read more.
The growing demand for large-scale data distribution and sharing presents significant challenges to content transmission within the current TCP/IP network architecture. To address these challenges, Information-Centric Networking (ICN) has emerged as a promising alternative, offering inherent support for multipath forwarding and in-network caching to improve data transmission performance. However, most existing ICN caching strategies primarily focus on utilizing resources along the default transmission path and its neighboring nodes, without fully exploiting the additional resources provided by multipath forwarding. To address this gap, we propose an efficient multipath-based caching strategy that optimizes cache placement by decomposing the problem into two steps, multipath selection and cache node selection along the paths. First, multipath selection considers both transmission and caching resources across multiple paths, prioritizing the caching of popular content while efficiently transmitting less popular content. Next, along the selected paths, cache node selection evaluates cache load based on cache utilization and available capacity, prioritizing nodes with the lowest cache load. Extensive simulations across diverse topologies demonstrate that the proposed strategy reduces data transmission latency by at least 12.22%, improves cache hit rate by at least 16.44%, and enhances cache node load balancing by at least 18.77%, compared to the neighborhood collaborative caching strategies. Full article
Show Figures

Figure 1

28 pages, 397 KiB  
Review
Exploring In-Network Computing with Information-Centric Networking: Review and Research Opportunities
by Marica Amadeo and Giuseppe Ruggeri
Future Internet 2025, 17(1), 42; https://doi.org/10.3390/fi17010042 - 18 Jan 2025
Cited by 4 | Viewed by 1797
Abstract
The advent of 6G networks and beyond calls for innovative paradigms to address the stringent demands of emerging applications, such as extended reality and autonomous vehicles, as well as technological frameworks like digital twin networks. Traditional cloud computing and edge computing architectures fall [...] Read more.
The advent of 6G networks and beyond calls for innovative paradigms to address the stringent demands of emerging applications, such as extended reality and autonomous vehicles, as well as technological frameworks like digital twin networks. Traditional cloud computing and edge computing architectures fall short in providing their required flexibility, scalability, and ultra-low latency. Cloud computing centralizes resources in distant data centers, leading to high latency and increased network congestion, while edge computing, though closer to data sources, lacks the agility to dynamically adapt to fluctuating workloads, user mobility, and real-time requirements. In-network computing (INC) offers a transformative solution by integrating computational capabilities directly into the network fabric, enabling dynamic and distributed task execution. This paper explores INC through the lens of information-centric networking (ICN), a revolutionary communication paradigm implementing routing-by-name and in-network caching, and thus emerging as a natural enabler for INC. We review state-of-the-art advancements involving INC and ICN, addressing critical topics such as service naming, executor selection strategies, compute reuse, and security. Furthermore, we discuss key challenges and propose research directions for deploying INC via ICN, thereby outlining a cohesive roadmap for future investigation. Full article
(This article belongs to the Special Issue Featured Papers in the Section Internet of Things, 2nd Edition)
Show Figures

Figure 1

23 pages, 2715 KiB  
Article
A Hierarchical Cache Architecture-Oriented Cache Management Scheme for Information-Centric Networking
by Yichao Chao and Rui Han
Future Internet 2025, 17(1), 17; https://doi.org/10.3390/fi17010017 - 5 Jan 2025
Cited by 3 | Viewed by 1481
Abstract
Information-Centric Networking (ICN) typically utilizes DRAM (Dynamic Random Access Memory) to build in-network cache components due to its high data transfer rate and low latency. However, DRAM faces significant limitations in terms of cost and capacity, making it challenging to meet the growing [...] Read more.
Information-Centric Networking (ICN) typically utilizes DRAM (Dynamic Random Access Memory) to build in-network cache components due to its high data transfer rate and low latency. However, DRAM faces significant limitations in terms of cost and capacity, making it challenging to meet the growing demands for cache scalability required by increasing Internet traffic. Combining high-speed but expensive memory (e.g., DRAM) with large-capacity, low-cost storage (e.g., SSD) to construct a hierarchical cache architecture has emerged as an effective solution to this problem. However, how to perform efficient cache management in such architectures to realize the expected cache performance remains challenging. This paper proposes a cache management scheme for hierarchical cache architectures in ICN, which introduces a differentiated replica replacement policy to accommodate the varying request access patterns at different cache layers, thereby enhancing overall cache performance. Additionally, a probabilistic insertion-based SSD cache admission filtering mechanism is designed to control the SSD write load, addressing the issue of balancing SSD lifespan and space utilization. Extensive simulation results demonstrate that the proposed scheme exhibits superior cache performance and lower SSD write load under various workloads and replica placement strategies, highlighting its broad applicability to different application scenarios. Additionally, it maintains stable performance improvements across different cache capacity settings, further reflecting its good scalability. Full article
Show Figures

Figure 1

24 pages, 11264 KiB  
Article
Cache Aging with Learning (CAL): A Freshness-Based Data Caching Method for Information-Centric Networking on the Internet of Things (IoT)
by Nemat Hazrati, Sajjad Pirahesh, Bahman Arasteh, Seyed Salar Sefati, Octavian Fratu and Simona Halunga
Future Internet 2025, 17(1), 11; https://doi.org/10.3390/fi17010011 - 1 Jan 2025
Cited by 1 | Viewed by 1651
Abstract
Information-centric networking (ICN) changes the way data are accessed by focusing on the content rather than the location of devices. In this model, each piece of data has a unique name, making it accessible directly by name. This approach suits the Internet of [...] Read more.
Information-centric networking (ICN) changes the way data are accessed by focusing on the content rather than the location of devices. In this model, each piece of data has a unique name, making it accessible directly by name. This approach suits the Internet of Things (IoT), where data generation and real-time processing are fundamental. Traditional host-based communication methods are less efficient for the IoT, making ICN a better fit. A key advantage of ICN is in-network caching, which temporarily stores data across various points in the network. This caching improves data access speed, minimizes retrieval time, and reduces overall network traffic by making frequently accessed data readily available. However, IoT systems involve constantly updating data, which requires managing data freshness while also ensuring their validity and processing accuracy. The interactions with cached data, such as updates, validations, and replacements, are crucial in optimizing system performance. This research introduces an ICN-IoT method to manage and process data freshness in ICN for the IoT. It optimizes network traffic by sharing only the most current and valid data, reducing unnecessary transfers. Routers in this model calculate data freshness, assess its validity, and perform cache updates based on these metrics. Simulation results across four models show that this method enhances cache hit ratios, reduces traffic load, and improves retrieval delays, outperforming similar methods. The proposed method uses an artificial neural network to make predictions. These predictions closely match the actual values, with a low error margin of 0.0121. This precision highlights its effectiveness in maintaining data currentness and validity while reducing network overhead. Full article
Show Figures

Figure 1

29 pages, 1451 KiB  
Article
A Coloring-Based Packet Loss Rate Measurement Scheme on Network Nodes
by Shuhe Wang, Rui Han and Xu Wang
Electronics 2024, 13(23), 4692; https://doi.org/10.3390/electronics13234692 - 27 Nov 2024
Viewed by 969
Abstract
Network measurement is an efficient way to understand network behavior. Traditional measurement techniques focus on internet protocol (IP) networks, where the processing capacity of network nodes is limited and primarily dedicated to packet forwarding. As a result, these techniques typically rely on end [...] Read more.
Network measurement is an efficient way to understand network behavior. Traditional measurement techniques focus on internet protocol (IP) networks, where the processing capacity of network nodes is limited and primarily dedicated to packet forwarding. As a result, these techniques typically rely on end hosts or external systems to analyze traffic and evaluate network performance. This reliance introduces several challenges, such as increased measurement latency and scalability limitations, particularly in large-scale networks. With the emergence of next-generation internet architectures, especially information-centric networking (ICN), network nodes have gained enhanced capabilities, enabling measurement tasks to be performed directly at these nodes. This paper proposes a distributed measurement scheme where network nodes collaborate to monitor the packet loss rate on the intermediate link. By setting an unused bit in the packet header, the upstream node “colors” the packets into different color blocks. The minimum duration of each block is determined by the degree of reordering on the link, and the number of packets in each block must be a power of two. The downstream node recognizes blocks, assigns packets to the right block, and deduces the original number of packets for each block to calculate packet loss. Moreover, the upstream node adjusts the number of packets in each block based on the packet transmission rate on the link, aiming to balance measurement accuracy and frequency. A P4-based implementation on a BMv2 software switch is presented to demonstrate the feasibility of the proposed scheme. Simulations show that this scheme improves measurement accuracy and is more robust against packet reordering. Additionally, the proposed scheme maintains relatively low network overhead and, at higher measurement frequencies, exhibits the lowest overhead compared to existing methods. Full article
(This article belongs to the Section Networks)
Show Figures

Figure 1

25 pages, 1095 KiB  
Article
An ICN-Based Delay-Sensitive Service Scheduling Architecture with Stateful Programmable Data Plane for Computing Network
by Ranran Wei and Rui Han
Appl. Sci. 2024, 14(22), 10207; https://doi.org/10.3390/app142210207 - 7 Nov 2024
Cited by 1 | Viewed by 1281
Abstract
The Computing Network is an emerging paradigm that integrates network and computing resources. One of its goals is to satisfy the requirements of delay-sensitive services through network scheduling capabilities. However, traditional TCP/IP networks are deficient in accurately being aware of requirements and performing [...] Read more.
The Computing Network is an emerging paradigm that integrates network and computing resources. One of its goals is to satisfy the requirements of delay-sensitive services through network scheduling capabilities. However, traditional TCP/IP networks are deficient in accurately being aware of requirements and performing flexible routing based on service levels. Information-Centric Networking (ICN) addresses these issues through its flexible protocol design and content-based routing mechanism. Additionally, the integration of Software-Defined Networking (SDN) technology further enhances its routing flexibility. Therefore, this paper proposes an ICN-based delay-sensitive service scheduling architecture with an SDN stateful programmable data plane. The network nodes are first layered based on the type of computing clusters they are linked with, and then within each layer, they are divided into several domains according to delay constraints. Then, the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) algorithm, combined with the Best-Worst Method (BWM) weighting method, is adopted to evaluate the candidate clusters, and the corresponding scheduling strategy is executed in the stateful programmable data plane. The simulation results show that compared with other scheduling architectures and traditional TOPSIS with the Entropy Weight Method (EWM), the proposed architecture and algorithm show significant advantages in reducing the overall delay of service requests and improving the scheduling success ratio, as well as the load balance of the computing clusters. Full article
Show Figures

Figure 1

25 pages, 5648 KiB  
Article
RMBCC: A Replica Migration-Based Cooperative Caching Scheme for Information-Centric Networks
by Yichao Chao, Hong Ni and Rui Han
Electronics 2024, 13(13), 2636; https://doi.org/10.3390/electronics13132636 - 4 Jul 2024
Cited by 1 | Viewed by 817
Abstract
How to maximize the advantages of in-network caching under limited cache space has always been a key issue in information-centric networking (ICN). Replica placement strategies aim to fully utilize cache resources by optimizing the location and quantity distribution of replicas in the network, [...] Read more.
How to maximize the advantages of in-network caching under limited cache space has always been a key issue in information-centric networking (ICN). Replica placement strategies aim to fully utilize cache resources by optimizing the location and quantity distribution of replicas in the network, thereby improving the performance of the cache system. However, existing research primarily focuses on optimizing the placement of replicas along the content delivery path, which cannot avoid the inherent drawback of not being able to leverage off-path cache resources. The proposals for off-path caching cannot effectively solve this problem as they introduce excessive complexity and cooperation costs. In this paper, we address the trade-off between cache resource utilization and cooperation costs by introducing a mechanism complementary to replica placement. Instead of redesigning a new caching strategy from scratch, we propose a proactive cooperative caching mechanism (called RMBCC) that involves an independent replica migration process, through which we proactively relocate replicas evicted from the local cache to neighboring nodes with sufficient cache resources. The cooperation costs are effectively controlled through migration replica filtering, migration distance limitation, as well as hop-by-hop migration request propagation. Extensive simulation experiments show that RMBCC can be efficiently integrated with different on-path caching strategies. Compared with representative caching schemes, RMBCC achieves significant improvements in evaluation metrics such as cache hit ratio and content retrieval time, while only introducing negligible cooperation overhead. Full article
Show Figures

Figure 1

14 pages, 1027 KiB  
Article
Caching Method for Information-Centric Ad Hoc Networks Based on Content Popularity and Node Centrality
by Masaki Koide, Naoyuki Matsumoto and Tomofumi Matsuzawa
Electronics 2024, 13(12), 2416; https://doi.org/10.3390/electronics13122416 - 20 Jun 2024
Cited by 7 | Viewed by 1625
Abstract
In recent years, most internet communications have focused on accessing content such as video, web services, and audio. Conversely, traditional Internet communications are inefficient because they are primarily designed for data transfer between hosts. In response, Information-Centric Networking (ICN) has emerged as a [...] Read more.
In recent years, most internet communications have focused on accessing content such as video, web services, and audio. Conversely, traditional Internet communications are inefficient because they are primarily designed for data transfer between hosts. In response, Information-Centric Networking (ICN) has emerged as a content-oriented networking model. The impact of ICN in reducing the location dependency of data and its high compatibility with ad hoc networks has led to research on realizing Information-Centric ad hoc Networks (ICANET). There has also been extensive research into caching content in the network, which is one of the features of ICN. In static networks, methods have been proposed to cache highly popular content in nodes that are more likely to be used for shortest paths. However, in dynamic networks, content with high popularity should be cached on nodes that are more likely to reach all nodes, as missing nodes need to be taken into account. In this study, we propose a cache control scheme for content caching in ICANET that utilizes both content popularity and the closeness centrality of nodes within the ad hoc network as indicators. To realise the proposed method, a new packet flow based on the Pending Interest Table (PIT) and Content Store (CS) was implemented in the forwarding strategy of ICN. The experiments used ndnSIM, a protocol implementation of NDN based on Network Simulator3, which is widely used in wireless network research. The experimental results showed that the cache hit rate could be increased by up to 4.5% in situations with low content bias. In the same situation, the response delay was also reduced by up to 28.3%. Full article
(This article belongs to the Special Issue New Advances in Multi-agent Systems: Control and Modelling)
Show Figures

Figure 1

20 pages, 4181 KiB  
Article
Caching Policy in Low Earth Orbit Satellite Mega-Constellation Information-Centric Networking for Internet of Things
by Hongqiu Luo, Tingting Yan and Shengbo Hu
Sensors 2024, 24(11), 3412; https://doi.org/10.3390/s24113412 - 25 May 2024
Cited by 1 | Viewed by 1411
Abstract
Information-Centric Networking (ICN) is the emerging next-generation internet paradigm. The Low Earth Orbit (LEO) satellite mega-constellation based on ICN can achieve seamless global coverage and provide excellent support for Internet of Things (IoT) services. Additionally, in-network caching, typically characteristic of ICN, plays a [...] Read more.
Information-Centric Networking (ICN) is the emerging next-generation internet paradigm. The Low Earth Orbit (LEO) satellite mega-constellation based on ICN can achieve seamless global coverage and provide excellent support for Internet of Things (IoT) services. Additionally, in-network caching, typically characteristic of ICN, plays a paramount role in network performance. Therefore, the in-network caching policy is one of the hotspot problems. Especially, compared to caching traditional internet content, in-networking caching IoT content is more challenging, since the IoT content lifetime is small and transient. In this paper, firstly, the framework of the LEO satellite mega-constellation Information-Centric Networking for IoT (LEO-SMC-ICN-IoT) is proposed. Then, introducing the concept of “viscosity”, the proposed Caching Algorithm based on the Random Forest (CARF) policy of satellite nodes combines both content popularity prediction and satellite nodes location prediction, for achieving good cache matching between the satellite nodes and content. And using the matching rule, the Random Forest (RF) algorithm is adopted to predict the matching relationship among satellite nodes and content for guiding the deployment of caches. Especially, the content is cached in advance at the future satellite to maintain communication with the current ground segment at the time of satellite switchover. Additionally, the policy considers both the IoT content lifetime and the freshness. Finally, a simulation platform with LEO satellite mega-constellation based on ICN is developed in Network Simulator 3 (NS-3). The simulation results show that the proposed caching policy compared with the Leave Copy Everywhere (LCE), the opportunistic (OPP), the Leave Copy down (LCD), and the probabilistic algorithm which caches each content with probability 0.5 (prob 0.5) yield a significant performance improvement, such as the average number of hops, i.e., delay, cache hit rate, and throughput. Full article
(This article belongs to the Special Issue Communication, Sensing and Localization in 6G Systems)
Show Figures

Figure 1

19 pages, 2195 KiB  
Article
A Method for 5G–ICN Seamless Mobility Support Based on Router Buffered Data
by Mengchi Xing, Haojiang Deng and Rui Han
Future Internet 2024, 16(3), 96; https://doi.org/10.3390/fi16030096 - 13 Mar 2024
Cited by 1 | Viewed by 2129
Abstract
The 5G core network adopts a Control and User Plane Separation (CUPS) architecture to meet the challenges of low-latency business requirements. In this architecture, a balance between management costs and User Experience (UE) is achieved by moving User Plane Function (UPF) to the [...] Read more.
The 5G core network adopts a Control and User Plane Separation (CUPS) architecture to meet the challenges of low-latency business requirements. In this architecture, a balance between management costs and User Experience (UE) is achieved by moving User Plane Function (UPF) to the edge of the network. However, cross-UPF handover during communication between the UE and the remote server will cause TCP/IP session interruption and affect continuity of delay-sensitive real-time communication continuity. Information-Centric Networks (ICNs) separate identity and location, and their ability to route based on identity can effectively handle mobility. Therefore, based on the 5G-ICN architecture, we propose a seamless mobility support method based on router buffered data (BDMM), making full use of the ICN’s identity-based routing capabilities to solve the problem of UE cross-UPF handover affecting business continuity. BDMM also uses the ICN router data buffering capabilities to reduce packet loss during handovers. We design a dynamic buffer resource allocation strategy (DBRAS) that can adjust the buffer resource allocation results in time according to network traffic changes and business types to solve the problem of unreasonable buffer resource allocation. Finally, experimental results show that our method outperforms other methods in terms of average packet delay, weighted average packet loss rate, and network overhead. In addition, our method also has good performance in average handover delay. Full article
Show Figures

Figure 1

25 pages, 872 KiB  
Review
Detection of DoS Attacks for IoT in Information-Centric Networks Using Machine Learning: Opportunities, Challenges, and Future Research Directions
by Rawan Bukhowah, Ahmed Aljughaiman and M. M. Hafizur Rahman
Electronics 2024, 13(6), 1031; https://doi.org/10.3390/electronics13061031 - 9 Mar 2024
Cited by 12 | Viewed by 3853
Abstract
The Internet of Things (IoT) is a rapidly growing network that shares information over the Internet via interconnected devices. In addition, this network has led to new security challenges in recent years. One of the biggest challenges is the impact of denial-of-service (DoS) [...] Read more.
The Internet of Things (IoT) is a rapidly growing network that shares information over the Internet via interconnected devices. In addition, this network has led to new security challenges in recent years. One of the biggest challenges is the impact of denial-of-service (DoS) attacks on the IoT. The Information-Centric Network (ICN) infrastructure is a critical component of the IoT. The ICN has gained recognition as a promising networking solution for the IoT by supporting IoT devices to be able to communicate and exchange data with each other over the Internet. Moreover, the ICN provides easy access and straightforward security to IoT content. However, the integration of IoT devices into the ICN introduces new security challenges, particularly in the form of DoS attacks. These attacks aim to disrupt or disable the normal operation of the ICN, potentially leading to severe consequences for IoT applications. Machine learning (ML) is a powerful technology. This paper proposes a new approach for developing a robust and efficient solution for detecting DoS attacks in ICN-IoT networks using ML technology. ML is a subset of artificial intelligence (AI) that focuses on the development of algorithms. While several ML algorithms have been explored in the literature, including neural networks, decision trees (DTs), clustering algorithms, XGBoost, J48, multilayer perceptron (MLP) with backpropagation (BP), deep neural networks (DNNs), MLP-BP, RBF-PSO, RBF-JAYA, and RBF-TLBO, researchers compare these detection approaches using classification metrics such as accuracy. This classification metric indicates that SVM, RF, and KNN demonstrate superior performance compared to other alternatives. The proposed approach was carried out on the NDN architecture because, based on our findings, it is the most used one and has a high percentage of various types of cyberattacks. The proposed approach can be evaluated using an ndnSIM simulation and a synthetic dataset for detecting DoS attacks in ICN-IoT networks using ML algorithms. Full article
(This article belongs to the Special Issue Machine Learning for Cybersecurity: Threat Detection and Mitigation)
Show Figures

Figure 1

31 pages, 3361 KiB  
Article
An ICN-Based On-Path Computing Resource Scheduling Architecture with User Preference Awareness for Computing Network
by Zhihui Ni, Jiali You and Yang Li
Electronics 2024, 13(5), 933; https://doi.org/10.3390/electronics13050933 - 29 Feb 2024
Cited by 3 | Viewed by 1808
Abstract
The Computing Network is an emerging network paradigm that aims to realize computing resource scheduling through the intrinsic capabilities of the network. However, existing resource scheduling architectures based on conventional TCP/IP networks for the Computing Network suffer from deficiencies in routing flexibility and [...] Read more.
The Computing Network is an emerging network paradigm that aims to realize computing resource scheduling through the intrinsic capabilities of the network. However, existing resource scheduling architectures based on conventional TCP/IP networks for the Computing Network suffer from deficiencies in routing flexibility and a lack of user preference awareness, while Information-Centric Networking (ICN) holds the potential to address these issues. ICN inherently supports dynamic routing in scenarios such as multi-homing and mobility due to its routing mechanism that is based on content names rather than host addresses, and it is further enhanced by the integration with Software-Defined Networking (SDN) technologies, which facilitate convenient network-layer route readdressing, thus offering a conducive environment for flexible routing scheduling. Furthermore, ICN introduces novel routing protocols that, compared with the more rigid protocol designs in conventional TCP/IP networks, offer greater flexibility in field usage. This flexibility allows for the incorporation of customized fields, such as “preference”, enabling the perception of user preferences within the network. Therefore, this paper proposes a novel ICN-based on-path computing resource scheduling architecture named IPCRSA. Within this architecture, an original design for computing resource request packet format is developed based on the IPv6 extension header. Additionally, preference-based computing resource scheduling strategies are incorporated, which employ the technique for order preference by similarity to ideal solution (TOPSIS) combined with the entropy weight method, to comprehensively evaluate computing resource nodes and use a roulette-selection algorithm to accomplish the probability selection of destination nodes. Experimental results indicate that, in comparison to alternative scheduling schemes, IPCRSA exhibits significant advantages in enhancing scheduling flexibility, improving scheduling success rates, and catering to diverse user requirements. Full article
(This article belongs to the Section Networks)
Show Figures

Figure 1

23 pages, 1191 KiB  
Article
A Link Status-Based Multipath Scheduling Scheme on Network Nodes
by Hongyu Liu, Hong Ni and Rui Han
Electronics 2024, 13(3), 608; https://doi.org/10.3390/electronics13030608 - 1 Feb 2024
Cited by 2 | Viewed by 1655
Abstract
Traditional internet protocol (IP) networks, adhering to a “best-effort” service model, typically utilize shortest-path routing for data transmission. Nevertheless, this methodology encounters limitations, especially considering the increasing demands for both high reliability and high bandwidth. These demands reveal shortcomings in this routing strategy, [...] Read more.
Traditional internet protocol (IP) networks, adhering to a “best-effort” service model, typically utilize shortest-path routing for data transmission. Nevertheless, this methodology encounters limitations, especially considering the increasing demands for both high reliability and high bandwidth. These demands reveal shortcomings in this routing strategy, notably its inefficient bandwidth utilization and fault recovery capabilities. The method of multipath transmission has been extensively researched as a solution to these challenges. With the emergence of innovative Internet architectures, notably information-centric networking (ICN), network nodes have gained enhanced capabilities, opening new avenues for multipath transmission design. This paper introduces a multipath scheduling approach for network nodes, capitalizing on the advanced features of these modern nodes. It reimagines the conventional next-hop node as a group of potential next-hop nodes based on both global and local routing strategies and assigns traffic shares to each node within this group for balanced traffic distribution. Network nodes are configured to periodically review and adjust traffic shares according to the link statuses. If scheduling cannot be completed within the set, feedback is sent to upstream nodes. Simulations demonstrate that this approach effectively leverages network path variety, improves bandwidth usage and throughput, and minimizes average data transmission time. Full article
Show Figures

Figure 1

Back to TopTop