Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = Ile269Asn-mutation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 638 KiB  
Article
Expanding the Genetic and Clinical Spectrum of Hereditary Transthyretin Amyloidosis: The Glu61Ala Variant
by Christian Messina, Salvatore Gulizia, Federica Scalia, Eugenia Borgione, Francesco Cappello, Filippo Brighina and Vincenzo Di Stefano
J. Pers. Med. 2025, 15(2), 61; https://doi.org/10.3390/jpm15020061 - 6 Feb 2025
Cited by 1 | Viewed by 1124
Abstract
Introduction. Hereditary transthyretin amyloidosis (hATTR) is a rare disorder with a largely variable worldwide prevalence, and it is caused by autosomal dominant mutations in the transthyretin (TTR) gene, leading to cardiological, neurological, or mixed phenotypes. Apart from the Glu89Gln, Phe64Leu, and [...] Read more.
Introduction. Hereditary transthyretin amyloidosis (hATTR) is a rare disorder with a largely variable worldwide prevalence, and it is caused by autosomal dominant mutations in the transthyretin (TTR) gene, leading to cardiological, neurological, or mixed phenotypes. Apart from the Glu89Gln, Phe64Leu, and Thr49Ala variants, recently, other mutations of TTR gene have been reported in Sicily (His90Asn, Val122Ile, Ser77Phe, Val20Ala). With this paper, we describe a novel mutation in the TTR gene, the Glu61Ala variant, which had been previously reported in only one case with a cardiac phenotype, and the clinical findings surrounding it. Materials and Methods. One individual affected by chronic idiopathic polyneuropathy and a major red flag for hATTR underwent genetic testing to look for mutations in the TTR gene. Then, his relatives were subjected to the same test. We assessed the anamnestic profile and conducted general and neurological examination, blood tests, nerve conduction studies (NCS), electrocardiogram, and Sudoscan for each patient. Written informed consent was acquired for every patient. Results. Among 7 patients screened, 5 patients carried the Glu61Ala variant (71%). The mean age was 64.6 ± 10.2 years, whereas the mean age at onset was 59.4 ± 7.9 years. In our study, three patients (60%) showed a mixed phenotype, whereas two of them (40%) showed a neurological phenotype. Discussion. The Glu61Ala variant was reported only in one case with a cardiological phenotype, but our patients showed both neurological and cardiological involvement. Further studies are needed to improve knowledge of this genetic variant. Full article
Show Figures

Figure 1

13 pages, 2480 KiB  
Article
Preliminary Investigation on Resistance of Beckmannia syzigachne to Clodinafop-Propargyl and Mesosulfuron-Methyl from China
by Licun Peng, Xiangju Li, Shuai Zhang, Xiaotong Guo, Zheng Li, Jingchao Chen, Shouhui Wei and Hailan Cui
Agronomy 2025, 15(2), 314; https://doi.org/10.3390/agronomy15020314 - 26 Jan 2025
Viewed by 701
Abstract
Beckmannia syzigachne is one of the most competitive weeds in winter wheat fields in China. In this study, 120 suspected resistant populations of Beckmannia syzigachne were collected from the Anhui, Hubei, Jiangsu, and Shandong Provinces from 2017 to 2019. In total, 110 populations [...] Read more.
Beckmannia syzigachne is one of the most competitive weeds in winter wheat fields in China. In this study, 120 suspected resistant populations of Beckmannia syzigachne were collected from the Anhui, Hubei, Jiangsu, and Shandong Provinces from 2017 to 2019. In total, 110 populations exhibited different levels of resistance to clodinafop-propargyl, 114 populations expressed different levels of resistance to mesosulfuron-methyl, and 105 populations were resistant to both herbicides at different levels. The resistant weeds were mainly distributed in Anhui and Jiangsu Provinces. The detection results of acetyl coA carboxylase (ACCase) and acetolactate synthase (ALS) genes in the resistant populations indicated that ACCase gene mutations occurred in 97 out of 110 populations resistant to clodinafop-propargyl and ALS gene mutations occurred in 25 out of 114 populations resistant to mesosulfuron-methyl. There were several mutation types, including Ile-1781-Leu, Trp-2027-Cys, Ile-2041-Asn, Ile-2041-Val, Asp-2078-Gly, and Gly-2096-Ala in the ACCase sequence and Pro-197-Ser, Pro-197-Thr, Pro-197-His, Pro-197-Leu, Asp-376-Glu, and Trp-574-Leu in the ALS sequence. Among these mutation types, Pro-197-His, Asp-376-Glu, and Trp-574-Leu in the ALS sequence were the first identified in Beckmannia syzigachne. Full article
(This article belongs to the Special Issue Weed Biology and Ecology: Importance to Integrated Weed Management)
Show Figures

Figure 1

14 pages, 2754 KiB  
Article
Critical Considerations in Calling Disease-Causing EDAR Mutations in Nonsyndromic Oligodontia
by Youn Jung Kim, Se-Young Gu, Wonseon Chae, Seon Hee Kim and Jung-Wook Kim
J. Clin. Med. 2024, 13(23), 7328; https://doi.org/10.3390/jcm13237328 - 2 Dec 2024
Cited by 1 | Viewed by 832
Abstract
Background/Objectives: Oligodontia, the absence of six or more teeth excluding third molars, is a rare genetic condition, unlike hypodontia (missing one or more teeth), which is a relatively common human disease. Methods: To identify the genetic etiology of nonsyndromic oligodontia (NSO) families, we [...] Read more.
Background/Objectives: Oligodontia, the absence of six or more teeth excluding third molars, is a rare genetic condition, unlike hypodontia (missing one or more teeth), which is a relatively common human disease. Methods: To identify the genetic etiology of nonsyndromic oligodontia (NSO) families, we performed mutational analysis and investigated the functional effects of identified EDAR mutations. Whole-exome sequencing was conducted on recruited families with NSO. Bioinformatic analysis identified mutations in oligodontia-causing candidate genes, which were confirmed by Sanger sequencing and segregation within families. The impact of EDAR mutations on the EDA signaling pathway was assessed using luciferase activity analysis. Results: EDAR mutations were identified in three NSO families. A homozygous missense EDAR mutation (NM_022336.4: c.319A>G p.(Met107Val)) was found in the singleton proband of family 1. The proband of family 2 carried compound heterozygous EDAR mutations: a maternal missense mutation (c.319A>G p.(Met107Val)) and a paternal missense variant (c.1270G>A p.(Val424Met)). The proband of family 3 had heterozygous EDAR mutations: a maternal missense mutation (c.389T>A p.(Ile130Asn)) and paternal intronic variants in cis (c.[357-4G>A;440+50C>T]). Luciferase assays confirmed reduced transcriptional activity for all identified missense mutations, while splicing assays revealed altered splicing patterns. Conclusions: In conclusion, recessive EDAR mutations, including novel ones, were identified in NSO families, and their pathological mechanism was explored through transcriptional activity measurements. Full article
(This article belongs to the Section Dentistry, Oral Surgery and Oral Medicine)
Show Figures

Figure 1

11 pages, 4718 KiB  
Article
Genetic Diversity and Recombination Analysis of Canine Parvoviruses Prevalent in Central and Eastern China, from 2020 to 2023
by Shunshun Pan, Yuanzhuo Man, Xin Xu, Jun Ji, Shiyuan Zhang, Honghui Huang, Ying Li, Yingzuo Bi and Lunguang Yao
Microorganisms 2024, 12(11), 2173; https://doi.org/10.3390/microorganisms12112173 - 29 Oct 2024
Cited by 1 | Viewed by 1399
Abstract
Canine parvovirus type-2 (CPV-2), the primary causative agent of serious canine enteric diseases, is highly contagious and associated with high fatality rates worldwide. To comprehend the current emergence of CPV-2 in central and eastern China, 130 rectal swabs from domestic or stray dogs [...] Read more.
Canine parvovirus type-2 (CPV-2), the primary causative agent of serious canine enteric diseases, is highly contagious and associated with high fatality rates worldwide. To comprehend the current emergence of CPV-2 in central and eastern China, 130 rectal swabs from domestic or stray dogs with gastroenteritis symptoms were collected during 2020–2023. A total of 118 positive samples were detected via polymerase chain reaction, and further used to amplify and sequence the VP2 gene. Sequence analysis of the deduced amino acids of VP2 protein indicated that CPV-2c was the most prevalent variant (n = 106, 89.83%), followed by the novel CPV-2a (n = 10, 8.47%) and CPV-2b (n = 2, 1.69%) variants. The VP2 protein from the obtained and reference strains showed 86.95% (AH2103 and HB2108) to 99.94% identity. Based on the nine predicted recombination events, some prevalent CPV-2c strains were highly similar to previously isolated strains, indicating their complex evolution and recombination. The predicted analysis suggested that mutations in the antigen epitope (Val219Ile, Phe267Tyr, and Asn426Glu) and other mutations (Met87Leu, Ile101Thr, and Ser297Ala) affect the tertiary structure of the VP2 protein. This research will help us understand the recent evolution and mutation of Chinese CPV-2 and provide suggestions for updating the CPV-2 vaccine. Full article
(This article belongs to the Special Issue Advances in Parvovirus Infection of Pets and Waterfowl)
Show Figures

Figure 1

23 pages, 7398 KiB  
Article
Computational Design and Optimization of Peptide Inhibitors for SIRT2
by Heba A. Alkhatabi, Fatmah M. A. Naemi, Reem Alsolami and Hisham N. Alatyb
Pharmaceuticals 2024, 17(9), 1120; https://doi.org/10.3390/ph17091120 - 24 Aug 2024
Cited by 2 | Viewed by 2321
Abstract
Sirtuin 2 (SIRT2), an NAD+-dependent deacetylase, is crucial for regulating vital physiological processes, including aging, DNA repair, and cell cycle progression. Its abnormal activity is linked to diseases such as Parkinson’s disease, cancer, and metabolic disorders, making it a potential target for therapeutic [...] Read more.
Sirtuin 2 (SIRT2), an NAD+-dependent deacetylase, is crucial for regulating vital physiological processes, including aging, DNA repair, and cell cycle progression. Its abnormal activity is linked to diseases such as Parkinson’s disease, cancer, and metabolic disorders, making it a potential target for therapeutic intervention. While small molecule inhibitors have been studied, peptide-based inhibitors offer a promising alternative due to their selectivity and bioavailability. This study explores the effects of converting the naturally occurring cyclic inhibitor peptide of SIRT2 (S2iL5) into a non-cyclic form by replacing a residue with FAK (LYS + CF3CO). The new peptide sequence, Tyr-His-Thr-Tyr-His-Val-FAK (LYS)-Arg-Arg-Thr-Asn-Tyr-Tyr-Cys, was modeled to confirm its stable conformation. Docking studies and MM/GBSA calculations showed that the non-cyclic peptide had a better binding free energy (−50.66 kcal/mol) compared to the cyclic S2iL5 (−49.44 kcal/mol). Further mutations generated 160,000 unique peptides, screened using a machine learning-based QSAR model. Three promising peptides (Peptide 1: YGGNNVKRRTNYYC, Peptide 2: YMGEWVKRRTNYYC, and Peptide 3: YGGNGVKRRTNYYC) were selected and further modeled. Molecular dynamics (MD) analyses demonstrated that Peptide 1 and Peptide 2 had significant potential as SIRT2 inhibitors, showing moderate stability and some structural flexibility. Their best binding free energies were −59.07 kcal/mol and −46.01 kcal/mol, respectively. The study aimed to enhance peptide flexibility and binding affinity, suggesting that optimized peptide-based inhibitors can interact effectively with SIRT2. However, further experimental validation is necessary to confirm these computational predictions and evaluate the therapeutic potential of the identified peptides. Full article
(This article belongs to the Special Issue Computer-Aided Drug Design and Drug Discovery)
Show Figures

Graphical abstract

19 pages, 2002 KiB  
Article
Clinical and Molecular Characterization of Nine Novel Antithrombin Mutations
by Judit Kállai, Réka Gindele, Krisztina Pénzes-Daku, Gábor Balogh, Réka Bogáti, Bálint Bécsi, Éva Katona, Zsolt Oláh, Péter Ilonczai, Zoltán Boda, Ágnes Róna-Tas, László Nemes, Imelda Marton and Zsuzsanna Bereczky
Int. J. Mol. Sci. 2024, 25(5), 2893; https://doi.org/10.3390/ijms25052893 - 1 Mar 2024
Viewed by 1851
Abstract
Antithrombin (AT) is the major plasma inhibitor of thrombin (FIIa) and activated factor X (FXa), and antithrombin deficiency (ATD) is one of the most severe thrombophilic disorders. In this study, we identified nine novel AT mutations and investigated their genotype–phenotype correlations. Clinical and [...] Read more.
Antithrombin (AT) is the major plasma inhibitor of thrombin (FIIa) and activated factor X (FXa), and antithrombin deficiency (ATD) is one of the most severe thrombophilic disorders. In this study, we identified nine novel AT mutations and investigated their genotype–phenotype correlations. Clinical and laboratory data from patients were collected, and the nine mutant AT proteins (p.Arg14Lys, p.Cys32Tyr, p.Arg78Gly, p.Met121Arg, p.Leu245Pro, p.Leu270Argfs*14, p.Asn450Ile, p.Gly456delins_Ala_Thr and p.Pro461Thr) were expressed in HEK293 cells; then, Western blotting, N-Glycosidase F digestion, and ELISA were used to detect wild-type and mutant AT. RT-qPCR was performed to determine the expression of AT mRNA from the transfected cells. Functional studies (AT activity in the presence and in the absence of heparin and heparin-binding studies with the surface plasmon resonance method) were carried out. Mutations were also investigated by in silico methods. Type I ATD caused by altered protein synthesis (p.Cys32Tyr, p.Leu270Argfs*14, p.Asn450Ile) or secretion disorder (p.Met121Arg, p.Leu245Pro, p.Gly456delins_Ala_Thr) was proved in six mutants, while type II heparin-binding-site ATD (p.Arg78Gly) and pleiotropic-effect ATD (p.Pro461Thr) were suggested in two mutants. Finally, the pathogenic role of p.Arg14Lys was equivocal. We provided evidence to understand the pathogenic nature of novel SERPINC1 mutations through in vitro expression studies. Full article
(This article belongs to the Special Issue The Role of Antithrombin in Blood Disorders)
Show Figures

Figure 1

20 pages, 8714 KiB  
Article
Structure-Based In Silico Approaches Reveal IRESSA as a Multitargeted Breast Cancer Regulatory, Signalling, and Receptor Protein Inhibitor
by Hassan Hussain Almasoudi, Mutaib M. Mashraqi, Saleh A. Alshamrani, Afaf Awwadh Alharthi, Ohud Alsalmi, Mohammed H. Nahari, Fares Saeed H. Al-Mansour and Abdulfattah Yahya M. Alhazmi
Pharmaceuticals 2024, 17(2), 208; https://doi.org/10.3390/ph17020208 - 6 Feb 2024
Cited by 8 | Viewed by 2503
Abstract
Breast cancer begins in the breast cells, mainly impacting women. It starts in the cells that line the milk ducts or lobules responsible for producing milk and can spread to nearby tissues and other body parts. In 2020, around 2.3 million women across [...] Read more.
Breast cancer begins in the breast cells, mainly impacting women. It starts in the cells that line the milk ducts or lobules responsible for producing milk and can spread to nearby tissues and other body parts. In 2020, around 2.3 million women across the globe received a diagnosis, with an estimated 685,000 deaths. Additionally, 7.8 million women were living with breast cancer, making it the fifth leading cause of cancer-related deaths among women. The mutational changes, overexpression of drug efflux pumps, activation of alternative signalling pathways, tumour microenvironment, and cancer stem cells are causing higher levels of drug resistance, and one of the major solutions is to identify multitargeted drugs. In our research, we conducted a comprehensive screening using HTVS, SP, and XP, followed by an MM/GBSA computation of human-approved drugs targeting HER2/neu, BRCA1, PIK3CA, and ESR1. Our analysis pinpointed IRESSA (Gefitinib-DB00317) as a multitargeted inhibitor for these proteins, revealing docking scores ranging from −4.527 to −8.809 Kcal/mol and MM/GBSA scores between −49.09 and −61.74 Kcal/mol. We selected interacting residues as fingerprints, pinpointing 8LEU, 6VAL, 6LYS, 6ASN, 5ILE, and 5GLU as the most prevalent in interactions. Subsequently, we analysed the ADMET properties and compared them with the standard values of QikProp. We extended our study for DFT computations with Jaguar and plotted the electrostatic potential, HOMO and LUMO regions, and electron density, followed by a molecular dynamics simulation for 100 ns in water, showing an utterly stable performance, making it a suitable drug candidate. IRESSA is FDA-approved for lung cancer, which shares some pathways with breast cancers, clearing the hurdles of multitargeted drugs against breast and lung cancer. This has the potential to be groundbreaking; however, more studies are needed to concreate IRESSA’s role. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

7 pages, 1189 KiB  
Case Report
Multiple Sulfatase Deficiency from an Ophthalmologist’s Perspective—Case Report and Literature Review
by Michael P. Schittkowski, Sabine Naxer, Mohamed Elabbasy, Leonie Herholz, Vivian Breitling, Alan Finglas, Jutta Gärtner and Lars Schlotawa
Children 2023, 10(3), 595; https://doi.org/10.3390/children10030595 - 21 Mar 2023
Cited by 2 | Viewed by 2282
Abstract
Multiple sulfatase deficiency (MSD) is an extremely rare autosomal recessively inherited disease with a prevalence of 1:500.000 caused by mutations on the sulfatase-modifying-Factor 1 gene (SUMF1). MSD is most specifically characterised by a combination of developmentally retarded psychomotoric functions, neurodegeneration that entails the [...] Read more.
Multiple sulfatase deficiency (MSD) is an extremely rare autosomal recessively inherited disease with a prevalence of 1:500.000 caused by mutations on the sulfatase-modifying-Factor 1 gene (SUMF1). MSD is most specifically characterised by a combination of developmentally retarded psychomotoric functions, neurodegeneration that entails the loss of many already acquired abilities, and by ichthyosis. Other symptoms include those associated with mucopolysaccharidosis, i.e., facial dysmorphy, dwarfism, and hepatosplenomegaly. In 50–75% of all MSD-affected patients, functional or structural ocular damage is likely. MSD seldom affects the anterior segment of the eye. The main pathology these patients present is a highly conspicuous tapetoretinal degeneration, similar to severe Retinitis pigmentosa, that leads to blindness at an early age. An initially five-year-old boy with MSD, genetically verified at his first examination in our opthalmology department (SUMF1 mutations c.776A>T, p.Asn259Ile; c.797A>T, p.Pro266Leu; c.836A>T, p.Ala279Val), and a 4, 5 year regular follow-up are described. The patient had some visual potential (“tunnel view”), which deteriorated dramatically after his fifth birthday. We observed no evidence of worsening retinal involvement in this patient in spite of his progressively worsening clinical symptoms, extending to total blindness/no light perception. OCT revealed that the outer retinal layers containing photoreceptors were diseased; the ellipsoid zone was only partially discernible and the outer nuclear layer appeared to be thinned out. The inner nuclear layer, ganglion cell layer, and retinal nerve fibre layer were indistinguishable. These anomalies are indicative of a severe pathology within the retina’s inner layers. Characteristic anomalies in the fundus should stimulate clinicians to suspect a case of MSD in their differential diagnosis, and thus to order thorough genetic and paediatric diagnostics. Full article
(This article belongs to the Section Pediatric Ophthalmology)
Show Figures

Figure 1

12 pages, 3390 KiB  
Article
Rare Genetic Variants in Human APC Are Implicated in Mesiodens and Isolated Supernumerary Teeth
by Chomchanok Panyarat, Siriruk Nakornchai, Kanoknart Chintakanon, Niramol Leelaadisorn, Worrachet Intachai, Bjorn Olsen, Sissades Tongsima, Ploy Adisornkanj, Chumpol Ngamphiw, Timothy C. Cox and Piranit Kantaputra
Int. J. Mol. Sci. 2023, 24(5), 4255; https://doi.org/10.3390/ijms24054255 - 21 Feb 2023
Cited by 5 | Viewed by 4530
Abstract
The activation of Wnt/β-catenin signalling is a prerequisite for odontogenesis. APC, a member of the AXIN-CK1-GSK3β-APC β-catenin destruction complex, functions to modulate Wnt/β-catenin signalling to establish regular teeth number and positions. APC loss-of-function mutations are associated with the over-activation of WNT/β-catenin signalling and [...] Read more.
The activation of Wnt/β-catenin signalling is a prerequisite for odontogenesis. APC, a member of the AXIN-CK1-GSK3β-APC β-catenin destruction complex, functions to modulate Wnt/β-catenin signalling to establish regular teeth number and positions. APC loss-of-function mutations are associated with the over-activation of WNT/β-catenin signalling and subsequent familial adenomatous polyposis (FAP; MIM 175100) with or without multiple supernumerary teeth. The ablation of Apc function in mice also results in the constitutive activation of β-catenin in embryonic mouse epithelium and causes supernumerary tooth formation. The objective of this study was to investigate if genetic variants in the APC gene were associated with supernumerary tooth phenotypes. We clinically, radiographically, and molecularly investigated 120 Thai patients with mesiodentes or isolated supernumerary teeth. Whole exome and Sanger sequencing identified three extremely rare heterozygous variants (c.3374T>C, p.Val1125Ala; c.6127A>G, p.Ile2043Val; and c.8383G>A, p.Ala2795Thr) in APC in four patients with mesiodentes or a supernumerary premolar. An additional patient with mesiodens was compound as heterozygous for two APC variants (c.2740T>G, p.Cys914Gly, and c.5722A>T, p.Asn1908Tyr). Rare variants in APC in our patients are likely to contribute to isolated supernumerary dental phenotypes including isolated mesiodens and an isolated supernumerary tooth. Full article
Show Figures

Figure 1

7 pages, 1048 KiB  
Article
Bothnian Palmoplantar Keratoderma: Further Delineation of the Associated Phenotype
by Laura Fertitta, Fabienne Charbit-Henrion, Stéphanie Leclerc-Mercier, Thao Nguyen-Khoa, Robert Baran, Caroline Alby, Julie Steffann, Isabelle Sermet-Gaudelus and Smail Hadj-Rabia
Genes 2022, 13(12), 2360; https://doi.org/10.3390/genes13122360 - 14 Dec 2022
Cited by 3 | Viewed by 2198
Abstract
Bothnian palmoplantar keratoderma (PPKB, MIM600231) is an autosomal dominant form of diffuse non-epidermolytic PPK characterized by spontaneous yellowish-white PPK associated with a spongy appearance after water-immersion. It is due to AQP5 heterozygous mutations. We report four patients carrying a novel AQP5 heterozygous mutation [...] Read more.
Bothnian palmoplantar keratoderma (PPKB, MIM600231) is an autosomal dominant form of diffuse non-epidermolytic PPK characterized by spontaneous yellowish-white PPK associated with a spongy appearance after water-immersion. It is due to AQP5 heterozygous mutations. We report four patients carrying a novel AQP5 heterozygous mutation (c.125T>A; p.(Ile42Asn)), and belonging to the same French family. Early palmoplantar swelling (before one year of age), pruritus and hyperhidrosis were constant. The PPK was finally characterized as transgrediens, non-progrediens, diffuse PPK with a clear delineation between normal and affected skin. The cutaneous modifications at water-immersion test, “hand-in-the-bucket sign”, were significantly evident after 3 to 6 min of immersion in the children and father, respectively. AQP5 protein is expressed in eccrine sweat glands (ESG), salivary and airway submucosal glands. In PPKB, gain of function mutations seem to widen the channel diameter of ESG and increase water movement. Thus, swelling seems to be induced by hypotonicity with water entrance into cells, while hyperhidrosis is the result of an increased cytosolic calcium concentration. Full article
(This article belongs to the Special Issue Molecular Biology and Treatment of Genodermatoses)
Show Figures

Figure 1

12 pages, 966 KiB  
Article
Effect of the Melanocortin 4-Receptor Ile269Asn Mutation on Weight Loss Response to Dietary, Phentermine and Bariatric Surgery Interventions
by Itzel G. Salazar-Valencia, Hugo Villamil-Ramírez, Francisco Barajas-Olmos, Martha Guevara-Cruz, Luis R. Macias-Kauffer, Humberto García-Ortiz, Omar Hernández-Vergara, David Alberto Díaz de Sandy-Galán, Paola León-Mimila, Federico Centeno-Cruz, Luis E. González-Salazar, Rocío Guizar-Heredia, Edgar Pichardo-Ontiveros, Leonor Jacobo-Albavera, Rosalinda Posadas-Sánchez, Gilberto Vargas-Alarcón, Rafael Velazquez-Cruz, Ruth Gutiérrez-Aguilar, Carlos Zerrweck, Héctor Isaac Rocha-González, Juan Gerardo Reyes-García, Miriam del C. Carrasco-Portugal, Francisco Javier Flores-Murrieta, Armando R. Tovar, Lorena Orozco, Teresa Villarreal-Molina and Samuel Canizales-Quinterosadd Show full author list remove Hide full author list
Genes 2022, 13(12), 2267; https://doi.org/10.3390/genes13122267 - 1 Dec 2022
Cited by 7 | Viewed by 2852
Abstract
The loss of function melanocortin 4-receptor (MC4R) Ile269Asn mutation has been proposed as one of the most important genetic contributors to obesity in the Mexican population. However, whether patients bearing this mutation respond differently to weight loss treatments is unknown. We [...] Read more.
The loss of function melanocortin 4-receptor (MC4R) Ile269Asn mutation has been proposed as one of the most important genetic contributors to obesity in the Mexican population. However, whether patients bearing this mutation respond differently to weight loss treatments is unknown. We tested the association of this mutation with obesity in 1683 Mexican adults, and compared the response of mutation carriers and non-carriers to three different weight loss interventions: dietary restriction intervention, phentermine 30 mg/day treatment, and Roux-en-Y gastric bypass (RYGB) surgery. The Ile269Asn mutation was associated with obesity [OR = 3.8, 95% CI (1.5–9.7), p = 0.005]. Regarding interventions, in the dietary restriction group only two patients were MC4R Ile269Asn mutation carriers. After 1 month of treatment, both mutation carriers lost weight: −4.0 kg (−2.9%) in patient 1, and −1.8 kg (−1.5%) in patient 2; similar to the mean weight loss observed in six non-carrier subjects (−2.9 kg; −2.8%). Phentermine treatment produced similar weight loss in six carriers (−12.7 kg; 15.5%) and 18 non-carriers (−11.3 kg; 13.6%) after 6 months of pharmacological treatment. RYGB also caused similar weight loss in seven carriers (29.9%) and 24 non-carriers (27.8%), 6 months after surgery. Our findings suggest that while the presence of a single MC4R loss of function Ile269Asn allele significantly increases obesity risk, the presence of at least one functional MC4R allele seems sufficient to allow short-term weight loss in response to dietary restriction, phentermine and RYGB. Thus, these three different interventions may be useful for the short-term treatment of obesity in MC4R Ile269Asn mutation carriers. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

21 pages, 6860 KiB  
Article
Molecular Insights into the Role of Pathogenic nsSNPs in GRIN2B Gene Provoking Neurodevelopmental Disorders
by Abid Ali Shah, Marryam Amjad, Jawad-Ul Hassan, Asmat Ullah, Arif Mahmood, Huiyin Deng, Yasir Ali, Fouzia Gul and Kun Xia
Genes 2022, 13(8), 1332; https://doi.org/10.3390/genes13081332 - 26 Jul 2022
Cited by 19 | Viewed by 3964
Abstract
The GluN2B subunit of N-methyl-D-aspartate receptors plays an important role in the physiology of different neurodevelopmental diseases. Genetic variations in the GluN2B coding gene (GRIN2B) have consistently been linked to West syndrome, intellectual impairment with focal epilepsy, developmental delay, macrocephaly, corticogenesis, [...] Read more.
The GluN2B subunit of N-methyl-D-aspartate receptors plays an important role in the physiology of different neurodevelopmental diseases. Genetic variations in the GluN2B coding gene (GRIN2B) have consistently been linked to West syndrome, intellectual impairment with focal epilepsy, developmental delay, macrocephaly, corticogenesis, brain plasticity, as well as infantile spasms and Lennox–Gastaut syndrome. It is unknown, however, how GRIN2B genetic variation impacts protein function. We determined the cumulative pathogenic impact of GRIN2B variations on healthy participants using a computational approach. We looked at all of the known mutations and calculated the impact of single nucleotide polymorphisms on GRIN2B, which encodes the GluN2B protein. The pathogenic effect, functional impact, conservation analysis, post-translation alterations, their driving residues, and dynamic behaviors of deleterious nsSNPs on protein models were then examined. Four polymorphisms were identified as phylogenetically conserved PTM drivers and were related to structural and functional impact: rs869312669 (p.Thr685Pro), rs387906636 (p.Arg682Cys), rs672601377 (p.Asn615Ile), and rs1131691702 (p.Ser526Pro). The combined impact of protein function is accounted for by the calculated stability, compactness, and total globularity score. GluN2B hydrogen occupancy was positively associated with protein stability, and solvent-accessible surface area was positively related to globularity. Furthermore, there was a link between GluN2B protein folding, movement, and function, indicating that both putative high and low local movements were linked to protein function. Multiple GRIN2B genetic variations are linked to gene expression, phylogenetic conservation, PTMs, and protein instability behavior in neurodevelopmental diseases. These findings suggest the relevance of GRIN2B genetic variations in neurodevelopmental problems. Full article
(This article belongs to the Special Issue Bioinformatics of Disease Genes)
Show Figures

Figure 1

10 pages, 1255 KiB  
Article
A Novel 90-kbp Deletion of RUNX2 Associated with Cleidocranial Dysplasia
by Yanli Zhang and Xiaohong Duan
Genes 2022, 13(7), 1128; https://doi.org/10.3390/genes13071128 - 23 Jun 2022
Cited by 7 | Viewed by 3212
Abstract
Cleidocranial dysplasia (CCD) is a rare autosomal dominant skeletal dysplasia caused by runt-related transcription factor 2 (RUNX2) mutations. In addition to the regular missense, small or large fragment deletions are the common mutation types of RUNX2. This study aimed to [...] Read more.
Cleidocranial dysplasia (CCD) is a rare autosomal dominant skeletal dysplasia caused by runt-related transcription factor 2 (RUNX2) mutations. In addition to the regular missense, small or large fragment deletions are the common mutation types of RUNX2. This study aimed to find the rules of deletions in RUNX2. The clinical information of one Chinese CCD family was collected. Genomic DNA was extracted for whole-exome sequencing (WES). Bioinformatics analyzed the pathogenicity of the variants. Polymerase chain reaction (PCR) and Sanger sequencing were carried out using specific primers. RT-PCR and Q-PCR were also used to detect the mRNA level of RUNX2. The CCD studies related with deletions in RUNX2 from 1999 to 2021 from HGMD and PubMed were collected and analyzed for the relationship between the phenotypes and the length of deleted fragments. The proband presented typical CCD features, including delayed closure of cranial sutures, clavicle dysplasia, abnormal teeth. WES, PCR with specific primers and Sanger sequencing revealed a novel heterozygous 90-kbp deletion in RUNX2 (NG_008020.2 g.103671~193943), which caused a substitution (p.Asn183Ile) and premature termination (p.Asp184*). In addition, the mRNA expression of RUNX2 was decreased by 75.5% in the proband. Herein, 31 types of deletions varying from 2 bp to 800 kbp or covering the whole gene of RUNX2 were compared and the significant phenotypic difference was not found among these deletions. The CCD phenotypes were related with the final effects of RUNX2 mutation instead of the length of deletion. WES has the defects in identifying large indels, and direct PCR with specific primers and Sanger sequencing could make up for the shortcoming. Full article
(This article belongs to the Special Issue Advances in Genetic Diseases of Teeth)
Show Figures

Graphical abstract

21 pages, 2406 KiB  
Article
Synthesis of a New β-Galactosidase Inhibitor Displaying Pharmacological Chaperone Properties for GM1 Gangliosidosis
by Francesca Clemente, Macarena Martínez-Bailén, Camilla Matassini, Amelia Morrone, Silvia Falliano, Anna Caciotti, Paolo Paoli, Andrea Goti and Francesca Cardona
Molecules 2022, 27(13), 4008; https://doi.org/10.3390/molecules27134008 - 22 Jun 2022
Cited by 3 | Viewed by 2814
Abstract
GM1 gangliosidosis is a rare lysosomal disease caused by the deficiency of the enzyme β-galactosidase (β-Gal; GLB1; E.C. 3.2.1.23), responsible for the hydrolysis of terminal β-galactosyl residues from GM1 ganglioside, glycoproteins, and glycosaminoglycans, such as keratan-sulfate. With the aim of identifying new [...] Read more.
GM1 gangliosidosis is a rare lysosomal disease caused by the deficiency of the enzyme β-galactosidase (β-Gal; GLB1; E.C. 3.2.1.23), responsible for the hydrolysis of terminal β-galactosyl residues from GM1 ganglioside, glycoproteins, and glycosaminoglycans, such as keratan-sulfate. With the aim of identifying new pharmacological chaperones for GM1 gangliosidosis, the synthesis of five new trihydroxypiperidine iminosugars is reported in this work. The target compounds feature a pentyl alkyl chain in different positions of the piperidine ring and different absolute configurations of the alkyl chain at C-2 and the hydroxy group at C-3. The organometallic addition of a Grignard reagent onto a carbohydrate-derived nitrone in the presence or absence of a suitable Lewis Acid was exploited, providing structural diversity at C-2, followed by the ring-closure reductive amination step. An oxidation-reduction process allowed access to a different configuration at C-3. The N-pentyl trihydroxypiperidine iminosugar was also synthesized for the purpose of comparison. The biological evaluation of the newly synthesized compounds was performed on leucocyte extracts from healthy donors and identified two suitable β-Gal inhibitors, namely compounds 10 and 12. Among these, compound 12 showed chaperoning properties since it enhanced β-Gal activity by 40% when tested on GM1 patients bearing the p.Ile51Asn/p.Arg201His mutations. Full article
(This article belongs to the Special Issue Synthesis and Therapeutic Applications of Iminosugars)
Show Figures

Graphical abstract

13 pages, 3146 KiB  
Article
Diversity of Herbicide-Resistance Mechanisms of Avena fatua L. to Acetyl-CoA Carboxylase-Inhibiting Herbicides in the Bajio, Mexico
by J Antonio Tafoya-Razo, Saul Alonso Mora-Munguía and Jesús R. Torres-García
Plants 2022, 11(13), 1644; https://doi.org/10.3390/plants11131644 - 22 Jun 2022
Cited by 7 | Viewed by 2422
Abstract
Herbicide resistance is an evolutionary process that affects entire agricultural regions’ yield and productivity. The high number of farms and the diversity of weed management can generate hot selection spots throughout the regions. Resistant biotypes can present a diversity of mechanisms of resistance [...] Read more.
Herbicide resistance is an evolutionary process that affects entire agricultural regions’ yield and productivity. The high number of farms and the diversity of weed management can generate hot selection spots throughout the regions. Resistant biotypes can present a diversity of mechanisms of resistance and resistance factors depending on selective conditions inside the farm; this situation is similar to predictions by the geographic mosaic theory of coevolution. In Mexico, the agricultural region of the Bajio has been affected by herbicide resistance for 25 years. To date, Avena fatua L. is one of the most abundant and problematic weed species. The objective of this study was to determine the mechanism of resistance of biotypes with failures in weed control in 70 wheat and barley crop fields in the Bajio, Mexico. The results showed that 70% of farms have biotypes with target site resistance (TSR). The most common mutations were Trp–1999–Cys, Asp–2078–Gly, Ile–2041–Asn, and some of such mutations confer cross-resistance to ACCase-inhibiting herbicides. Metabolomic fingerprinting showed four different metabolic expression patterns. The results confirmed that in the Bajio, there exist multiple selection sites for both resistance mechanisms, which proves that this area can be considered as a geographic mosaic of resistance. Full article
(This article belongs to the Special Issue Herbicide Mechanisms of Action and Resistance)
Show Figures

Figure 1

Back to TopTop