Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = IOCG

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
41 pages, 7932 KiB  
Article
Element Mobility in a Metasomatic System with IOCG Mineralization Metamorphosed at Granulite Facies: The Bondy Gneiss Complex, Grenville Province, Canada
by Olivier Blein and Louise Corriveau
Minerals 2025, 15(8), 803; https://doi.org/10.3390/min15080803 - 30 Jul 2025
Viewed by 143
Abstract
In the absence of appropriate tools and a knowledge base for exploring high-grade metamorphic terrains, felsic gneiss complexes at granulite facies have long been considered barren and have remained undermapped and understudied. This was the case of the Bondy gneiss complex in the [...] Read more.
In the absence of appropriate tools and a knowledge base for exploring high-grade metamorphic terrains, felsic gneiss complexes at granulite facies have long been considered barren and have remained undermapped and understudied. This was the case of the Bondy gneiss complex in the southwestern Grenville Province of Canada which consists of 1.39–1.35 Ga volcanic and plutonic rocks metamorphosed under granulite facies conditions at 1.19 Ga. Iron oxide–apatite and Cu-Ag-Au mineral occurrences occur among gneisses rich in biotite, cordierite, garnet, K-feldspar, orthopyroxene and/or sillimanite-rich gneisses, plagioclase-cordierite-orthopyroxene white gneisses, magnetite-garnet-rich gneisses, garnetites, hyperaluminous sillimanite-pyrite-quartz gneisses, phlogopite-sillimanite gneisses, and tourmalinites. Petrological and geochemical studies indicate that the precursors of these gneisses are altered volcanic and volcaniclastic rocks with attributes of pre-metamorphic Na, Ca-Fe, K-Fe, K, chloritic, argillic, phyllic, advanced argillic and skarn alteration. The nature of these hydrothermal rocks and the ore deposit model that best represents them are further investigated herein through lithogeochemistry. The lithofacies mineralized in Cu (±Au, Ag, Zn) are distinguished by the presence of garnet, magnetite and zircon, and exhibit pronounced enrichment in Fe, Mg, HREE and Zr relative to the least-altered rocks. In discrimination diagrams, the metamorphosed mineral system is demonstrated to exhibit the diagnostic attributes of, and is interpreted as, a metasomatic iron and alkali-calcic (MIAC) mineral system with iron oxide–apatite (IOA) and iron oxide copper–gold (IOCG) mineralization that evolves toward an epithermal cap. This contribution demonstrates that alteration facies diagnostic of MIAC systems and their IOCG and IOA mineralization remain diagnostic even after high-grade metamorphism. Exploration strategies can thus use the lithogeochemical footprint and the distribution and types of alteration facies observed as pathfinders for the facies-specific deposit types of MIAC systems. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

57 pages, 42873 KiB  
Article
The Mazenod–Sue–Dianne IOCG District of the Great Bear Magmatic Zone Northwest Territories, Canada
by A. Hamid Mumin and Mark Hamilton
Minerals 2025, 15(7), 726; https://doi.org/10.3390/min15070726 - 11 Jul 2025
Viewed by 188
Abstract
The Mazenod Lake region of the southern Great Bear Magmatic Zone (GBMZ) of the Northwest Territories, Canada, comprises the north-central portion of the Faber volcano-plutonic belt. Widespread and abundant surface exposure of several coalescing hydrothermal systems enables this paper to document, without ambiguity, [...] Read more.
The Mazenod Lake region of the southern Great Bear Magmatic Zone (GBMZ) of the Northwest Territories, Canada, comprises the north-central portion of the Faber volcano-plutonic belt. Widespread and abundant surface exposure of several coalescing hydrothermal systems enables this paper to document, without ambiguity, the relationships between geology, structure, alteration, and mineralization in this well exposed iron-oxide–copper–gold (IOCG) mineral system. Mazenod geology comprises rhyodacite to basaltic-andesite ignimbrite sheets with interlayered volcaniclastic sedimentary rocks dominated by fine-grained laminated tuff sequences. Much of the intermediate to mafic nature of volcanic rocks is masked by low-intensity but pervasive metasomatism. The region is affected by a series of coalescing magmatic–hydrothermal systems that host the Sue–Dianne magnetite–hematite IOCG deposit and several related showings including magnetite, skarn, and iron oxide apatite (IOA) styles of alteration ± mineralization. The mid to upper levels of these systems are exposed at surface, with underlying batholith, pluton and stocks exposed along the periphery, as well as locally within volcanic rocks associated with more intense alteration and mineralization. Widespread alteration includes potassic and sodic metasomatism, and silicification with structurally controlled giant quartz complexes. Localized tourmaline, skarn, magnetite–actinolite, and iron-oxide alteration occur within structural breccias, and where most intense formed the Sue–Dianne Cu-Ag-Au diatreme-like breccia deposit. Magmatism, volcanism, hydrothermal alteration, and mineralization formed during a negative tectonic inversion within the Wopmay Orogen. This generated a series of oblique offset rifted basins with continental style arc magmatism and extensional structures unique to GBMZ rifting. All significant hydrothermal centers in the Mazenod region occur along and at the intersections of crustal faults either unique to or put under tension during the GBMZ inversion. Full article
Show Figures

Figure 1

36 pages, 5500 KiB  
Article
Metasomatic Mineral Systems with IOA, IOCG, and Affiliated Deposits: Ontology, Taxonomy, Lexicons, and Field Geology Data Collection Strategy
by Louise Corriveau, Jean-François Montreuil, Gabriel Huot-Vézina and Olivier Blein
Minerals 2025, 15(6), 638; https://doi.org/10.3390/min15060638 - 11 Jun 2025
Viewed by 403
Abstract
Metasomatic iron and alkali-calcic (MIAC) mineral systems form district-scale metasomatic footprints in the upper crust that are genetically associated with iron oxide–apatite (IOA), iron oxide and iron sulfide copper–gold (IOCG, ISCG), skarn, and affiliated critical and precious metal deposits. The development of MIAC [...] Read more.
Metasomatic iron and alkali-calcic (MIAC) mineral systems form district-scale metasomatic footprints in the upper crust that are genetically associated with iron oxide–apatite (IOA), iron oxide and iron sulfide copper–gold (IOCG, ISCG), skarn, and affiliated critical and precious metal deposits. The development of MIAC systems is characterized by series of alteration facies that form key mappable entities in the field and along drill cores. Each facies can precipitate deposit types specific to the facies or host deposits formed at a subsequent facies. Defining the spatial and temporal relations between alteration facies and host rocks as well as with pre, syn, and post MIAC magmatic, tectonic, and mineralization events is essential to understanding the evolution of a MIAC system and to evaluating its overall mineral prospectivity. This paper proposes an ontology for MIAC systems that frames the key characteristics of the main alteration facies described and links it to a taxonomy and descriptive lexicons that allow the user to build an efficient data collection system tailored to the description of MIAC systems. The application developed by the Geological Survey of Canada for collecting field data is used as an example. The data collection system, including the application for collecting field data and the lexicons, are applicable to regional- and deposit-scale geological mapping as well as to drill core logging. They respond to the need for the metallogenic mapping of mineral systems and the development of more robust mineral prospectivity maps and exploration strategies for the discovery of critical and precious metal resources in MIAC systems. Full article
Show Figures

Graphical abstract

48 pages, 12213 KiB  
Review
Metasomatic Mineral Systems with IOA, IOCG, and Affiliated Critical and Precious Metal Deposits: A Review from a Field Geology Perspective
by Louise Corriveau and Jean-François Montreuil
Minerals 2025, 15(4), 365; https://doi.org/10.3390/min15040365 - 31 Mar 2025
Cited by 2 | Viewed by 1440
Abstract
Worldwide, a growing list of critical (Bi, Co, Cu, F, Fe, Mo, Ni, P, PGE, REE, W, U, and Zn) and precious metal (Ag and Au) resources have been identified in mineral systems forming Fe-oxide-copper-gold (IOCG) deposits; Fe-oxide-apatite (IOA); Fe-sulfide Cu-Au (ISCG); and [...] Read more.
Worldwide, a growing list of critical (Bi, Co, Cu, F, Fe, Mo, Ni, P, PGE, REE, W, U, and Zn) and precious metal (Ag and Au) resources have been identified in mineral systems forming Fe-oxide-copper-gold (IOCG) deposits; Fe-oxide-apatite (IOA); Fe-sulfide Cu-Au (ISCG); and affiliated W skarn; Fe-rich Au-Co-Bi or Ni; albitite-hosted U or Au ± Co; and five-element (Ag, As, Co, Ni, and U) vein deposits. This paper frames the genesis of this metallogenic diversity by defining the Metasomatic Iron and Alkali-Calcic (MIAC) mineral system and classifying its spectrum of Fe-rich-to-Fe-poor and alkali-calcic deposits. The metasomatic footprint of MIAC systems consists of six main alteration facies, each recording a distinct stage of mineralization as systems have evolved. The fluid flow pathways and the thermal and chemical gradients inferred from the space–time distribution of the alteration facies within a system are best explained by the ascent and lateral propagation of a voluminous hypersaline fluid plume. The primary fluid plume evolves, chemically and physically, as metasomatism progresses and through periodic ingresses of secondary fluids into the plume. Exploration strategies can take advantage of the predictability and the expanded range of exploration targets that the MIAC system framework offers, the building blocks of which are the alteration facies as mappable prospectivity criteria for the facies-specific critical and precious metal deposits the systems generate. Global case studies demonstrate that these criteria are applicable to MIAC systems worldwide. Full article
Show Figures

Figure 1

24 pages, 13494 KiB  
Article
Geology and Geochemistry of the Hongnipo Copper Deposit, Southwest China
by Wangdong Yang, Gongwen Wang and Yunchou Xu
Minerals 2024, 14(9), 936; https://doi.org/10.3390/min14090936 - 13 Sep 2024
Viewed by 1241
Abstract
The Hongnipo deposit, a newly discovered large copper deposit in the Kangdian Fe-Cu metallogenic belt of southwest China, is hosted in the Paleoproterozoic metavolcanic and metasedimentary rocks of the Hekou group. The deposit comprises five strata-bound ore bodies and is associated with sporadically [...] Read more.
The Hongnipo deposit, a newly discovered large copper deposit in the Kangdian Fe-Cu metallogenic belt of southwest China, is hosted in the Paleoproterozoic metavolcanic and metasedimentary rocks of the Hekou group. The deposit comprises five strata-bound ore bodies and is associated with sporadically distributed gabbroic intrusions. Four stages of mineralization and alteration have been identified: sodic alteration (I), banded sulfide (II), magnetite (III), and sulfide vein/stockwork (IV). Extensive sodic alteration of stage I is confirmed by the composition of feldspars. Trace element analysis of magnetite suggests a formation temperature of 400 ± 50 °C and has a characteristic of IOCG deposits, while high δ18O values (8.3–11.0‰) of fluids from stage III indicate a magmatic water origin. Sulfide δ34SVCDT values from stages II and IV range from −2.6 to 10.9‰ and −1.5 to 9.9‰, respectively, suggesting a mixed sulfur source from magmatic H2S and reduced seawater sulfate. Chalcopyrite from Hongnipo shows a narrow δ65Cu range of −0.135 to 0.587‰, indicating formation at high temperatures. The lack of correlation between δ65Cu and δ34SVCDT values suggests distinct geochemical behaviors in mineralization. In summary, the Hongnipo deposit is classified as a Cu-rich section of a typical IOCG deposit. Full article
Show Figures

Figure 1

29 pages, 30448 KiB  
Article
The Ore-Forming Process of Washan Porphyrite Iron Deposits in the Ningwu District Associated with Iron Oxide Apatite (IOA) Deposits and Iron Oxide Copper Gold (IOCG) Deposits
by Zhen Liu, Wei Xu, Chunming Liu and Dezhi Huang
Minerals 2024, 14(8), 841; https://doi.org/10.3390/min14080841 - 21 Aug 2024
Viewed by 1399
Abstract
The Washan iron deposits in Ningwu district contain different magma-related genetic natures, including magmatic, magmatic–hydrothermal and hydrothermal types, and their ore-forming processes remain a subject of debate. To elucidate the ore-forming processes of iron ores from Washan, we present textural, major element analytical, [...] Read more.
The Washan iron deposits in Ningwu district contain different magma-related genetic natures, including magmatic, magmatic–hydrothermal and hydrothermal types, and their ore-forming processes remain a subject of debate. To elucidate the ore-forming processes of iron ores from Washan, we present textural, major element analytical, and thermal data of magnetites from various ore bodies in Washan, probing the crystallization conditions and subsequent formation sequence of magnetites. SEM analysis with back-scattered electron (BSE) imaging reveals diverse magnetite textures, including mineral inclusions, exsolution lamellae, and recrystallization features, reflecting the transitional environment from magmatic to hydrothermal. Based on Ti, V, and Cr compositions of magnetite from different ore bodies, two distinct evolution trends of genetic processes are identified, including evolution paths from porphyry-type to IOA- and IOCG-type magnetite. High-resolution WDS mapping highlights the intensifying alterations during this process. Calculated magnetite crystallization temperatures among different types of magnetite range from 597 °C to 378 °C, suggesting a cooling trend from porphyry-type magnetite (~558 °C) to IOA-type magnetite (~515–439 °C) and IOCG-type magnetite (~378 °C). These results underscore the significant role of magma-derived hydrosaline liquids and vapors in the formation of iron ores from Washan, where variations in the salinity of ore-forming fluids lead to different evolutionary paths for subsequent generations of magnetite. The metallogenic model of the Washan iron deposit suggests that highly saline, iron-rich fluids connect the varying geneses of magnetite, transitioning from deeply formed porphyry-type magnetite to IOA- or IOCG-type magnetite generated in the subaerial zone. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

32 pages, 85969 KiB  
Article
Platinum Group Minerals Associated with Nickel-Bearing Sulfides from the Jatobá Iron Oxide-Copper-Gold Deposit, Carajás Domain, Brazil
by Yuri Tatiana Campo Rodriguez, Nigel J. Cook, Cristiana L. Ciobanu, Maria Emilia Schutesky, Samuel A. King, Sarah Gilbert and Kathy Ehrig
Minerals 2024, 14(8), 757; https://doi.org/10.3390/min14080757 - 26 Jul 2024
Cited by 4 | Viewed by 2156
Abstract
An enrichment in nickel (Ni) or platinum group elements (PGE) is seldom observed in ores of the iron oxide–copper–gold (IOCG) type. This phenomenon is, however, known from a few deposits and prospects in the Carajás Mineral Province, Brazil. The Ni-PGE enrichment is explained, [...] Read more.
An enrichment in nickel (Ni) or platinum group elements (PGE) is seldom observed in ores of the iron oxide–copper–gold (IOCG) type. This phenomenon is, however, known from a few deposits and prospects in the Carajás Mineral Province, Brazil. The Ni-PGE enrichment is explained, in part, by the spatial association of the IOCG-type ores with altered mafic-ultramafic lithologies, as well as by reworking and remobilization of pre-existing Ni and PGE during multiple mineralization and tectonothermal events across the Archean-Proterozoic. One such example of this mineralization is the Jatobá deposit in the southern copper belt of the Carajás Domain. This is the first detailed study of the Ni and PGE mineralization at Jatobá, with implications for understanding ore genesis. Petrographic and compositional study of sulfides shows that pyrite is the main Ni carrier, followed by pyrrhotite and exsolved pentlandite. Measurable concentrations of palladium (Pd) and platinum (Pt), albeit never more than a few ppm, are noted in pyrite. More importantly, however, the trace mineral signature of the Jatobá deposit features several platinum group minerals (PGM), including merenskyite, naldrettite, sudburyite, kotulskite, sperrylite, and borovskite. These PGM occur as sub-10 µm-sized grains that are largely restricted to fractures and grain boundaries in pyrite. All Pd minerals reported contain mobile elements such as Te, Bi, and Sb and are associated with rare earth- and U-minerals. This conspicuous mineralogy, differences in sulfide chemistry between the magnetite-hosted ore and stringer mineralization without magnetite, and microstructural control point to a genetic model for the sulfide mineralization at Jatobá and its relative enrichment in Ni and PGE. Observations support two alternative scenarios for ore genesis. In the first, an initial precipitation of disseminated or semi-massive Ni-PGE-bearing sulfides took place within the mafic rock pile, possibly in a VHMS-like setting. Later partial dissolution and remobilization of this pre-existing mineralization by mineralizing fluids of IOCG-type, possibly during the retrograde stage of a syn-deformational metamorphic event, led to their re-concentration within magnetite along structural conduits. The superposition of IOCG-style mineralization onto a pre-existing assemblage resulted in the observed replacement and overprinting in which PGE combined with components of the IOCG fluids like Sb, Bi, and Te. An alternative model involves leaching, by the IOCG-type fluids, of Ni and PGE from komatiites within the sequence or from ultramafic rocks in the basement. The discovery of PGM in Jatobá emphasizes the potential for additional discoveries of Ni-PGE-enriched ores elsewhere in the Carajás Domain and in analogous settings elsewhere. Full article
Show Figures

Figure 1

30 pages, 11950 KiB  
Article
Till Geochemistry as a Vector to Metasomatic Iron and Alkali-Calcic Systems and Associated Deposits in the Great Bear Magmatic Zone, Northwest Territories, Canada
by Philippe X. Normandeau, Isabelle McMartin and Louise Corriveau
Minerals 2024, 14(6), 547; https://doi.org/10.3390/min14060547 - 26 May 2024
Cited by 1 | Viewed by 2098
Abstract
Recent advances in the characterization of metasomatic iron and alkali-calcic (MIAC) systems with associated iron-oxide apatite (IOA) prospects and iron-oxide–copper–gold (IOCG) and metasomatic cobalt deposits of the Great Bear magmatic zone were used to determine if the geochemistry of glacial sediments can unveil [...] Read more.
Recent advances in the characterization of metasomatic iron and alkali-calcic (MIAC) systems with associated iron-oxide apatite (IOA) prospects and iron-oxide–copper–gold (IOCG) and metasomatic cobalt deposits of the Great Bear magmatic zone were used to determine if the geochemistry of glacial sediments can unveil pathfinder elements indicative of mineralization and associated alteration. Analysis of variance within bedrock lithogeochemical (n = 707 samples) and till geochemical datasets (n = 92 samples) are compared. Results show that Fe, Co, Ni, Cu, As, Mo, Bi, La, Th, U, and W were identified as potential vectoring elements in different fractions of till due to their anomalous concentrations down-ice of various mineralized outcrops within the study area. For instance, Fe, Co, Cu, and Mo were established as the most useful vectoring elements in the locally derived till (<2 km down-ice) near the Sue Dianne IOCG deposit, and Fe, Co, Ni, Cu, Mo, W, Bi, and U near the Fab IOCG prospect. At the Sue Dianne deposit, the ratios of near-total (4-acid digestion) versus partial (modified aqua regia digestion) concentrations in the silt + clay-sized till fraction (<0.063 mm) for both La and Th reflect the mineralization alteration signature and define a more consistent dispersal train from mineralization compared to element concentrations mapped alone. Additional testing in an area of continuous till cover near an isolated point source is recommended to further develop the elemental ratio method for exploration of MIAC systems. Full article
Show Figures

Graphical abstract

15 pages, 12681 KiB  
Article
Real-Time Ambient Seismic Noise Tomography of the Hillside Iron Oxide–Copper–Gold Deposit
by Timothy Jones, Gerrit Olivier, Bronwyn Murphy, Lachlan Cole, Craig Went, Steven Olsen, Nicholas Smith, Martin Gal, Brooke North and Darren Burrows
Minerals 2024, 14(3), 254; https://doi.org/10.3390/min14030254 - 28 Feb 2024
Cited by 5 | Viewed by 4664
Abstract
We conduct an exploration-scale ambient noise tomography (ANT) survey over the Hillside Iron Oxide–Copper–Gold (IOCG) deposit in South Australia, leveraging Fleet’s direct-to-satellite technology for real-time data analysis. The acquisition array consisted of 100 sensors spaced 260 m apart which recorded continuous vertical-component seismic [...] Read more.
We conduct an exploration-scale ambient noise tomography (ANT) survey over the Hillside Iron Oxide–Copper–Gold (IOCG) deposit in South Australia, leveraging Fleet’s direct-to-satellite technology for real-time data analysis. The acquisition array consisted of 100 sensors spaced 260 m apart which recorded continuous vertical-component seismic ambient noise for 14 days. High quality Rayleigh wave signals, with a mean signal-to-noise ratio (SNR) of 40, were recovered in the frequency band 1–4 Hz after processing the recorded data between 0.1–9 Hz. Our modelling results capture aspects of the deposit’s known geology, including depth of cover, structures linked to mineralisation, and the mineralised host rock, down to approximately 1 km depth. We compare our velocity model with existing magnetic, gravity, induced polarisation and drilling data, showing strong correlation with each. We identify several new features of the local geology, including the behaviour of key structures down to 1 km, and highlight the significance of a Cambrian-age dolomite that cuts across the main structural corridor that hosts the Hillside deposit. An analysis of model convergence rates with respect to Rayleigh wave SNRs shows that real-time data analysis can reduce recording duration at the site by 65% compared to traditional deployment durations, from ∼14 days to ∼5 days. Finally, we conclude by commenting on the efficacy of the ANT technique for the exploration of IOCG systems more broadly. Full article
(This article belongs to the Special Issue Seismics in Mineral Exploration)
Show Figures

Figure 1

21 pages, 1536 KiB  
Article
Mineralurgical and Environmental Characterization of the Mine Tailings of the IOCG Mine of Guelb Moghrein, Akjoujt, Mauritania
by NDiarel Baidy Ba, Radhia Souissi, Faouzi Manai, Imad Khalil Taviche, Bochra Bejaoui, Mohamed Abdallahi Bagga and Fouad Souissi
Appl. Sci. 2024, 14(4), 1591; https://doi.org/10.3390/app14041591 - 17 Feb 2024
Cited by 2 | Viewed by 2698
Abstract
Since 2004, the processing of the iron oxide–copper–gold (IOCG) ore of Guelb Moghrein, Akjoujt, Mauritania, has resulted in the generation of approximately 40 million tons of mine tailings. The storage of these tailings poses significant environmental challenges particularly to surface and underground water [...] Read more.
Since 2004, the processing of the iron oxide–copper–gold (IOCG) ore of Guelb Moghrein, Akjoujt, Mauritania, has resulted in the generation of approximately 40 million tons of mine tailings. The storage of these tailings poses significant environmental challenges particularly to surface and underground water resources. To address this issue, we propose an approach involving both mineralurgical and environmental characterization. Our mineralogical analysis reveals that the TSF tailings consist of sulfides and iron oxides associated with a silico-carbonated matrix. This mineralogical analysis also shows that the TSF tailings consist of secondary minerals, resulting from sulfides oxidation. Furthermore, our findings indicate that the chemical analysis of the TSF tailings contains potential toxic elements (PTEs) such as Cu, As, Co, Ni, Sb, and Se. Regarding the environmental characterization of the tailings, conducted through acid-based accounting (ABA) static tests, we demonstrate that leaching from the tailings generates a contaminated neutral drainage (CND). Full article
(This article belongs to the Special Issue Advances in Heavy Metal Pollution in the Environment)
Show Figures

Figure 1

28 pages, 7482 KiB  
Article
Coupled Microstructural EBSD and LA-ICP-MS Trace Element Mapping of Pyrite Constrains the Deformation History of Breccia-Hosted IOCG Ore Systems
by Samuel Anthony King, Nigel John Cook, Cristiana Liana Ciobanu, Kathy Ehrig, Yuri Tatiana Campo Rodriguez, Animesh Basak and Sarah Gilbert
Minerals 2024, 14(2), 198; https://doi.org/10.3390/min14020198 - 15 Feb 2024
Cited by 5 | Viewed by 3117
Abstract
Electron backscatter diffraction (EBSD) methods are used to investigate the presence of microstructures in pyrite from the giant breccia-hosted Olympic Dam iron–oxide copper gold (IOCG) deposit, South Australia. Results include the first evidence for ductile deformation in pyrite from a brecciated deposit. Two [...] Read more.
Electron backscatter diffraction (EBSD) methods are used to investigate the presence of microstructures in pyrite from the giant breccia-hosted Olympic Dam iron–oxide copper gold (IOCG) deposit, South Australia. Results include the first evidence for ductile deformation in pyrite from a brecciated deposit. Two stages of ductile behavior are observed, although extensive replacement and recrystallization driven by coupled dissolution–reprecipitation reaction have prevented widespread preservation of the earlier event. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) element maps of pyrite confirm that many pyrite grains display compositional zoning with respect to As, Co, and Ni, but that the zoning is often irregular, patchy, or otherwise disrupted and are readily correlated with observed microstructures. The formation of ductile microstructures in pyrite requires temperatures above ~260 °C, which could potentially be related to heat from radioactive decay and fault displacements during tectonothermal events. Coupling EBSD methods with LA-ICP-MS element mapping allows a comprehensive characterization of pyrite textures and microstructures that are otherwise invisible to conventional reflected light or BSE imaging. Beyond providing new insights into ore genesis and superimposed events, the two techniques enable a detailed understanding of the grain-scale distribution of minor elements. Such information is pivotal for efforts intended to develop new ways to recover value components (precious and critical metals), as well as remove deleterious components of the ore using low-energy, low-waste ore processing methods. Full article
(This article belongs to the Special Issue Microanalysis Applied to Mineral Deposits)
Show Figures

Figure 1

19 pages, 10995 KiB  
Article
Iron–Titanium Oxide–Apatite–Sulfide–Sulfate Microinclusions in Gabbro and Adakite from the Russian Far East Indicate Possible Magmatic Links to Iron Oxide–Apatite and Iron Oxide–Copper–Gold Deposits
by Pavel Kepezhinskas, Nikolai Berdnikov, Valeria Krutikova and Nadezhda Kozhemyako
Minerals 2024, 14(2), 188; https://doi.org/10.3390/min14020188 - 11 Feb 2024
Cited by 2 | Viewed by 1961
Abstract
Mesozoic gabbro from the Stanovoy convergent margin and adakitic dacite lava from the Pliocene–Quaternary Bakening volcano in Kamchatka contain iron–titanium oxide–apatite–sulfide–sulfate (ITOASS) microinclusions along with abundant isolated iron–titanium minerals, sulfides and halides of base and precious metals. Iron–titanium minerals include magnetite, ilmenite and [...] Read more.
Mesozoic gabbro from the Stanovoy convergent margin and adakitic dacite lava from the Pliocene–Quaternary Bakening volcano in Kamchatka contain iron–titanium oxide–apatite–sulfide–sulfate (ITOASS) microinclusions along with abundant isolated iron–titanium minerals, sulfides and halides of base and precious metals. Iron–titanium minerals include magnetite, ilmenite and rutile; sulfides include chalcopyrite, pyrite and pyrrhotite; sulfates are represented by barite; and halides are predominantly composed of copper and silver chlorides. Apatite in both gabbro and adakitic dacite frequently contains elevated chlorine concentrations (up to 1.7 wt.%). Mineral thermobarometry suggests that the ITOASS microinclusions and associated Fe-Ti minerals and sulfides crystallized from subduction-related metal-rich melts in mid-crustal magmatic conduits at depths of 10 to 20 km below the surface under almost neutral redox conditions (from the unit below to the unit above the QFM buffer). The ITOASS microinclusions in gabbro and adakite from the Russian Far East provide possible magmatic links to iron oxide–apatite (IOA) and iron oxide–copper–gold (IOCG) deposits and offer valuable insights into the early magmatic (pre-metasomatic) evolution of the IOA and ICOG mineralized systems in paleo-subduction- and collision-related geodynamic environments. Full article
Show Figures

Figure 1

25 pages, 6134 KiB  
Article
Geochemical and Isotopic Fractionation in the Hypogene Ore, Gossan, and Saprolite of the Alvo 118 Deposit: Implications for Copper Exploration in the Regolith of the Carajás Mineral Province
by Pabllo Henrique Costa dos Santos, Marcondes Lima da Costa and Desiree Lisette Roerdink
Minerals 2023, 13(11), 1441; https://doi.org/10.3390/min13111441 - 15 Nov 2023
Cited by 2 | Viewed by 1944
Abstract
In the Carajás Mineral Province, gossan formation and lateritization have produced numerous supergene orebodies at the expense of IOCG deposits and host rocks. The Alvo 118 deposit comprises massive and disseminated hypogene copper sulfides associated with gossan and mineralized saprolites. The hypogene reserves [...] Read more.
In the Carajás Mineral Province, gossan formation and lateritization have produced numerous supergene orebodies at the expense of IOCG deposits and host rocks. The Alvo 118 deposit comprises massive and disseminated hypogene copper sulfides associated with gossan and mineralized saprolites. The hypogene reserves are 170 Mt, with 1% Cu and 0.3 ppm Au, while the supergenes are 55 Mt, comprised of 30% gossan and 70% saprolite, with 0.92% Cu and 0.03 ppm Au. The gossan includes goethite, malachite, cuprite, and libethenite zones. The saprolite comprises kaolinite, vermiculite, smectite, and relics of chlorite. In the hypogene mineralization, Ag, Te, Pb, Se, Bi, Au, In, Y, Sn, and U are mainly hosted by chalcopyrite and petzite, altaite, galena, uraninite, stannite, and cassiterite. In the gossan, Ag, Te, Pb, Se, and Bi are hosted by Cu minerals, while Au, In, Y, Sn, and U are associated with iron oxyhydroxides, in addition to Zn, As, Be, Ga, Ga, Mo, Ni, and Sc. As supporting information, δ65Cu values indicate that the gossan is immature and, at least partly, not affected by leaching. In the saprolite, Ga, Sc, Sn, V, Mn, Co, and Cr are associated with the iron oxyhydroxides, partially derived from the host rock weathering. The δ56Fe values indicate that hypogene low contribution of the hypogene mineralization to the saprolite iron content. The association of Al2O3, Hf, Zr, Th, TiO2, Ce, La, Ba, and Sr represents the geochemical signature of the host rocks, with dominant contributions from chlorites, while In, Y, Te, Pb, Bi, and Se are the main pathfinders of Cu mineralization. Full article
(This article belongs to the Special Issue Mineral Evolution and Mineralization during Weathering)
Show Figures

Figure 1

26 pages, 24283 KiB  
Article
Au-Cu Resources in Some Mines from Antiquity in the South Gabal Um Monqul and Gabal Al Kharaza Prospects, North Eastern Desert, Egypt
by Abdallah Atef, Adel A. Surour, Ahmed A. Madani and Mokhles K. Azer
Geosciences 2023, 13(9), 283; https://doi.org/10.3390/geosciences13090283 - 20 Sep 2023
Cited by 1 | Viewed by 2321
Abstract
Since Antiquity, sustainable resources of gold and copper have been mined at two prominent prospects in the north Eastern Desert of Egypt, namely the south Gabel Um Monqul (SGUM) and Gabal Al Kharaza (GKZ). Mineralization is hosted by Neoproterozoic shield rocks represented by [...] Read more.
Since Antiquity, sustainable resources of gold and copper have been mined at two prominent prospects in the north Eastern Desert of Egypt, namely the south Gabel Um Monqul (SGUM) and Gabal Al Kharaza (GKZ). Mineralization is hosted by Neoproterozoic shield rocks represented by dacite and monzo- to syenogranite at the SGUM prospect whereas they are diorite, granodiorite, and quartz feldspar porphyry at the GKZ prospect. These hosts have been emplaced in an island arc environment from calc-alkaline magmas with a peraluminous to metaluminous signature. They are hydrothermally altered including albitization, sericitization, silicification, epidotization, and chloritization. The Au and Cu mineralizations are confined to shear zones that lately filled with auriferous quartz veins adjacent to mineralized alteration zones. In the GKZ prospect, the old trenches trend mainly in a NW–SE direction whereas it is NE–SW and NW–SE in the SGUM prospect. Evidence of shearing ranges from megascopic conjugate fractures and shear planes in the outcrops to microscopic sheared and crumbled Au-Cu ore assemblages dominated by Fe-Cu sulfides, specularite, and barite. Microscopic investigation suggests that the formation of specularite is due to the shearing of early existing magnetite. The ore textures and paragenetic sequence indicate that pyrite in the alteration zones is oxidized, leading to the liberation of gold up to 3.3 g/t. The formulae of the analyzed electrum lie in the range Au74.5-76.8 Ag22.2-24.5. Integration of the field, geochemistry, and mineral chemistry data, combined with the gold fire assay data prove the presence of sustainable amounts of disseminated Au and Cu, not only in the mineralized quartz veins, but also in the alteration zones. Data materialized in our paper show similarities in the style of mineralization at the SGUM and the GKZ prospects with iron oxide-copper-gold (IOCG) deposits elsewhere in the Arabian-Nubian Shield (ANS) and other world examples. Full article
Show Figures

Figure 1

38 pages, 5802 KiB  
Review
Palladian Gold: Chemical Composition, Minerals in Association, and Physicochemical Conditions of Formation at Different Types of Gold Deposits
by Galina A. Palyanova, Pavel S. Zhegunov, Tatiana V. Beliaeva, Valery V. Murzin, Andrey A. Borovikov and Nikolay A. Goryachev
Minerals 2023, 13(8), 1019; https://doi.org/10.3390/min13081019 - 30 Jul 2023
Cited by 8 | Viewed by 3330
Abstract
This paper reviews and summarizes the available information on the composition of palladian gold with various contents and sets of isomorphic impurities (Ag, Cu, Hg) at 50 deposits and ore occurrences with Au-Pd mineralization. It is revealed that Palladian gold is represented by [...] Read more.
This paper reviews and summarizes the available information on the composition of palladian gold with various contents and sets of isomorphic impurities (Ag, Cu, Hg) at 50 deposits and ore occurrences with Au-Pd mineralization. It is revealed that Palladian gold is represented by the systems Au–Pd, Au–Pd–Hg, Au–Pd–Cu, and Au–Pd–Ag–Hg, but more frequently corresponds to Au–Pd–Ag, Au–Pd–Ag–Cu, and Au–Pd–Ag–Cu–Hg. Objects with palladian gold belong to different types of gold deposits and to the deposits at which the main components of ores are PGE, Cr, Cu, Ni, V, and Ti. We propose a classification of the types of deposits with palladian gold: (1) PGE ore deposits related to mafic–ultramafic magmatic complexes (two subtypes—(a) low-sulfide-grade (less than 2%–5% sulfides) Alaskan, and (b) high-sulfide-grade (more than 5% sulfides) Norilsk); (2) orogenic gold deposits (OG); (3) epithermal (porphyry) gold–copper deposits (EPGC); (4) iron oxide copper gold deposits (IOCG); (5) ferruginous quartzite deposits; (6) volcanic exhalation; and (7) gold-PGE placers of five subtypes corresponding to the types of 1–5 primary sources. Physicochemical conditions of the formation of palladian gold at some deposits of type 1 cover two areas—magmatic high-temperature and hydrothermal low-temperature. At the majority of deposits of types 2–4, its formation proceeds with the participation of hydrothermal fluids (300–60 °C) of various salinities (0.2–30 wt.% NaCl eq.). Palladian gold is mainly high-fineness (910‰–990‰), is less frequently medium-fineness, and contains Ag and Cu, but does not contain Hg at the deposits of types 1, 3, and 4. The only exception is the Au-Pd-Hg Itchayvayam ore occurrence (Kamchatka, Russia), for which two varieties of Pd,Hg-bearing native gold (fineness 816‰–960‰ and 580‰–660‰) are determined. Low-fineness palladian gold with the major content of Ag is typical of OGD deposits. Medium-fineness palladian gold occurs at ferruginous quartzite deposits and in volcanic exhalations. Hg, Ag, Cu-bearing high-fineness palladian gold is present mainly in placer deposits (type 7). The most common minerals in association with palladian gold are arsenides, stibioarsenides, sulfides, stannides, bismuthides, tellurides, and selenides of Pd and Pt. These are typical of deposit types 1 and 7. The minerals of Au, Ag, and Cu (tetra-auricupride, aurostibite, chalcopyrite, bornite, chalcocite, eucairite, etc.) are in association with palladian gold at OG, EPGC, and IOCG deposits. Hg minerals (cinnabar, tiemannite, coloradoite, potarite) are at some deposits (types 1, 2, 7-1, 7-4). Cu, Fe, and Pd oxides (tenorite, hematite, magnetite, PdO, (Pd,Cu)O) and Fe and Pd hydroxides (goethite, (Fe,Pd)OOH) occur at the deposits of the 3, 4, and 7 groups and indicate the highly oxidizing conditions of ore formation. The most common minerals among host minerals are quartz and muscovite, including fuchsite (Cr-Ms), chlorite, albite, K-feldspar, hornblende, and carbonates (calcite, siderite, etc.). The fineness, content, and set of impurities in palladian gold and minerals in association with it reflect the mineralogy of Au-Pd ores and allow them to be used as indicators for the deposit types. Full article
(This article belongs to the Special Issue Native Gold as a Specific Indicator Mineral for Gold Deposits)
Show Figures

Figure 1

Back to TopTop