Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (57)

Search Parameters:
Keywords = Hutchinson–Gilford Progeria syndrome

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5695 KiB  
Article
Impact of miR-181a on SIRT1 Expression and Senescence in Hutchinson–Gilford Progeria Syndrome
by Eva-Maria Lederer, Felix Quirin Fenzl, Peter Krüger, Moritz Schroll, Ramona Hartinger and Karima Djabali
Diseases 2025, 13(8), 245; https://doi.org/10.3390/diseases13080245 - 4 Aug 2025
Viewed by 85
Abstract
Background/Objectives: Hutchinson–Gilford progeria syndrome (HGPS) is a rare and fatal genetic disease caused by a silent mutation in the LMNA gene, leading to the production of progerin, a defective prelamin A variant. Progerin accumulation disrupts nuclear integrity, alters chromatin organization, and drives systemic [...] Read more.
Background/Objectives: Hutchinson–Gilford progeria syndrome (HGPS) is a rare and fatal genetic disease caused by a silent mutation in the LMNA gene, leading to the production of progerin, a defective prelamin A variant. Progerin accumulation disrupts nuclear integrity, alters chromatin organization, and drives systemic cellular dysfunction. While autophagy and inflammation are key dysregulated pathways in HGPS, the role of microRNAs (miRNAs) in these processes remains poorly understood. Methods: We performed an extensive literature review to identify miRNAs involved in autophagy and inflammation. Through stem-loop RT-qPCR in aging HGPS and control fibroblast strains, we identified significant miRNAs and focused on the most prominent one, miR-181a-5p, for in-depth analysis. We validated our in vitro findings with miRNA expression studies in skin biopsies from an HGPS mouse model and conducted functional assays in human fibroblasts, including immunofluorescence staining, β-Galactosidase assay, qPCR, and Western blot analysis. Transfection studies were performed using an miR-181a-5p mimic and its inhibitor. Results: We identified miR-181a-5p as a critical regulator of premature senescence in HGPS. miR-181a-5p was significantly upregulated in HGPS fibroblasts and an HGPS mouse model, correlating with Sirtuin 1 (SIRT1) suppression and induction of senescence. Additionally, we demonstrated that TGFβ1 induced miR-181a-5p expression, linking inflammation to miRNA-mediated senescence. Inhibiting miR-181a-5p restored SIRT1 levels, increased proliferation, and alleviated senescence in HGPS fibroblasts, supporting its functional relevance in disease progression. Conclusions: These findings highlight the important role of miR-181a-5p in premature aging and suggest its potential as a therapeutic target for modulating senescence in progeroid syndromes. Full article
(This article belongs to the Section Rare Syndrome)
Show Figures

Figure 1

23 pages, 2645 KiB  
Article
Baricitinib and Lonafarnib Synergistically Target Progerin and Inflammation, Improving Lifespan and Health in Progeria Mice
by Peter Krüger, Moritz Schroll, Felix Quirin Fenzl, Ramona Hartinger, Eva-Maria Lederer, Agnes Görlach, Leslie B. Gordon, Paola Cavalcante, Nicola Iacomino, Birgit Rathkolb, Juan Antonio Aguilar Pimentel, Manuela Östereicher, Nadine Spielmann, Cordula Maria Wolf, Martin Hrabe de Angelis and Karima Djabali
Int. J. Mol. Sci. 2025, 26(10), 4849; https://doi.org/10.3390/ijms26104849 - 19 May 2025
Viewed by 1171
Abstract
Hutchinson–Gilford progeria syndrome (HGPS) is a rare, fatal, and premature aging disorder caused by progerin, a truncated form of lamin A that disrupts nuclear architecture, induces systemic inflammation, and accelerates senescence. While the farnesyltransferase inhibitor lonafarnib extends the lifespan by limiting progerin farnesylation, [...] Read more.
Hutchinson–Gilford progeria syndrome (HGPS) is a rare, fatal, and premature aging disorder caused by progerin, a truncated form of lamin A that disrupts nuclear architecture, induces systemic inflammation, and accelerates senescence. While the farnesyltransferase inhibitor lonafarnib extends the lifespan by limiting progerin farnesylation, it does not address the chronic inflammation or the senescence-associated secretory phenotype (SASP), which worsens disease progression. In this study, we investigated the combined effects of baricitinib (BAR), a JAK1/2 inhibitor, and lonafarnib (FTI) in a LmnaG609G/G609G mouse model of HGPS. BAR + FTI therapy synergistically extended the lifespan by 25%, surpassing the effects of either monotherapy. Treated mice showed improved health, as evidenced by reduced kyphosis, better fur quality, decreased incidence of cataracts, and less severe dysgnathia. Histological analyses indicated reduced fibrosis in the dermal, hepatic, and muscular tissues, restored cellularity and thickness in the aortic media, and improved muscle fiber integrity. Mechanistically, BAR decreased the SASP and inflammatory markers (e.g., IL-6 and PAI-1), complementing the progerin-targeting effects of FTI. This preclinical study demonstrates the synergistic potential of BAR + FTI therapy in addressing HGPS systemic and tissue-specific pathologies, offering a promising strategy for enhancing both lifespan and health. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

12 pages, 1284 KiB  
Case Report
Mesenchymal Stem Cell Therapy for Hutchinson–Gilford Progeria: Improvements in Arterial Stiffness and Bone Mineral Density in a Single Case
by Eun-Young Joo, Ji-Sun Park, Hyun-Tae Shin, Myungji Yoo, Su-Jin Kim, Ji-Eun Lee and Gwang-Seong Choi
Children 2025, 12(4), 523; https://doi.org/10.3390/children12040523 - 18 Apr 2025
Cited by 1 | Viewed by 1004
Abstract
Background/Objectives: Hutchinson–Gilford progeria syndrome (HGPS) is a rare genetic disorder that cause premature aging due to LMNA mutations and progerin accumulation. Although lonafarnib, an FDA-approved farnesyltransferase inhibitor, offers modest extension of life, the disease remains progressive. As progeria is associated with stem cell [...] Read more.
Background/Objectives: Hutchinson–Gilford progeria syndrome (HGPS) is a rare genetic disorder that cause premature aging due to LMNA mutations and progerin accumulation. Although lonafarnib, an FDA-approved farnesyltransferase inhibitor, offers modest extension of life, the disease remains progressive. As progeria is associated with stem cell depletion and mesenchymal stem cell (MSC) therapy has shown efficacy in treating atherosclerosis, we aimed to evaluate its efficacy and safety in HGPS. Methods: A 7-year-old male with classic HGPS and preexisting severe cerebrovascular disease received four intravenous infusion of bone marrow-derived MSCs (2.5 × 10⁵ cells/kg) over 8 months. Growth, metabolic, cardiovascular, musculoskeletal, auditory, and inflammatory cytokines were monitored throughout the study. Prophylactic enoxaparin was administered to prevent vascular complications. Results: MSC therapy was associated with improved lean body mass (11.5%), bone mineral density (L-spine z-score: 0.55 → 2.03), reduced arterial stiffness (9.98% reductionin pulse wave velocity), joint range of motion, dentition, and decreased sICAM-1 levels. However, Cardiovascular deterioration continued, and the patient passed away 10 months after the fourth dose, likely due to progression of the underlying vascular disease. No severe adverse effects were attributed to MSC therapy. Conclusions: MSC therapy may offer short-term benefits in arterial stiffness, bone health and inflammation in HGPS without notable safety concerns. Further studies are warranted to validate these findings, explore earlier intervention, and determine long-term efficacy and optimal dosing strategies. Full article
(This article belongs to the Section Translational Pediatrics)
Show Figures

Figure 1

55 pages, 2619 KiB  
Review
A Review of Telomere Attrition in Cancer and Aging: Current Molecular Insights and Future Therapeutic Approaches
by Mina Iskandar, Miguel Xiao Barbero, Muhamed Jaber, Roy Chen, Romulo Gomez-Guevara, Edwin Cruz and Sandy Westerheide
Cancers 2025, 17(2), 257; https://doi.org/10.3390/cancers17020257 - 14 Jan 2025
Cited by 4 | Viewed by 5858
Abstract
Background/Objectives: As cells divide, telomeres shorten through a phenomenon known as telomere attrition, which leads to unavoidable senescence of cells. Unprotected DNA exponentially increases the odds of mutations, which can evolve into premature aging disorders and tumorigenesis. There has been growing academic and [...] Read more.
Background/Objectives: As cells divide, telomeres shorten through a phenomenon known as telomere attrition, which leads to unavoidable senescence of cells. Unprotected DNA exponentially increases the odds of mutations, which can evolve into premature aging disorders and tumorigenesis. There has been growing academic and clinical interest in exploring this duality and developing optimal therapeutic strategies to combat telomere attrition in aging and cellular immortality in cancer. The purpose of this review is to provide an updated overview of telomere biology and therapeutic tactics to address aging and cancer. Methods: We used the Rayyan platform to review the PubMed database and examined the ClinicalTrial.gov registry to gain insight into clinical trials and their results. Results: Cancer cells activate telomerase or utilize alternative lengthening of telomeres to escape telomere shortening, leading to near immortality. Contrarily, normal cells experience telomeric erosion, contributing to premature aging disorders, such as Werner syndrome and Hutchinson–Gilford Progeria, and (2) aging-related diseases, such as neurodegenerative and cardiovascular diseases. Conclusions: The literature presents several promising therapeutic approaches to potentially balance telomere maintenance in aging and shortening in cancer. This review highlights gaps in knowledge and points to the potential of these optimal interventions in preclinical and clinical studies to inform future research in cancer and aging. Full article
(This article belongs to the Special Issue Aging and Cancers)
Show Figures

Figure 1

19 pages, 1408 KiB  
Review
Angiopoietin-2: A Therapeutic Target for Vascular Protection in Hutchinson–Gilford Progeria Syndrome
by Sahar Vakili and Kan Cao
Int. J. Mol. Sci. 2024, 25(24), 13537; https://doi.org/10.3390/ijms252413537 - 18 Dec 2024
Viewed by 1638
Abstract
Hutchinson–Gilford progeria syndrome (HGPS) is a pediatric condition characterized by clinical features that resemble accelerated aging. The abnormal accumulation of a toxic form of the lamin A protein known as progerin disrupts cellular functions, leading to various complications, including growth retardation, loss of [...] Read more.
Hutchinson–Gilford progeria syndrome (HGPS) is a pediatric condition characterized by clinical features that resemble accelerated aging. The abnormal accumulation of a toxic form of the lamin A protein known as progerin disrupts cellular functions, leading to various complications, including growth retardation, loss of subcutaneous fat, abnormal skin, alopecia, osteoporosis, and progressive joint contractures. Death primarily occurs as the result of complications from progressive atherosclerosis, especially from cardiac disease, such as myocardial infarction or heart failure, or cerebrovascular disease like stroke. Despite the availability of lonafarnib, the only US Food and Drug Administration-approved treatment for HGPS, cardiovascular complications remain the leading cause of morbidity and mortality in affected patients. Defective angiogenesis—the process of forming new blood vessels from existing ones—plays a crucial role in the development of cardiovascular disease. A recent study suggests that Angiopoietin-2 (Ang2), a pro-angiogenic growth factor that regulates angiogenesis and vascular stability, may offer therapeutic potential for the treatment of HGPS. In this review, we describe the clinical features and key cellular processes impacted by progerin and discuss the therapeutic potential of Ang2 in addressing these challenges. Full article
Show Figures

Figure 1

29 pages, 18284 KiB  
Article
Enhancing Cellular Homeostasis: Targeted Botanical Compounds Boost Cellular Health Functions in Normal and Premature Aging Fibroblasts
by Ramona Hartinger, Khushboo Singh, Jesse Leverett and Karima Djabali
Biomolecules 2024, 14(10), 1310; https://doi.org/10.3390/biom14101310 - 16 Oct 2024
Cited by 4 | Viewed by 2311
Abstract
The human skin, the body’s largest organ, undergoes continuous renewal but is significantly impacted by aging, which impairs its function and leads to visible changes. This study aimed to identify botanical compounds that mimic the anti-aging effects of baricitinib, a known JAK1/2 inhibitor. [...] Read more.
The human skin, the body’s largest organ, undergoes continuous renewal but is significantly impacted by aging, which impairs its function and leads to visible changes. This study aimed to identify botanical compounds that mimic the anti-aging effects of baricitinib, a known JAK1/2 inhibitor. Through in silico screening of a botanical compound library, 14 potential candidates were identified, and 7 were further analyzed for their effects on cellular aging. The compounds were tested on both normal aged fibroblasts and premature aging fibroblasts derived from patients with Hutchinson–Gilford Progeria Syndrome (HGPS). Results showed that these botanical compounds effectively inhibited the JAK/STAT pathway, reduced the levels of phosphorylated STAT1 and STAT3, and ameliorated phenotypic changes associated with cellular aging. Treatments improved cell proliferation, reduced senescence markers, and enhanced autophagy without inducing cytotoxicity. Compounds, such as Resveratrol, Bisdemethoxycurcumin, Pinosylvin, Methyl P-Hydroxycinnamate, cis-Pterostilbene, and (+)-Gallocatechin, demonstrated significant improvements in both control and HGPS fibroblasts. These findings suggest that these botanical compounds have the potential to mitigate age-related cellular alterations, offering promising strategies for anti-aging therapies, particularly for skin health. Further in vivo studies are warranted to validate these results and explore their therapeutic applications. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

23 pages, 20158 KiB  
Article
Inflammation and Fibrosis in Progeria: Organ-Specific Responses in an HGPS Mouse Model
by Peter Krüger, Moritz Schroll, Felix Fenzl, Eva-Maria Lederer, Ramona Hartinger, Rouven Arnold, Deniz Cagla Togan, Runjia Guo, Shiyu Liu, Andreas Petry, Agnes Görlach and Karima Djabali
Int. J. Mol. Sci. 2024, 25(17), 9323; https://doi.org/10.3390/ijms25179323 - 28 Aug 2024
Cited by 5 | Viewed by 3017
Abstract
Hutchinson–Gilford Progeria Syndrome (HGPS) is an extremely rare genetic disorder that causes accelerated aging, due to a pathogenic variant in the LMNA gene. This pathogenic results in the production of progerin, a defective protein that disrupts the nuclear lamina’s structure. In our study, [...] Read more.
Hutchinson–Gilford Progeria Syndrome (HGPS) is an extremely rare genetic disorder that causes accelerated aging, due to a pathogenic variant in the LMNA gene. This pathogenic results in the production of progerin, a defective protein that disrupts the nuclear lamina’s structure. In our study, we conducted a histopathological analysis of various organs in the LmnaG609G/G609G mouse model, which is commonly used to study HGPS. The objective of this study was to show that progerin accumulation drives systemic but organ-specific tissue damage and accelerated aging phenotypes. Our findings show significant fibrosis, inflammation, and dysfunction in multiple organ systems, including the skin, cardiovascular system, muscles, lungs, liver, kidneys, spleen, thymus, and heart. Specifically, we observed severe vascular fibrosis, reduced muscle regeneration, lung tissue remodeling, depletion of fat in the liver, and disruptions in immune structures. These results underscore the systemic nature of the disease and suggest that chronic inflammation and fibrosis play crucial roles in the accelerated aging seen in HGPS. Additionally, our study highlights that each organ responds differently to the toxic effects of progerin, indicating that there are distinct mechanisms of tissue-specific damage. Full article
(This article belongs to the Special Issue Inflammation and Cellular Senescence in Age-Related Diseases)
Show Figures

Figure 1

25 pages, 3609 KiB  
Review
Lipodystrophic Laminopathies: From Dunnigan Disease to Progeroid Syndromes
by Everardo Josué Díaz-López, Sofía Sánchez-Iglesias, Ana I. Castro, Silvia Cobelo-Gómez, Teresa Prado-Moraña, David Araújo-Vilar and Antia Fernandez-Pombo
Int. J. Mol. Sci. 2024, 25(17), 9324; https://doi.org/10.3390/ijms25179324 - 28 Aug 2024
Viewed by 2883
Abstract
Lipodystrophic laminopathies are a group of ultra-rare disorders characterised by the presence of pathogenic variants in the same gene (LMNA) and other related genes, along with an impaired adipose tissue pattern and other features that are specific of each of these [...] Read more.
Lipodystrophic laminopathies are a group of ultra-rare disorders characterised by the presence of pathogenic variants in the same gene (LMNA) and other related genes, along with an impaired adipose tissue pattern and other features that are specific of each of these disorders. The most fascinating traits include their complex genotype-phenotype associations and clinical heterogeneity, ranging from Dunnigan disease, in which the most relevant feature is precisely adipose tissue dysfunction and lipodystrophy, to the other laminopathies affecting adipose tissue, which are also characterised by the presence of signs of premature ageing (Hutchinson Gilford-progeria syndrome, LMNA-atypical progeroid syndrome, mandibuloacral dysplasia types A and B, Nestor-Guillermo progeria syndrome, LMNA-associated cardiocutaneous progeria). This raises several questions when it comes to understanding how variants in the same gene can lead to similar adipose tissue disturbances and, at the same time, to such heterogeneous phenotypes and variable degrees of metabolic abnormalities. The present review aims to gather the molecular basis of adipose tissue impairment in lipodystrophic laminopathies, their main clinical aspects and recent therapeutic strategies. In addition, it also summarises the key aspects for their differential diagnosis. Full article
(This article belongs to the Special Issue Adipose Tissue Dynamics in Laminopathies)
Show Figures

Figure 1

37 pages, 1252 KiB  
Review
Navigating Lipodystrophy: Insights from Laminopathies and Beyond
by Peter Krüger, Ramona Hartinger and Karima Djabali
Int. J. Mol. Sci. 2024, 25(15), 8020; https://doi.org/10.3390/ijms25158020 - 23 Jul 2024
Cited by 1 | Viewed by 3289
Abstract
Recent research into laminopathic lipodystrophies—rare genetic disorders caused by mutations in the LMNA gene—has greatly expanded our knowledge of their complex pathology and metabolic implications. These disorders, including Hutchinson-Gilford progeria syndrome (HGPS), Mandibuloacral Dysplasia (MAD), and Familial Partial Lipodystrophy (FPLD), serve as crucial [...] Read more.
Recent research into laminopathic lipodystrophies—rare genetic disorders caused by mutations in the LMNA gene—has greatly expanded our knowledge of their complex pathology and metabolic implications. These disorders, including Hutchinson-Gilford progeria syndrome (HGPS), Mandibuloacral Dysplasia (MAD), and Familial Partial Lipodystrophy (FPLD), serve as crucial models for studying accelerated aging and metabolic dysfunction, enhancing our understanding of the cellular and molecular mechanisms involved. Research on laminopathies has highlighted how LMNA mutations disrupt adipose tissue function and metabolic regulation, leading to altered fat distribution and metabolic pathway dysfunctions. Such insights improve our understanding of the pathophysiological interactions between genetic anomalies and metabolic processes. This review merges current knowledge on the phenotypic classifications of these diseases and their associated metabolic complications, such as insulin resistance, hypertriglyceridemia, hepatic steatosis, and metabolic syndrome, all of which elevate the risk of cardiovascular disease, stroke, and diabetes. Additionally, a range of published therapeutic strategies, including gene editing, antisense oligonucleotides, and novel pharmacological interventions aimed at addressing defective adipocyte differentiation and lipid metabolism, will be explored. These therapies target the core dysfunctional lamin A protein, aiming to mitigate symptoms and provide a foundation for addressing similar metabolic and genetic disorders. Full article
(This article belongs to the Special Issue Adipose Tissue Dynamics in Laminopathies)
Show Figures

Figure 1

10 pages, 1592 KiB  
Case Report
Nuclear Abnormalities in LMNA p.(Glu2Lys) Variant Segregating with LMNA-Associated Cardiocutaneous Progeria Syndrome
by Matheus V. M. B. Wilke, Myra Wick, Tanya L. Schwab, Rodrigo Tzovenos Starosta, Karl J. Clark, Heidi M. Connolly and Eric W. Klee
Genes 2024, 15(1), 112; https://doi.org/10.3390/genes15010112 - 18 Jan 2024
Viewed by 2184
Abstract
The LMNA gene encodes lamin A and lamin C, which play important roles in nuclear organization. Pathogenic variants in LMNA cause laminopathies, a group of disorders with diverse phenotypes. There are two main groups of disease-causing variants: missense variants affecting dimerization and intermolecular [...] Read more.
The LMNA gene encodes lamin A and lamin C, which play important roles in nuclear organization. Pathogenic variants in LMNA cause laminopathies, a group of disorders with diverse phenotypes. There are two main groups of disease-causing variants: missense variants affecting dimerization and intermolecular interactions, and heterozygous substitutions activating cryptic splice sites. These variants lead to different disorders, such as dilated cardiomyopathy and Hutchinson–Gilford progeria (HGP). Among these, the phenotypic terms for LMNA-associated cardiocutaneous progeria syndrome (LCPS), which does not alter lamin A processing and has an older age of onset, have been described. Here, we present the workup of an LMNA variant of uncertain significance, NM_170707.2 c. 4G>A, p.(Glu2Lys), in a 36-year-old female with severe calcific aortic stenosis, a calcified mitral valve, premature aging, and a family history of similar symptoms. Due to the uncertainty of in silico predictions for this variant, an assessment of nuclear morphology was performed using the immunocytochemistry of stable cell lines to indicate whether the p.(Glu2Lys) had a similar pathogenic mechanism as a previously described pathogenic variant associated with LCPS, p.Asp300Gly. Indirect immunofluorescence analysis of nuclei from stable cell lines showed abnormal morphology, including lobulation and occasional ringed nuclei. Relative to the controls, p.Glu2Lys and p.Asp300Gly nuclei had significantly (p < 0.001) smaller average nuclear areas than controls (mean = 0.10 units, SD = 0.06 for p.Glu2Lys; and mean = 0.09 units, SD = 0.05 for p.Asp300Gly versus mean = 0.12, SD = 0.05 for WT). After functional studies and segregation studies, this variant was upgraded to likely pathogenic. In summary, our findings suggest that p.Glu2Lys impacts nuclear morphology in a manner comparable to what was observed in p.Asp300Gly cells, indicating that the variant is the likely cause of the LCPS segregating within this family. Full article
(This article belongs to the Section Genetic Diagnosis)
Show Figures

Figure 1

15 pages, 7476 KiB  
Article
Use of Farnesyl Transferase Inhibitors in an Ageing Model in Drosophila
by Annely Brandt, Roman Petrovsky, Maria Kriebel and Jörg Großhans
J. Dev. Biol. 2023, 11(4), 40; https://doi.org/10.3390/jdb11040040 - 29 Oct 2023
Cited by 1 | Viewed by 2461
Abstract
The presence of farnesylated proteins at the inner nuclear membrane (INM), such as the Lamins or Kugelkern in Drosophila, leads to specific changes in the nuclear morphology and accelerated ageing on the organismal level reminiscent of the Hutchinson–Gilford progeria syndrome (HGPS). Farnesyl [...] Read more.
The presence of farnesylated proteins at the inner nuclear membrane (INM), such as the Lamins or Kugelkern in Drosophila, leads to specific changes in the nuclear morphology and accelerated ageing on the organismal level reminiscent of the Hutchinson–Gilford progeria syndrome (HGPS). Farnesyl transferase inhibitors (FTIs) can suppress the phenotypes of the nuclear morphology in cultured fibroblasts from HGPS patients and cultured cells overexpressing farnesylated INM proteins. Similarly, FTIs have been reported to suppress the shortened lifespan in model organisms. Here, we report an experimental system combining cell culture and Drosophila flies for testing the activity of substances on the HGPS-like nuclear morphology and lifespan, with FTIs as an experimental example. Consistent with previous reports, we show that FTIs were able to ameliorate the nuclear phenotypes induced by the farnesylated nuclear proteins Progerin, Kugelkern, or truncated Lamin B in cultured cells. The subsequent validation in Drosophila lifespan assays demonstrated the applicability of the experimental system: treating adult Drosophila with the FTI ABT-100 reversed the nuclear phenotypes and extended the lifespan of experimentally induced short-lived flies. Since kugelkern-expressing flies have a significantly shorter average lifespan, half the time is needed for testing substances in the lifespan assay. Full article
Show Figures

Figure 1

17 pages, 1905 KiB  
Article
The Activation of JAK/STAT3 Signaling and the Complement System Modulate Inflammation in the Primary Human Dermal Fibroblasts of PXE Patients
by Christopher Lindenkamp, Ricarda Plümers, Michel R. Osterhage, Olivier M. Vanakker, Judith Van Wynsberghe, Cornelius Knabbe and Doris Hendig
Biomedicines 2023, 11(10), 2673; https://doi.org/10.3390/biomedicines11102673 - 29 Sep 2023
Cited by 5 | Viewed by 1989
Abstract
Previous studies revealed a link between inflammation and overactivation of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling in syndromes associated with aging. Pseudoxanthoma elasticum (PXE), a rare autosomal-recessive disorder, arises from mutations in ATP-binding cassette subfamily C member 6 [...] Read more.
Previous studies revealed a link between inflammation and overactivation of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling in syndromes associated with aging. Pseudoxanthoma elasticum (PXE), a rare autosomal-recessive disorder, arises from mutations in ATP-binding cassette subfamily C member 6 (ABCC6). On a molecular level, PXE shares similarities with Hutchinson–Gilford progeria syndrome, such as increased activity of senescence-associated- beta-galactosidase or high expression of inflammatory factors. Thus, this study’s aim was the evaluation of activated STAT3 and the influence of JAK1/2-inhibitor baricitinib (BA) on inflammatory processes such as the complement system in PXE. Analysis of activation of STAT3 was performed by immunofluorescence and Western blot, while inflammatory processes and complement system factors were determined based on mRNA expression and protein level. Our results assume overactivation of JAK/STAT3 signaling, increased expression levels of several complement factors and high C3 protein concentration in the sera of PXE patients. Supplementation with BA reduces JAK/STAT3 activation and partly reduces inflammation as well as the gene expression of complement factors belonging to the C1 complex and C3 convertase in PXE fibroblasts. Our results indicate a link between JAK/STAT3 signaling and complement activation contributing to the proinflammatory phenotype in PXE fibroblasts. Full article
(This article belongs to the Special Issue Inflammation and Immunosenescence in Age-Related Diseases)
Show Figures

Figure 1

17 pages, 737 KiB  
Review
Progerin, an Aberrant Spliced Form of Lamin A, Is a Potential Therapeutic Target for HGPS
by Bae-Hoon Kim, Yeon-Ho Chung, Tae-Gyun Woo, So-Mi Kang, Soyoung Park and Bum-Joon Park
Cells 2023, 12(18), 2299; https://doi.org/10.3390/cells12182299 - 18 Sep 2023
Cited by 3 | Viewed by 4797
Abstract
Hutchinson–Gilford progeria syndrome (HGPS) is an extremely rare genetic disorder caused by the mutant protein progerin, which is expressed by the abnormal splicing of the LMNA gene. HGPS affects systemic levels, with the exception of cognition or brain development, in children, showing that [...] Read more.
Hutchinson–Gilford progeria syndrome (HGPS) is an extremely rare genetic disorder caused by the mutant protein progerin, which is expressed by the abnormal splicing of the LMNA gene. HGPS affects systemic levels, with the exception of cognition or brain development, in children, showing that cellular aging can occur in the short term. Studying progeria could be useful in unraveling the causes of human aging (as well as fatal age-related disorders). Elucidating the clear cause of HGPS or the development of a therapeutic medicine could improve the quality of life and extend the survival of patients. This review aimed to (i) briefly describe how progerin was discovered as the causative agent of HGPS, (ii) elucidate the puzzling observation of the absence of primary neurological disease in HGPS, (iii) present several studies showing the deleterious effects of progerin and the beneficial effects of its inhibition, and (iv) summarize research to develop a therapy for HGPS and introduce clinical trials for its treatment. Full article
(This article belongs to the Special Issue Advances in Treatments for Hutchinson-Gilford Progeria Syndrome)
Show Figures

Figure 1

12 pages, 5040 KiB  
Article
Aging Model for Analyzing Drug-Induced Proarrhythmia Risks Using Cardiomyocytes Differentiated from Progeria-Patient-Derived Induced Pluripotent Stem Cells
by Neil Daily, Julian Elson and Tetsuro Wakatsuki
Int. J. Mol. Sci. 2023, 24(15), 11959; https://doi.org/10.3390/ijms241511959 - 26 Jul 2023
Cited by 2 | Viewed by 1632
Abstract
Among various cardiac safety concerns, proarrhythmia risks, including QT prolongation leading to Torsade de Pointes, is one of major cause for drugs being withdrawn (~45% 1975–2007). Preclinical study requires the evaluation of proarrhythmia using in silico, in vitro, and/or animal models. Considering that [...] Read more.
Among various cardiac safety concerns, proarrhythmia risks, including QT prolongation leading to Torsade de Pointes, is one of major cause for drugs being withdrawn (~45% 1975–2007). Preclinical study requires the evaluation of proarrhythmia using in silico, in vitro, and/or animal models. Considering that the primary consumers of prescription drugs are elderly patients, applications of “aging-in-a-dish” models would be appropriate for screening proarrhythmia risks. However, acquiring such models, including cardiomyocytes (CMs) derived from induced pluripotent stem cells (iPSCs), presents extensive challenges. We proposed the hypothesis that CMs differentiated from iPSCs derived from Hutchinson–Gilford progeria syndrome (HGPS, progeria) patients, an ultra-rare premature aging syndrome, can mimic the phenotypes of aging CMs. Our objective, therefore, was to examine this hypothesis by analyzing the response of 11 reference compounds utilized by the Food and Drug Administration (FDA)’s Comprehensive in vitro Proarrhythmia Assay (CiPA) using progeria and control CMs. As a sensitive surrogate marker of modulating cardiac excitation–contraction coupling, we evaluated drug-induced changes in calcium transient (CaT). We observed that the 80% CaT peak duration in the progeria CMs (0.98 ± 0.04 s) was significantly longer than that of control CMs (0.70 ± 0.05 s). Furthermore, when the progeria CMs were subjected to four doses of 11 compounds from low-, intermediate-, and high-risk categories, they demonstrated greater arrhythmia susceptibility than control cells, as shown through six-parameter CaT profile analyses. We also employed the regression analysis established by CiPA to classify the 11 reference compounds and compared proarrhythmia susceptibilities between the progeria and control CMs. This analysis revealed a greater proarrhythmia susceptibility in the progeria CMs compared to the control CMs. Interestingly, in both CMs, the compounds categorized as low risk did not exceed the safety risk threshold of 0.8. In conclusion, our study demonstrates increased proarrhythmia sensitivity in progeria CMs when tested with reference compounds. Future studies are needed to analyze underlying mechanisms and further validate our findings using a larger array of reference compounds. Full article
(This article belongs to the Special Issue Aging and Heart Disease)
Show Figures

Figure 1

22 pages, 19445 KiB  
Article
Impact of Combined Baricitinib and FTI Treatment on Adipogenesis in Hutchinson–Gilford Progeria Syndrome and Other Lipodystrophic Laminopathies
by Ramona Hartinger, Eva-Maria Lederer, Elisa Schena, Giovanna Lattanzi and Karima Djabali
Cells 2023, 12(10), 1350; https://doi.org/10.3390/cells12101350 - 9 May 2023
Cited by 9 | Viewed by 3184
Abstract
Hutchinson–Gilford progeria syndrome (HGPS) is a rare genetic disease that causes premature aging symptoms, such as vascular diseases, lipodystrophy, loss of bone mineral density, and alopecia. HGPS is mostly linked to a heterozygous and de novo mutation in the LMNA gene (c.1824 C [...] Read more.
Hutchinson–Gilford progeria syndrome (HGPS) is a rare genetic disease that causes premature aging symptoms, such as vascular diseases, lipodystrophy, loss of bone mineral density, and alopecia. HGPS is mostly linked to a heterozygous and de novo mutation in the LMNA gene (c.1824 C > T; p.G608G), resulting in the production of a truncated prelamin A protein called “progerin”. Progerin accumulation causes nuclear dysfunction, premature senescence, and apoptosis. Here, we examined the effects of baricitinib (Bar), an FDA-approved JAK/STAT inhibitor, and a combination of Bar and lonafarnib (FTI) treatment on adipogenesis using skin-derived precursors (SKPs). We analyzed the effect of these treatments on the differentiation potential of SKPs isolated from pre-established human primary fibroblast cultures. Compared to mock-treated HGPS SKPs, Bar and Bar + FTI treatments improved the differentiation of HGPS SKPs into adipocytes and lipid droplet formation. Similarly, Bar and Bar + FTI treatments improved the differentiation of SKPs derived from patients with two other lipodystrophic diseases: familial partial lipodystrophy type 2 (FPLD2) and mandibuloacral dysplasia type B (MADB). Overall, the results show that Bar treatment improves adipogenesis and lipid droplet formation in HGPS, FPLD2, and MADB, indicating that Bar + FTI treatment might further ameliorate HGPS pathologies compared to lonafarnib treatment alone. Full article
(This article belongs to the Collection Lamins and Laminopathies)
Show Figures

Figure 1

Back to TopTop