Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = Headwall Nano-Hyperspec

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 18907 KiB  
Article
Comparing Unmanned Aerial Multispectral and Hyperspectral Imagery for Harmful Algal Bloom Monitoring in Artificial Ponds Used for Fish Farming
by Diogo Olivetti, Rejane Cicerelli, Jean-Michel Martinez, Tati Almeida, Raphael Casari, Henrique Borges and Henrique Roig
Drones 2023, 7(7), 410; https://doi.org/10.3390/drones7070410 - 21 Jun 2023
Cited by 13 | Viewed by 4526
Abstract
This work aimed to assess the potential of unmanned aerial vehicle (UAV) multi- and hyper-spectral platforms to estimate chlorophyll-a (Chl-a) and cyanobacteria in experimental fishponds in Brazil. In addition to spectral resolutions, the tested platforms differ in the price, payload, [...] Read more.
This work aimed to assess the potential of unmanned aerial vehicle (UAV) multi- and hyper-spectral platforms to estimate chlorophyll-a (Chl-a) and cyanobacteria in experimental fishponds in Brazil. In addition to spectral resolutions, the tested platforms differ in the price, payload, imaging system, and processing. Hyperspectral airborne surveys were conducted using a push-broom system 276-band Headwall Nano-Hyperspec camera onboard a DJI Matrice 600 UAV. Multispectral airborne surveys were conducted using a global shutter-frame 4-band Parrot Sequoia camera onboard a DJI Phantom 4 UAV. Water quality field measurements were acquired using a portable fluorometer and laboratory analysis. The concentration ranged from 14.3 to 290.7 µg/L and from 0 to 112.5 µg/L for Chl-a and cyanobacteria, respectively. Forty-one Chl-a and cyanobacteria bio-optical retrieval models were tested. The UAV hyperspectral image achieved robust Chl-a and cyanobacteria assessments, with RMSE values of 32.8 and 12.1 µg/L, respectively. Multispectral images achieved Chl-a and cyanobacteria retrieval with RMSE values of 47.6 and 35.1 µg/L, respectively, efficiently mapping the broad Chl-a concentration classes. Hyperspectral platforms are ideal for the robust monitoring of Chl-a and CyanoHABs; however, the integrated platform has a high cost. More accessible multispectral platforms may represent a trade-off between the mapping efficiency and the deployment costs, provided that the multispectral cameras offer narrow spectral bands in the 660–690 nm and 700–730 nm ranges for Chl-a and in the 600–625 nm and 700–730 nm spectral ranges for cyanobacteria. Full article
(This article belongs to the Special Issue Advances of Unmanned Aerial Vehicles in Hydrology)
Show Figures

Figure 1

25 pages, 17016 KiB  
Article
Initial Performance Analysis of the At-Altitude Radiance Ratio Method for Reflectance Conversion of Hyperspectral Remote Sensing Data
by Luke J. R. DeCoffe, David N. Conran, Timothy D. Bauch, Micah G. Ross, Daniel S. Kaputa and Carl Salvaggio
Sensors 2023, 23(1), 320; https://doi.org/10.3390/s23010320 - 28 Dec 2022
Cited by 5 | Viewed by 2273
Abstract
In remote sensing, the conversion of at-sensor radiance to surface reflectance for each pixel in a scene is an essential component of many analysis tasks. The empirical line method (ELM) is the most used technique among remote sensing practitioners due to its reliability [...] Read more.
In remote sensing, the conversion of at-sensor radiance to surface reflectance for each pixel in a scene is an essential component of many analysis tasks. The empirical line method (ELM) is the most used technique among remote sensing practitioners due to its reliability and production of accurate reflectance measurements. However, the at-altitude radiance ratio (AARR), a more recently proposed methodology, is attractive as it allows reflectance conversion to be carried out in real time throughout data collection, does not require calibrated samples of pre-measured reflectance to be placed in scene, and can account for changes in illumination conditions. The benefits of AARR can substantially reduce the level of effort required for collection setup and subsequent data analysis, and provide a means for large-scale automation of remote sensing data collection, even in atypical flight conditions. In this study, an onboard, downwelling irradiance spectrometer integrated onto a small unmanned aircraft system (sUAS) is utilized to characterize the performance of AARR-generated reflectance from hyperspectral radiance data under a variety of challenging illumination conditions. The observed error introduced by AARR is often on par with ELM and acceptable depending on the application requirements and natural variation in the reflectance of the targets of interest. Additionally, a number of radiometric and atmospheric corrections are proposed that could increase the accuracy of the method in future trials, warranting further research. Full article
(This article belongs to the Special Issue Feature Papers in the Remote Sensors Section 2022)
Show Figures

Figure 1

22 pages, 4427 KiB  
Article
Radiometric Assessment of a UAV-Based Push-Broom Hyperspectral Camera
by M. Alejandra P. Barreto, Kasper Johansen, Yoseline Angel and Matthew F. McCabe
Sensors 2019, 19(21), 4699; https://doi.org/10.3390/s19214699 - 29 Oct 2019
Cited by 35 | Viewed by 6502
Abstract
The use of unmanned aerial vehicles (UAVs) for Earth and environmental sensing has increased significantly in recent years. This is particularly true for multi- and hyperspectral sensing, with a variety of both push-broom and snap-shot systems becoming available. However, information on their radiometric [...] Read more.
The use of unmanned aerial vehicles (UAVs) for Earth and environmental sensing has increased significantly in recent years. This is particularly true for multi- and hyperspectral sensing, with a variety of both push-broom and snap-shot systems becoming available. However, information on their radiometric performance and stability over time is often lacking. The authors propose the use of a general protocol for sensor evaluation to characterize the data retrieval and radiometric performance of push-broom hyperspectral cameras, and illustrate the workflow with the Nano-Hyperspec (Headwall Photonics, Boston USA) sensor. The objectives of this analysis were to: (1) assess dark current and white reference consistency, both temporally and spatially; (2) evaluate spectral fidelity; and (3) determine the relationship between sensor-recorded radiance and spectroradiometer-derived reflectance. Both the laboratory-based dark current and white reference evaluations showed an insignificant increase over time (<2%) across spatial pixels and spectral bands for >99.5% of pixel–waveband combinations. Using a mercury/argon (Hg/Ar) lamp, the hyperspectral wavelength bands exhibited a slight shift of 1-3 nm against 29 Hg/Ar wavelength emission lines. The relationship between the Nano-Hyperspec radiance values and spectroradiometer-derived reflectance was found to be highly linear for all spectral bands. The developed protocol for assessing UAV-based radiometric performance of hyperspectral push-broom sensors showed that the Nano-Hyperspec data were both time-stable and spectrally sound. Full article
(This article belongs to the Special Issue Hyperspectral Imaging (HSI) Sensing and Analysis)
Show Figures

Figure 1

17 pages, 5595 KiB  
Article
Aerial Mapping of Forests Affected by Pathogens Using UAVs, Hyperspectral Sensors, and Artificial Intelligence
by Juan Sandino, Geoff Pegg, Felipe Gonzalez and Grant Smith
Sensors 2018, 18(4), 944; https://doi.org/10.3390/s18040944 - 22 Mar 2018
Cited by 97 | Viewed by 13860
Abstract
The environmental and economic impacts of exotic fungal species on natural and plantation forests have been historically catastrophic. Recorded surveillance and control actions are challenging because they are costly, time-consuming, and hazardous in remote areas. Prolonged periods of testing and observation of site-based [...] Read more.
The environmental and economic impacts of exotic fungal species on natural and plantation forests have been historically catastrophic. Recorded surveillance and control actions are challenging because they are costly, time-consuming, and hazardous in remote areas. Prolonged periods of testing and observation of site-based tests have limitations in verifying the rapid proliferation of exotic pathogens and deterioration rates in hosts. Recent remote sensing approaches have offered fast, broad-scale, and affordable surveys as well as additional indicators that can complement on-ground tests. This paper proposes a framework that consolidates site-based insights and remote sensing capabilities to detect and segment deteriorations by fungal pathogens in natural and plantation forests. This approach is illustrated with an experimentation case of myrtle rust (Austropuccinia psidii) on paperbark tea trees (Melaleuca quinquenervia) in New South Wales (NSW), Australia. The method integrates unmanned aerial vehicles (UAVs), hyperspectral image sensors, and data processing algorithms using machine learning. Imagery is acquired using a Headwall Nano-Hyperspec ® camera, orthorectified in Headwall SpectralView ® , and processed in Python programming language using eXtreme Gradient Boosting (XGBoost), Geospatial Data Abstraction Library (GDAL), and Scikit-learn third-party libraries. In total, 11,385 samples were extracted and labelled into five classes: two classes for deterioration status and three classes for background objects. Insights reveal individual detection rates of 95% for healthy trees, 97% for deteriorated trees, and a global multiclass detection rate of 97%. The methodology is versatile to be applied to additional datasets taken with different image sensors, and the processing of large datasets with freeware tools. Full article
(This article belongs to the Special Issue UAV or Drones for Remote Sensing Applications)
Show Figures

Figure 1

Back to TopTop