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Abstract: The use of unmanned aerial vehicles (UAVs) for Earth and environmental sensing
has increased significantly in recent years. This is particularly true for multi- and hyperspectral
sensing, with a variety of both push-broom and snap-shot systems becoming available.
However, information on their radiometric performance and stability over time is often lacking.
The authors propose the use of a general protocol for sensor evaluation to characterize the data
retrieval and radiometric performance of push-broom hyperspectral cameras, and illustrate the
workflow with the Nano-Hyperspec (Headwall Photonics, Boston USA) sensor. The objectives of this
analysis were to: (1) assess dark current and white reference consistency, both temporally and spatially;
(2) evaluate spectral fidelity; and (3) determine the relationship between sensor-recorded radiance and
spectroradiometer-derived reflectance. Both the laboratory-based dark current and white reference
evaluations showed an insignificant increase over time (<2%) across spatial pixels and spectral bands
for >99.5% of pixel–waveband combinations. Using a mercury/argon (Hg/Ar) lamp, the hyperspectral
wavelength bands exhibited a slight shift of 1-3 nm against 29 Hg/Ar wavelength emission lines. The
relationship between the Nano-Hyperspec radiance values and spectroradiometer-derived reflectance
was found to be highly linear for all spectral bands. The developed protocol for assessing UAV-based
radiometric performance of hyperspectral push-broom sensors showed that the Nano-Hyperspec
data were both time-stable and spectrally sound.
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1. Introduction

Hyperspectral imagers enable the collection of a series of contiguous, very narrow spectral
bands, providing a near-continuous spectrum of an object, commonly referred to as the spectral
signature. The technique offers several advantages over more traditional multispectral sensors,
where few, relatively wide bands are implemented [1–3]. While multispectral sensors usually consist of
5–12 bands [2], hyperspectral sensors can comprise hundreds of bands, with a bandwidth generally in
the range of 5–20 nm [2]. The benefits of quantifying the spectral response of an object or a material have
been well recognized, with applications across disciplines spanning plant sciences for plant pigment,
biochemistry and species assessment [4–8], geology for exploration of minerals [9,10], and marine
sciences for water quality assessment and benthic community mapping [11–15], amongst many others.

The utility of hyperspectral sensors has been advanced through relatively recent developments
in the use of unmanned aerial vehicles (UAVs) as an observation platform. With developments in
sensor miniaturization, power supply stability, communication, and storage requirements, the use of
UAVs for hyperspectral remote sensing has become a feasible option for acquiring ultra-high spatial
resolution hyperspectral data [8]. UAV-based hyperspectral sensors can be classified broadly into
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several groups. Following Aasen et al. [16], these include point-based spectrometers, spectral 2D
imagers, and push-broom sensors. Point-based spectrometers or calibrated spectroradiometers provide
a high spectral resolution, dynamic range, and signal-to-noise ratio. However, their data generally have
no spatial reference [16] and, being point-based, cannot be displayed as a raster image. Spectral 2D
imagers constitute the second group of hyperspectral sensors. They can record all the bands sequentially
or simultaneously. Among the spectral 2D imagers, image-frame sensors are those that record the
bands sequentially. These enable data acquisition of high spatial resolution and often allow a user to
pre-select the desired bands [16]. However, post-processing is required to correct offsets of the bands
within individual cubes [17–19]. Snapshot 2D imagers comprise the second type of spectral 2D imagers.
Their main advantage is that they record all the bands at the same time, thus avoiding the need for
spatial co-registration [20]. On the other hand, push-broom sensors capture one line per exposure (1D),
forming one image line after the other. The spectral signature of objects within the instantaneous field
of view (IFOV) of the camera is contained within each pixel [16]. UAV-mounted push-broom cameras
allow the collection of very high spatial (and temporal) resolution data. However, additional equipment
such as Global Navigation System Satellite/Inertial Measurement Unit (GNSS/IMU) sensors and data
logging units is needed for georeferencing the images, since the data collection process of a push-broom
sensor is sensitive to flight dynamics and orthorectification can be a challenging procedure [16].

Undoubtedly, UAV-based hyperspectral remote sensing offers a convenient alternative over
traditional space and airborne platforms, particularly for small area mapping and frequent monitoring
applications, providing both high spatial and temporal resolution on demand [21,22]. However, as with
any advanced technology, the emerging nature of their application demands an assessment of both
capabilities and limitations [2,14]. Among the advantages is the recording of hundreds of very narrow
and continuous bands [2], providing greater spectral detail, which facilitates improved spectral
discrimination [2,14,23]. Spectral libraries can then be built from the collection of different spectra.
Hyperspectral remote sensing also facilitates the construction of spatial models with detailed spectral
characteristics suitable for enhancing classification [14]. Of course, these advantages also come with
some potential drawbacks. Challenges of hyperspectral remote sensing are often related to interrogating
the high-dimensional data and subsequent processing [2,14], geometric and radiometric correction,
data quality assurance, and also discriminating relevant information from vast datasets [2].

Sensors record data at a specific number of spectral bands and are affected to various extents
by external factors such as varying illumination conditions or viewing geometry [21], flying height,
geometric distortion and orthorectification issues [24,25], as well as by internal factors such as sensor
type and sensitivity, the spectral response function and dark current levels. Internal factors can be
accounted for during sensor calibration, which is a critical step in the fabrication and deployment of a
hyperspectral camera [2,26–28] and is needed for establishing standardized and objective measurements.
For example, so-called ‘dark current’ noise levels, which represent the relatively small electric current
flowing in a photoelectric device that is not exposed to any incident illumination, are higher in
complementary metal-oxide semiconductors (CMOS) than coupled charged devices (CCD) due to
the inherent functioning of these devices [2,29]. Thus, dark current correction and standardization
guarantee that measurements are accurate, credible, reproducible, and comparable between different
experiments [9].

Sensor-related calibration comprises the spectral calibration, the relative radiometric calibration,
and the absolute radiometric calibration [16]. Spectral calibration ensures an accurate spectral response
of the wavebands (spectral fidelity), while the relative radiometric calibration ensures a uniform
output across pixels and time. Finally, the absolute radiometric calibration determines the conversion
from digital numbers (DN) to radiance or reflectance units. This is generally referred to as linearity
because the relationship between DN and radiance is often linear. Scene reflectance generation can be
achieved e.g., using the empirical line method [16], which is a calibration procedure to derive surface
reflectance from at-sensor radiance or raw DN [30]. Although the relationship between at-sensor
radiance and surface reflectance is also assumed to be linear [30,31], Wang and Myint [30] pointed
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out the difficulties of obtaining radiance for some imagery, as well as the problems often arising from
the characteristics of the calibration panels used for the method. Hence, they further investigated the
relationship between DN and surface reflectance. Conversion into normalized radiance or reflectance
units allows hyperspectral data across different experiments and between different sensors, locations,
times, and conditions to be compared.

Hakala et al. [32] designed a calibration procedure for a 2D format tuneable Fabry–Pérot
interferometer-based hyperspectral camera coupled with a system for direct reflectance measurements
from a UAV. Both a spectral and an absolute radiometric calibration were performed. Their stability
evaluation, mimicking a drone campaign, consisted of taking radiance measurements at 5 and 30 min,
and if the relative radiance difference between both times was above 5%, they considered the band
to be unstable. After a spectral calibration (performed at the National Physical Laboratory (NPL)
in Teddington, UK), they found that the spectral response parameters (peak center wavelength
and full width at half maximum (FWHM)) differed from the manufacturer’s reported parameters.
Aasen et al. [20] and Yang et al. [33] both worked with the CubertUHD Firefly snapshot hyperspectral
camera. Yang et al. [33] examined the linearity between DN and radiances. Their results showed a linear
relationship between DN and radiance, with the goodness of fit varying from band to band, but with a
coefficient of determination (R2) above 0.998. Their spectral calibration assessment, performed with a
Hg/Ar lamp, showed that the peaks from the CubertUHD camera lagged with respect to the emission
lines of the lamp and that the FWHM increased with increasing wavelength. After performing a
spectral calibration, a shift of only 1 nm occurred in the wavelength of each band, which was considered
negligible given the FWHM. Hence, the wavelengths were considered stable. For the same camera,
Aasen et al. [20] evaluated dark current levels within 20 min, which they found to increase and pointed
out the presence of dark current spatial inhomogeneities within one band. However, they considered
dark current levels to be low enough to have an insignificant effect.

Arngren [34] presented an assessment of a near-infrared (NIR) hyperspectral line scanner
manufactured by Headwall Photonics. In this technical note, they found that for the InGaAs sensor,
bands recording wavelengths at each extreme of the spectrum had lower sensitivity and a lower
signal-to-noise (SNR) ratio. Additionally, they found pixels with consistently larger than average dark
current DN values across all bands. Assessment of dead pixels (fixed at zero or at maximum DN
counts) showed that the percentage of those was below the acceptable limit set to 0.9% by the camera
manufacturer. Lastly, their spectral performance assessment showed shifts between the acquired
spectrum and the corrected one against a calibration standard. Liu et al. [35] assessed the radiometric
and spectral calibrations of the UAV-mounted visible/near-infrared imaging spectrometer push-broom
scanner during a flight campaign. The radiometric calibration produced a linear relationship with
high R2 coefficients between DN and MODTRAN 5 simulated at-sensor radiances. For the spectral
calibration, they used two different methods, with one requiring in situ measured surface reflectance
and atmospheric parameters, while the other one was applied without the in situ surface reflectance.
Their results showed that both methods produced almost identical results.

The field of UAV-hyperspectral cameras is in constant evolution with new sensors frequently being
designed and deployed, and despite being carefully calibrated by manufacturers, hyperspectral cameras
of any type may need recalibration due to variations between laboratory and flight conditions [35] or
due to small shifts of the spectral parameters over time [33]. It is therefore good practice to assess the
performance and reliability of new products as well as conducting periodical assessments of the cameras
in use. Usually, most of the assessment and calibration experiments require the use of expensive and
specialized instrumentation not readily available in most remote sensing laboratories, where cameras are
purchased for end-user applications, and sending the cameras back to the manufacturers for assessment
may not be practical. Additionally, data calibration methodologies applied during surveys may be
affected by atmospheric and illumination conditions, limiting the generality of results. Overall, there is
a distinct lack of standardized protocols for consistent evaluation of the radiometric performance of
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UAV-based hyperspectral sensors, despite the significant effects that spectrally inconsistent data may
have on mapping applications.

In this study, we outline and implement an approach for assessing the radiometric performance
of miniaturized hyperspectral push-broom sensors, with a goal to ensure that a consistent, reliable,
and repeatable collection of hyperspectral data can be achieved. The proposed approach is meant to be
implemented with the aid of instruments commonly found in most remote sensing laboratories and to
be undertaken in a relatively short period and without requiring extensive computing resources. As an
example application, the performance of a Headwall Nano-Hyperspec imaging sensor was examined
for its ability to provide accurate and reliable hyperspectral retrievals. To do this, we undertook
a series of evaluation steps. First, the DN counts and radiance values of the dark current, a white
reference, and their associated anomalies over time and across pixels were collected to characterize
the sensor’s stability and precision. A second assessment involved an examination of the spectral
wavelength location of the sensor, utilizing a Hg/Ar light source and a field spectroradiometer.
Finally, the conversion from radiance to reflectance through the empirical line method was evaluated
using different grey-scale radiometric calibration panels and comparing these to spectroradiometer
measurements. It should be noted that the developed approach is not a calibration procedure, but rather
a workflow for evaluating the radiometric performance of small hyperspectral push-broom sensors
suited for UAVs.

While most published experiments for assessing and calibrating UAV-based hyperspectral cameras
are focused on snapshot cameras, very few examples were identified for push-broom hyperspectral
cameras [34,35]. One of the most extensive assessments of a hyperspectral camera is presented in [34].
Although most of the key points for evaluating the camera’s performance are summarized, it lacks
guidance and analysis regarding the temporal stability of the sensor. Additionally, it implements
costly specific standards for the NIR region that may not be readily available. Moreover, most of the
documented experiments make use of very specialized instruments that might not be acquired by
end-user remote sensing laboratories. One of the innovative aspects of this paper is that it is oriented
to UAV users, who collect data under the assumption that their cameras are accurately calibrated by
the manufacturer, and currently have no options for verifying the radiometric data quality of their
push-broom hyperspectral cameras. Our work addresses this gap by providing a simple yet effective
protocol for evaluating the data quality and radiometric performance of UAV-based push-broom
hyperspectral cameras.

2. Materials and Methods

2.1. Overview of the Nano-Hyperspec Sensor

The Nano-Hyperspec sensor is one of a number of recent hyperspectral systems that have
been specifically designed for UAV-based remote sensing. The sensor, which is based on CMOS
technology, is relatively lightweight at 0.52 kg and occupies a rather small footprint with dimensions
of 76.2 mm × 76.2 mm × 119.9 mm. The Nano-Hyperspec is a push-broom sensor, i.e., imagery is
collected along the direction of flight, line by line, with each line captured at a unique moment in time,
corresponding to an instantaneous position and attitude of the UAV. Each line of pixels comprises
640 spatial pixels and 270 spectral bands with a total of 172,800 pixel–waveband combinations.
The sensor collects 12-bit data, i.e., 4096 brightness levels, across the visible and near-infrared spectrum,
ranging from 400 to 1000 nm, with a sampling interval of 2.2 nm and a FWHM of approximately
6 nm [36].

2.2. Performance Assessment Protocol

For the evaluations performed here, the exposure time and frame period, i.e., the inverse of
the frame rate, were set to the same value in each experiment, but the value between experiments
differed depending on light conditions. Exposure time refers to the time the sensor is exposed to light,
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while the frame period refers to the time in which an individual frame is collected, with both expressed
in milliseconds (ms). The exposure time is set to optimize the instrument’s internal gain settings for
best signal-to-noise ratio during the brightest conditions encountered during data collection while
preventing the risk of detector saturation, i.e., signal over-range. Here, a frame refers to an array of
640 pixels, i.e., the spatial resolution of the sensor. Frames per cube refer to the number of frames
that are saved under one .hdr file, which in this study is set to 1000 for all experiments. Since the
experiments were stationary, we averaged the 1000 frames in each file to get a representative value of a
time interval within 6 and 12 s, depending on the exposure used. The value of 1000 frames per cube
was considered appropriate to capture data of small intervals of time while avoiding excessively big
files, which make processing difficult. Table 1 summarizes the main features of the collected data per
experiment. Figure 1 summarizes the steps undertaken for the complete assessment as a workflow of
the protocol proposed in this study and described in detail in the following sections.

Table 1. Details of the Nano-Hyperspec data collected for each of the experiments.

Type of Experiment No. of Experiments Exposure (ms) Files per Experiment Data Size (GB) per Experiment

Dark current 2 6 301 100
Dark current 2 12.5 140 46.9

White reference 2 12.5 137 46.3
Spectral calibration 1 1000 1 217

Empirical line 1 3 372 71.1
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2.3. Relative Radiometric Calibration Assessment

Push-broom sensors collect data in successive linear arrays of picture elements. For each pixel in
the array, spectral data are collected simultaneously and independently. Small differences between
the sensors of each pixel can create a pattern of across-track noise, known as vertical striping [37].
Additionally, there may be a pattern of along-track noise caused by temporal variations induced by
dark current effects and the optical system [37]. While this research did not seek to remove these noise
patterns, it is important to evaluate the spatial response of the camera across its 640 pixels and to
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study any temporal variations of these throughout average UAV flight times, i.e., generally 30 min.
Spatial pixel measurements should be homogeneous for the same feature, and temporal variations
between the first and last measurements should be small enough not to affect the signal significantly,
or at least be consistent to allow for simple removal. The relative radiometric performance of the
Nano-Hyperspec sensor was assessed in two main steps: (1) a dark current assessment for the
area detector, i.e., the mechanism which converts incident photons into electrons to quantify light
intensity [30]; and (2) a white reference assessment for the optical system, i.e., the system that forms the
actual image and the spectrometer [37]. Initially, raw DN data were examined. Subsequently, DN counts
were converted into radiance values using Headwall’s SpectralView software to allow for a more detailed
examination of the temporal variability. Calibration files provided by Headwall allowed the conversion
from DN to radiance of the Nano-Hyperspec data. The transformation provides measurements in
physical units of milliwatts per square centimeter per steradian per micrometer (mW/cm2

·sr·µm),
thus eliminating the problem of specific measuring scales for each sensor. Further details of these two
experiments are provided below.

The basic setup for the laboratory experiments consisted of a box-like stand constructed with
aluminium bars. A horizontal bar, placed at approximately 80 cm from the floor, was used for
placing the light source during the white reference experiments. The camera was placed inside the
stand and pointed at nadir. The camera was aligned horizontally using a spirit-level. For all the
experiments, a black fabric was used to fully cover the box-housing to minimize external light sources.
Stands of different heights were used to place the targets at the desired distance from the camera.
For the relative radiometric calibration assessment experiments, the data collection was done in the
morning. Subsequently, the camera was left to cool down until the following morning before running
a new experiment.

2.3.1. Dark Current Assessment

Dark current can be defined as the residual current that flows through a photo-sensible device
when there is no incident radiation upon it [38], due to the random generation of electrons. Dark current
is temperature-dependent [39], and its effects increase with increasing temperature. The aim of the
experiments was first to establish if dark current levels were uniform across all 640 spatial pixels in
an array and to identify ‘hot pixels’, i.e., pixels in DN or radiance values with above-average dark
current levels due to saturation [38]. To assess the spatial response, the value for each pixel–waveband
combination along all the frames was averaged, and variability was assessed through the standard
deviation. Ideally, each of the 640 pixels in the array should show similar readings for each waveband,
which would indicate consistent dark current levels. The evaluation was performed for both DN
measurements and radiance. Additionally, a careful examination was undertaken to identify hot pixels
in the raw data and determine if they could be identified in the radiance images.

A temporal assessment was also undertaken to determine how dark current levels fluctuate
during a standard time interval of UAV-based sensor operation (30 min) and whether these variations
are significant enough to affect sensor accuracy. Dark current DN levels were recorded for a 30 min
period, at exposures of 6 and 12.5 ms: the first value being a common exposure value employed
during flight campaigns under sunny conditions, and the latter being the exposure used for the
white reference experiments. For the experiments, the camera was turned on, and the image capture
initiated (with the lens cap on), within 2 min after power-up. A total of four experiments were run
for this purpose: two at 6 ms exposure and two at 12.5 ms exposure, to verify consistency between
experiments. Temporal variability was assessed after converting DN into radiance since it is a standard
unit that allows for comparison with other sensors. The assessment was done by calculating the relative
difference (percentage of change) between the first measurement at time t = 0, and the measured
value at each successive minute for the duration of the experiment, i.e., time t = 30 min. This relative
difference was calculated for all pixel–waveband combinations to get the minimum and maximum
variations during the experiment. For practical purposes, results were averaged, first for all possible
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pixel–waveband combinations and then for all the pixel–waveband combinations within a specific
region of the spectrum: Blue (400–500 nm), Green (500–600 nm), Red (600–700 nm), and NIR (700–1000).
Finally, the percentage of change between the first and last radiance measurements was used to quantify
pixel–waveband combinations with a net increase or decrease in their radiance values with respect to
the first measurement. For the dark current assessment, only the basic setup and the Nano-Hyperspec
sensor were required. The lens cap was left on before turning on the camera and the light in the room
was turned off before starting the data recording.

2.3.2. White Reference Assessment

The goal of the white reference assessment was to establish whether the spectral signature was
consistent across the spatial pixels and over time between frames. Experiments were conducted
utilizing a white Spectralon panel (Labsphere Inc., North Sutton, NH, USA) with 99% reflectance
across a wavelength range from 250 to 2500 nm. Two repeat experiments, each running for 30 min,
enabled evaluation of the DN and radiance fluctuations over time. The two experiments were conducted
with exposures of 12.5 ms, i.e., the minimum exposure required to attain optimized DN with the
illumination source. Similar to the dark current experiments, the analysis of spatial and temporal
variability was undertaken separately. Spatially, all pixels were expected to have similar readings
at a specific wavelength. An extra step was taken for the spatial assessment in the white reference
experiments whereby the mean radiance was divided by the mean DN, producing what is referred to
here as the Spectralon radiance response, following Rozenstein et al. [40], to allow for comparisons
with other common experiments. Temporal variation was assessed in the same fashion as described in
Section 2.3.1 for the dark current experiment.

For the white reference assessment experiments, only the Spectralon panel and a halogen lamp as
light source were required besides the basic setup described in Section 2.3. Special attention was given to
the placement of the light source (halogen lamp) in relation to the Spectralon panel and sensor to attain
a consistent spectral signature among all pixels and with optimized DN to reduce the signal-to-noise
ratio and prevent saturation. The camera angle was kept constant at nadir, and the illumination source
angle was also constant at 45◦ to allow for comparison between the two experiments. The setup was
protected from any other incoming light with black fabric, which was especially important for this
assessment. For these experiments, both the camera and target were stationary.

2.4. Spectral Calibration Assessment

Undertaking a spectral waveband calibration is one of the most critical calibration elements
that is conducted when a camera is being manufactured [26]. It guarantees that the defined spectral
channels of a camera are recording the associated wavelengths, i.e., the spectral fidelity [41]. For this,
calibration lamps from different rare gases or metal vapors are often used to produce narrow,
constant, and specific wavelength emission lines [42]. The goal of this experiment was to validate the
manufacturer’s spectral waveband calibration. In this case, we assessed if the wavelength emission
lines of a Hg/Ar lamp matched those recorded by the Nano-Hyperspec sensor. The HG-1 Hg/Ar lamp
(Ocean Optics Inc., Dunedin, FL, USA) had Hg and Ar wavelength emission lines from 253–580 nm
and 696–922 nm, respectively. Table 2 presents the emission lines for the HG-1 lamp with the lines
specified for Hg and Ar separately. The exposure for the Nano-Hyperspec sensor of 1000 ms was
used to attain the desired DN counts, adequate for comparison with spectroradiometer measurements.
At exposure times lower than 1000 ms, no clear signal could be recorded. For the measurements with
the Nano-Hyperspec sensor, the lamp was held vertically, pointing the light source towards the camera
lens (camera at nadir). The distance between the camera lens and the light source was approximately
2 cm. No other light sources were present during the experiment.
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Table 2. Hg/Ar emission lines as reported from Ocean Optics for their Hg-1 lamp.

Hg Emission Lines (nm) Ar Emission Lines (nm)

253.652 696.543
296.728 706.722
302.15 714.704

313.155 727.294
334.148 738.398
365.015 750.387
404.656 763.511

407.783 * 772.376
435.833 794.818

546.074 ** 800.616 ***
576.96 811.531

579.066 826.452
842.465
852.144
866.794
912.297
922.45

* This spectral line is not evident with spectrometers configured with 300 or 600 lines/mm gratings. ** Spectrometers
with 1200, 1800, 2400 or 3600 lines/mm gratings have spectral lines evident at 576.96 nm and 579.07 nm. *** This
spectral line is evident only with spectrometers configured with 1800, 2400, or 3600 lines/mm gratings. As specified
by Ocean Optics [43].

An ASD FieldSpec-4 (Analytical Spectral Devices Inc., Boulder, CO, USA) spectroradiometer was
also used for this experiment, with its optical fiber cable directly connected to the light source.
The readings were taken on the DN scale of the Fieldspec-4 and were not further processed.
These measurements were taken as the standard for comparison. The spectrum of the Hg/Ar lamp
collected with the spectroradiometer was compared with that measured by the Nano-Hyperspec
sensor. These observations were also related to documented Hg and Ar wavelength emission lines.
For the spectral calibration assessment, only the Hg/Ar lamp and the spectroradiometer were needed,
besides the Nano-Hyperspec.

2.5. Conversion from Radiance to Reflectance

We sought to establish the relationship between data acquired by the Nano-Hyperspec sensor
converted to at-sensor radiance using the SpectralView software and coincident reflectance data
acquired with the FieldSpec-4 spectroradiometer. Obtaining imagery in reflectance units is required for
the comparison of different data sets collected for different areas or the same area over time. We chose to
perform the empirical line method to obtain regression equations to convert from at-sensor radiance to
at-surface reflectance given that radiance values could be derived from Headwall’s software. At-sensor
radiance values of the Nano-Hypserspec sensor were related to reflectance using three different
types of near-Lambertian radiometric calibration panels, for which Nano-Hyperspec radiance and
ASD Fieldspec-4 spectroradiometer reflectance values were obtained. The three different radiometric
calibration panels comprised: (1) a Spectralon gray-scale panel with nominal reflectance values of
12%, 25%, 50%, and 90%; (2) seven Masonite (steam-cooked and pressure-molded wood fibers) panels
painted with three coats of matte paint, ranging from black to white, following the procedure of
Wang and Myint [30] and Johansen et al. [44]; and (3) six oak plywood panels painted similarly to the
Masonite panels. Spectralon panels were chosen as they have diffuse reflectance properties which
show a nearly unchanged spectral response from 250 to 2500 nm, making them the ideal reflectance
standards. Masonite panels were chosen as they are relatively cheap and commonly available, and have
been utilized previously [30], showing near-Lambertian properties when coated with matte paint.
Oak plywood was chosen as the third material because it is an extremely common and inexpensive,
and provides a readily obtainable and replaceable solution when other types of panels may not be
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available. Oak plywood panels have a smooth surface in contrast to the characteristic texture of the
Masonite. The suitability of all three panel types was tested in this experiment.

To replicate similar atmospheric conditions to those in the field, the experiment was conducted
outdoors between 9:00 and 10:30 a.m. (local time) under clear sky conditions. White references were
collected for both the Nano-Hyperspec sensor and the spectroradiometer before the measurements of
each set of calibration panels. Using the empirical line method [30,31] for each set of panels and all
270 bands, a line of best-fit was obtained through linear regression between the reflectance measured
with the spectroradiometer and the radiance measured with the Nano-Hyperspec sensor. The fit of
this line was evaluated using R2 and the residuals for the linear regressions vs. the fitted reflectance
values, calculated from the regression equations, for the three different sets of panels.

3. Results

3.1. Relative Radiometric Calibration Assessment

3.1.1. Dark Current Assessment

An initial analysis of the DN showed that the mean signature across dark current experiments
was consistent with values between 110.2 and 128.8 DN for all the pixels and bands (Figure 2a) on a
scale from 0 to 4000 DN. The lowest readings were found for the bands around 400 nm. The edges of
the pixel array (pixels below 100 and above 500 out of the 640 pixels in an array) showed consistently
larger DN values across all the bands, indicating that these have the largest dark current levels.
Looking at the spectral bands and the pixels in Figure 2a, it seems there are two superimposing patterns,
i.e., one producing vertical strips (across the pixels) and one producing horizontal strips (across the
bands). The latter means some bands show larger DN values across all the pixels, and some pixels
show larger DN values than their neighbor across all the bands. This behavior ultimately produces a
gridded appearance.

Figure 2b shows that the spatial pixels at the edges of the array have the largest variability in
their dark current readouts, indicating that in the DN domain these pixels are generally noisier due
to dark current effects and hence fluctuations in temperature. The gridded pattern is less evident in
Figure 2b, where only the horizontal strips can be recognized, showing groups of pixels with larger or
lower variability of the dark current levels. This indicates that variability in dark current levels is more
influenced by the pixel position in the array than by the wavelength being recorded. The latter is true
except for the wavelengths between 400 and 500 nm, showing the largest variability and forming a
yellow vertical strip. In general, the standard deviations in the dark current experiments with 6 ms
exposure were around 0.096–0.100 DN for most of the pixels.

Figure 2c shows the dark current levels in the radiance domain. The patterns observed in the
DN domain were not evident when analyzing the derived radiance values (Figure 2c). This was
attributed to the use of gain and offset parameters in the conversion from DN to radiance values,
which generally reduces pixel-to-pixel and band-to-band variations. The lowest radiance values at
approximately 0.4 mW/cm2

·sr·µm were found between 600 and 700 nm. Values close to 400 nm and
beyond 800 nm were over 1 mW/cm2

·sr·µm. Values around 1000 nm were considerably larger at
approximately 4 mW/cm2

·sr·µm. The second experiment with an exposure of 6 ms showed the same
pattern. The response was uniform across pixels, which means that dark current levels, measured in
radiance units, affect all pixels in the same way or are spatially consistent. The standard deviation was
lower, where radiance values were lower and were slightly larger where radiance values were larger.
The largest of the standard deviations were below 0.01 mW/cm2

·sr·µm around the mean radiance,
which can be considered low for values of 4 mW/cm2

·sr·µm in this part of the spectrum.
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Figure 2. Spectral signature for the dark current (covered lens) experiment with an exposure of
6 ms, showing (a) DN mean spectral signature, (b) standard deviation of the DN spectral signature,
(c) radiance mean spectral signature, and (d) standard deviation of the radiance spectral signature.

Similar patterns were observed for the dark current experiment at 12.5 ms of exposure, where lower
radiance values were approximately 0.2 mW/cm2

·sr·µm around 600 nm, and larger values close to
400 nm and beyond 800 nm were between 0.7–2.4 mW/cm2

·sr·µm. Around 1000 nm, the radiance
values reached >2 mW/cm2

·sr·µm. The experiment performed with an exposure of 12.5 ms also showed
that responses were uniform across pixels. Hence, similar patterns but different radiance values were
observed using different exposures. These results mean that for different exposure times, the dark
current measured in radiance values is different, with lower radiance values for longer exposure times.
In this case, the increased exposure reduced the radiance baseline by roughly 50%.

Ideally, radiance measurements of the dark current should be homogeneous across pixels and
wavelengths, as they represent “no light” conditions. Variations in the mean dark current signal and
its standard deviation in the radiance domain show a consistent response across pixels and are more
variable across wavelengths. To remove dark current effects, the dark current signal should be recorded
before each survey. Dark current effects and any variability among them should be accounted for by
subtracting the dark current spectrum from the measured spectrum. Although it may be implied that
a larger exposure results in lower dark current levels in the radiance domain, in reality, the selected
exposure is more dependent on the illumination conditions present during a survey.

For the DN responses, 17 pixel–waveband combinations showed values above 135 DN, with only
seven pixel–waveband combinations having DN values above 140, which was consistently identified
in all four dark current experiments. Six pixel–waveband combinations showing elevated values were
found within the blue portion of the spectrum and one “hot pixel” occurred in the NIR part of the
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spectrum. The hot pixel–waveband combinations were also observable in the radiance experiments,
exhibiting values above 1.6 mW/cm2

·sr·µm in the blue region and 4.9 mW/cm2
·sr·µm in the NIR region

of the spectrum at 6 ms exposure. At 12.5 ms exposure, the radiance values were approximately 0.75
and 2.5 mW/cm2

·sr·µm for the blue and near-infrared regions, respectively. The seven identified “hot
pixels” (pixel–waveband combinations) out of a total of 172,800 combinations would have little impact
on the collected data during UAV surveys with the Nano-Hyperspec sensor and, therefore, can be
considered negligible for field-derived imagery.

The results of the temporal variability analysis showed that the largest increase and decrease
in radiance values were 5.6% and 2.5%, respectively (Figure 3a). Over 80% of the pixel–waveband
combinations exhibited a relative difference in radiance values below 2% throughout the 30 min
experiment. For the remaining 20% of pixel–waveband combinations, the relative difference ranged
from 2.0 to 5.6%. The percentage of pixel–waveband combinations showing an increase larger than 3%
was negligible. For these experiments, over 99% of the pixels showed a positive relative difference,
which can be attributed to an increase in dark current levels. For the dark current experiments with an
exposure of 6 ms, this means that only 750 out of 172,800 pixel–waveband combinations showed a
decrease in their last measurement. Additionally, horizontal blue strips in Figure 3a indicate some
pixels where the relative difference is preferentially negative.
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Figure 3. Temporal analysis for the dark current experiment with an exposure of 6 ms, showing
(a) percentage of variation on a range from −2.5% to 5.6 between the first and the last radiance
measurements, and (b) time series analysis of the percentage of variation from the first measurement.
The gray region represents the area enclosed between the maximum and minimum values of relative
difference. The global mean is depicted in black, the mean for the red-green-blue (RGB) regions of the
spectrum are depicted in red, green, and blue, respectively, and the near-infrared (NIR) region is shown
in yellow.

Figure 3b shows that all wavebands followed the average change in radiance. The average change
in radiance showed a slightly oscillating pattern throughout the 30 min, with no evident increase until
around 15 min. After 15 min there was a slight increase. The average increase of radiance values after
30 min was below 2%, emphasizing that overall, there was low temporal variability in the radiance
measurements of the Nano-Hyperspec sensor, and the response with time was stable.

Increasing the exposure to 12.5 ms resulted in larger relative changes of radiance both above
and below the first measurement. The maximum positive (difference between first and last reading)
percentage of change was 7.3%. The largest change below the first measurement was 4.1%. This means
that increasing the exposure generates a larger variability in the temporal response, i.e., higher and
lower values with respect to the first measurements. Approximately 99.5% of all pixel–waveband
combinations had differences in radiance values between the first and last measurements <2%, with only
0.5% of the measurements being >2%. The percentage of pixel–waveband combinations showing a
difference in radiance values >3% was negligible. For the experiments with 12.5 ms of exposure, 98% of
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the 172,800 pixel–waveband combinations showed a larger radiance reading in their last measurement,
while 2% showed a decrease in their recorded value. The latter means that 2852 pixel–waveband
combinations showed a decrease in radiance in their last measurement. All wavebands followed the
average change in radiance through time. The average increase in the radiance by the end of the
30 min experiment was <2%. These findings indicate that although the variability is larger for a 12.5 ms
exposure, the camera’s response was very similar to that of the 6 ms exposure and can be considered
time stable.

The results indicate that dark current levels are different among bands, but are consistent across
pixels, which is acceptable for the camera operation. Variability in dark current levels increased with
higher exposure. However, the average response can be considered time stable. The normal exposure
times of the Nano-Hyperspec sensor during flights range from 3 to 6 ms. Hence, variability in dark
current levels from the electronic system alone should be lower, with overall negligible effects on the
quality of field-derived imagery. Overall, it can be concluded that no warm-up period is required
before camera deployment due to dark current or optical effects.

3.1.2. White Reference Assessment

The spectral signature in DN for the white reference followed the emission pattern characteristic
of halogen lamps, with a peak between 600 nm and 800 nm for all 640 pixels (Figure 4a). As expected,
the standard deviation was higher where the DN readings were larger, i.e., between 600 nm and 800 nm
(Figure 4b). However, the peak standard deviation shifted slightly towards lower wavelengths (around
650–700 nm) of the spectrum with respect to the mean signature’s maximum at about 700 to 750 nm.

Figure 4c corresponds to the mean spectral signature in radiance units. The image shows a gradient,
with the lowest values around 400 nm and the largest around 1000 nm, differing from the pattern
displayed by the DN. The standard deviation (Figure 4d) shows the same gradient; however, its values
were very low (<0.006 mW/cm2

·sr·µm). The radiance response of the Spectralon to the halogen lamp
is shown in Figure 4e. Dividing the spectral radiance by the DN value showed that the results were
consistent to those of [40], where the spectral radiance response of the Spectralon had low values
throughout most of the wavelengths. Wavelengths around 400 nm showed a slight increase in the
radiance response values compared to larger neighboring wavelengths, while the maximum peak
values are found close to 1000 nm. All spatial pixels showed consistent and similar measurements in
both the DN and radiance domains.

No hot pixels were identified in the DN mean spectral signature. For the radiance signal, only one
pixel showing values above neighboring pixels was detected in the NIR region. This pixel was one of
those previously identified in the dark current experiments, corresponding to pixel 135 at wavelength
995.5 nm. Readings of this pixel were approximately 17.5 mW/cm2

·sr·µm, while most of the neighbor
pixel–waveband combinations were <16.5 mW/cm2

·sr·µm. Results were similar for both of the white
reference experiments. It can be inferred that the influence of the hot pixels identified in the dark
current experiment is negligible when the sensor is measuring the intensity of light across wavebands.

Figure 5 shows the temporal variability analysis in the radiance domain. Figure 5a shows that
wavelength channels below 800 nm had preferentially lower or closer to zero values by the end of
the experiment compared to the first measurements. The most significant drops in radiance were
on average −1.5% around 500 nm, with the largest drop of approximately 1.9% occurring for spatial
pixel number 13 at 514.12 nm. Channels recording above 800 nm showed consistently higher radiance
values after 30 min (Figure 5a). The largest increases of radiance were on average approximately 3.5%
and occurred for wavelengths close to 1000 nm, with the largest increase being approximately 5%,
identified for spatial pixel 496 at 407.06 nm. The absolute percentage of change was <4% in 99.9% of
cases. In general, the camera’s response was stable for normal UAV operation times, i.e., 30 min.
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Figure 5. Temporal analysis for the white reference experiment at an exposure of 12.5 ms,
showing (a) percentage of variation between the first and the last radiance measurement at 30 min,
and (b) time series analysis of the percentage of variation in radiance from the first measurement.
The gray region represents the area enclosed between the maximum and minimum values of relative
difference. The global mean is depicted in black, the mean for the RGB regions of the spectrum are
depicted in red, green, and blue, respectively, and the NIR region is shown in yellow.

For the first white reference experiments, approximately 46% of the pixel–waveband combinations
showed an increase in their final radiance measurement after 30 min, with a lower reading occurring for
the remaining pixels. For the white reference experiment, this corresponds to 92,489 pixel–waveband
combinations showing a decrease in their last measurement. However, for the second white reference
experiment, approximately 61% of the pixel–waveband combinations showed an increase in their final
radiance measurement. In both experiments, wavelengths above 800 nm showed an increase in their
readings throughout the spatial pixels, which means the difference between both experiments arises
from the region of the spectrum below 800 nm, where the number of pixel–waveband combinations
that had a larger or lower reading after 30 min varied through repeated uses of the camera. However,
variations in the NIR region are much closer to zero and are likely not a concern for UAV campaigns.

Figure 5b shows the mean, maximum, and minimum percentage of variation of all pixel–waveband
combinations for each minute in relation to the first measurement. Again, all the regions in the spectrum
followed the shape of the global mean, but each curve varied by a different percentage. The blue and red
parts of the spectrum (see individual lines in Figure 5b) showed similar responses and were consistently
lower than their first reading. The same is true for the green part of the spectrum, which had a
more negative relative change with respect to the first measurement than the blue and red parts of
the spectrum. Only the NIR region of the spectrum showed larger readings compared to the first
measurement, with a positive change occurring after 10 min, which might result in larger NIR values
in the last swaths collected during a survey. However, aside from the maximum and minimum values,
the relative difference throughout the experiment was between −2% and 2%, which is unlikely to affect
most hyperspectral surveys. Based on these results, it can be concluded that no warm-up period is
required before camera deployment due to optical effects.

3.2. Spectral Calibration Assessment

Experiments were performed to assess the calibration quality of the spectral wavebands using
a Hg/Ar lamp (refer to Section 2.3). The Hg/Ar intensity values per wavelength as measured by the
Nano-Hyperspec sensor were compared to documented Hg and Ar values, as well as those measured
with the ASD Fieldspec-4 spectroradiometer (Figure 6). The vertical scale, formerly in a DN arbitrary
intensity scale of each device, was normalized to allow for easier comparison. The most important
aspect here was the wavelength position of the peaks. For the Fieldspec-4 spectroradiometer, the peaks
were coincident and reflected the reported Hg and Ar emission wavelength lines, indicating an optimal
spectral calibration (Figure 6).
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Figure 6. Normalized intensity comparison between Hg lamp (a) and Ar lamp (b) emission lines
(vertical black lines, see Table 2 for reference values) and recorded spectra with the ASD Fieldspec-4
(blue curve) and the Nano-Hyperspec sensor (orange).

The peaks of the Nano-Hyperspec data closely matched the peaks for the documented Hg/Ar
emission wavelengths, although slight offsets of 1 to 3 nm were identified. The shift to the right
encountered for the peaks registered by the Nano-Hyperspec sensor occurred for all the reported
wavelengths, with the offset approximately the same for all wavelength peaks. Shifts in the recorded
spectrum with respect to the calibration standard need to be accounted for. Otherwise, the deviations
will generate low spectral fidelity of the sampled ground features. For the Nano-Hyperspec sensor,
the region below 500 nm showed slightly elevated values above zero at locations with no emission
lines. Both the ASD Fieldspec-4 and Nano-Hyperspec sensors registered an additional peak at 966 nm
that was not included in the specifications of the Hg/Ar lamp. This peak was more evident in the
Nano-Hyperspec measurements than those with the ASD Fieldspec-4. However, since it was registered
by both instruments, it is likely not to be an artifact. An Argon plasma emission lines graphic by Ocean
Optics [45] showed an emission line in the same 966 nm spectral region which likely corresponds to
that presented here.

3.3. Conversion from Radiance to Reflectance

As described in Section 2.5, three types of radiometric calibration panels were used to assess
the relationship between the Nano-Hyperspec derived radiance values and ASD Fieldspec-4 derived
reflectance values. These included Spectralon, Masonite and oak plywood panels. A best-fit equation
was calculated for all the wavelengths for each of the panels. The relationship between radiance
and reflectance was found to be linear, with a near-perfect fit (R2 > 0.99) for all wavelengths with all
panels. Variations in the R2 values between the three different sets of panels were negligible. Figure 7
shows the residuals for the linear regressions versus the fitted reflectance values for four wavebands
corresponding to the RGB and NIR region of the spectrum. The figure also presents the corresponding
R2 for the linear regressions. Residuals show a random distribution around zero for all three sets of
panels, which is indicative of no bias in the regression models. The magnitude of the residuals changed
between the different types of panels, with the Spectralon panels having the residuals closest to zero,
while the oak plywood panels had the most dispersed residuals. Residuals ranged between −0.009
and 0.004 for the Spectralon panels, between −0.006 and 0.006 for the Masonite panels, and between
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−0.033 and 0.022 for the oak plywood panels. Residuals increased by an order of magnitude from the
Spectralon and Masonite to the oak plywood panels, which indicates that the former materials are
better suited as radiometric calibration panels than those of oak plywood. These results align with
those presented by [32]. However, all residuals were very close to zero, indicating that oak plywood
can also be used for the empirical line method.
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Figure 7. Residuals vs. fitted reflectance plots for (a) Spectralon, (b) Masonite, and (c) oak plywood
panels. Blue dots correspond to a wavelength of 447 nm in the blue region of the spectrum, green dots
to a wavelength of 554 nm in the green region, red dots to a wavelength of 652 nm in the red region,
and yellow points to a wavelength of 850 nm in the NIR region. The legend is accompanied by R2 of
the regression for the specific wavelengths.

It is essential that panels used for an empirical line method cover a wide range of spectrally
homogenous and known reflectance values, which can only be attained with the aid of a
spectroradiometer, such as the Fieldspec-4, in the case of user-painted panels. While the Spectralon
grey scale panels provide known standards with widespread reflectance levels, Spectralon panels
of appropriate size for most flight campaigns or equivalent reflectance coatings are expensive and
would be largely exposed to wear and tear from field conditions that would degrade their spectral
properties rapidly. The use of Masonite and/or oak plywood panels coated with matte paint [30,46]
to perform the empirical line method is supported by our results, although Masonite is preferred.
Their use, however, requires a spectroradiometer to measure reflectance of the constructed grey scale
panels. Therefore, the panels should not replace the implementation of a Spectralon surface as a white
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reference for the spectroradiometer and for the Nano-Hyperspec camera during pre-flight workflows
to guarantee that the calibration steps are optimized.

4. Discussion

UAV-based hyperspectral measurements provide a relatively new and potentially powerful
means for deriving high-spatial, -spectral, and -temporal resolution information. UAV platforms
are suited for bridging the scaling gap between field studies, airborne remote sensing, and even
satellite remote sensing data [47]. However, for the data to be useful, confidence in the stability and
repeatability of measurements, together with absolute radiometric accuracy, is required. Achieving this,
demands well-calibrated instruments, which require routine and repeated camera evaluations. For all
UAV-based push-broom hyperspectral sensors, we recommend that the radiometric accuracy of the
data is carefully assessed using the procedures outlined in this paper, i.e., dark current and white
reference measurements, evaluation of the spectral band calibration, and the relation and conversion
of derived radiance values to at-surface reflectance. Without a basic understanding of radiometric
accuracy, it is impossible to determine the quality of the collected data. Once noise levels have been
quantified, it is possible to calculate the minimum detectable difference in reflectance values required to
differentiate features being mapped, e.g., two different tree species. Similarly, it is possible to determine
the minimum detectable change required to establish changes in biophysical properties and plant
traits, e.g., leaf area index or leaf chlorophyll condition [48,49]. Propagating noise values through
applied models for mapping, e.g., leaf area index or chlorophyll, enables a threshold to be set beyond
which detected change represents actual change as opposed to change caused by noise in the image
data. These types of calculations can also be related to unexplained variance in prediction models [44].
Procedures like these will enable users of hyperspectral data to determine if the radiometric accuracy
of their data is suitable for a particular application, or if calibration of their sensor (or even the use of a
different sensor) is necessary to achieve the required results.

Our results for the dark current assessment indicated that increasing the exposure from 6 ms to
12.5 ms increased the maximum difference between the first and last radiance measurements from
5.6% to 7.3%. However, a relative difference between the first and last measurements greater than
5% only occurred in 0.005 and 0.004% of the pixel–waveband combinations when using an exposure
of 12.5 ms and 6 ms, respectively. Overall, our results showed that the average dark current levels
for the Nano-Hyperspec system in each of the spectral regions in the radiance domain increases <2%
after 30 min, which is well below the 5% threshold used by [32]. As only a pre-flight dark current
measurement is collected and used to subtract from the recorded data during a survey, the smaller the
increases in dark current are, the less impact it will have on the last swaths taken during a flight and the
more stable the bands can be considered. Our outcomes showed dark current spatial inhomogeneities
within the same band in the DN domain. These inhomogeneities were eliminated when processed
into radiance. Regarding the radiometric response for the white reference experiments, it was shown
that the bands have a uniform response across spatial pixels in both the DN and radiance domains.
The results for the temporal variability of the white reference experiments indicated relative differences
well below 5% even when considering its maximum values, implying that temporal changes with the
lens cap off are negligible.

In our evaluation, no dead pixels were detected, but 17 pixel–waveband combinations showed
values larger than 135 DN, corresponding to 0.01% of the total number of combinations. Conversion into
radiance values reduced the hot pixels to one single pixel–waveband combination. Taking as a reference
the 0.9% limit for dead pixels provided by camera manufacturer, Headwall Photonics, for the camera
evaluated in [34], the Nano-Hyperspec can be considered to be in optimal condition regarding hot and
dead pixels. Moreover, due to the very high spatial resolution of UAV-based imagery, object-based
image analysis approaches are likely to be used for mapping purposes, as the features being mapped
often consist of hundreds or thousands of pixels [50–52]. A few hot pixels would hence be averaged out
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for objects, consisting of a large number of pixels when undertaking the object-based image analysis as
opposed to per-pixel analysis.

Assessments of spectral calibration in other studies [32–34] have shown shifts in peak center
wavelength and increases in FWHM. Shifts in peak center wavelength ranged between 5 to 10 nm in
Hakala et al. [32] and 4 to 15 nm in Arngren [34]. Our results for the Nano-Hyperspec data showed lags
between 1–3 nm, which are comparatively smaller. Depending on the FWHM and the lag magnitude,
this can have detrimental effects for high-precision applications [35]. Correction methods range from
linear [33] or polynomial models, calibration standards [34] or during flight methods based on in
situ surface reflectance [35]. A temporal assessment of the spectral fidelity to identify shifts in the
spectral axis during operational time was not carried out in our work. However, it can be performed
conducting two experiments with the Hg/Ar light source. First, an initial measurement can be acquired
a few minutes after turning the camera on. While the camera can be left on for 30 min inside the basic
setup, the Hg/Ar light source should be turned off to avoid overheating. After 30 min, the light source
can be turned back on and a new measurement can be taken. This will only evaluate the influence of
the internal heating of the camera on the spectral calibration. Heating during fieldwork and its effects
on the spectral axis should be examined separately, taking into account that for recording the Hg/Ar
lamp spectrum, the camera should be isolated from any other light sources. It is recommended for
future work to assess the spectral fidelity over the temporal scale of standard UAV operations.

Following its use in many studies [53,54], the empirical line method has proved to be a standard
technique for converting multispectral and hyperspectral radiance measurements to reflectance
values. Experiments presented in [33,35] showed strong linearity between DN and at-sensor radiances
appropriate for absolute radiometric calibration. In our experiments, we used the empirical line method
to convert radiance values to reflectance, assuming conversion from DN to radiance is adequately
achieved by the SpectralView software. Our results showed a near-perfect linear relationship for all
bands between the Nano-Hyperspec derived radiance and ASD Fieldspec-4 measured reflectance
of three different kinds of radiometric calibration panels. The use of the empirical line method may
prevent the need for more sophisticated radiative transfer modeling approaches. If a spectroradiometer
is available, painted Masonite or oak plywood panels can be used as low-cost alternatives for converting
radiance to reflectance measurements, with Masonite being the preferred material. However, the use
of Masonite or oak plywood panels should not replace good practices for recording white reference
measurements with a spectroradiometer and the Nano-Hyperspec. A Spectralon panel with 100%
reflectance should be used for spectral optimization and collection of white reference measurements
for each survey. When using alternative panel materials, it is important to ensure that they are
near-Lambertian, i.e., reflect light evenly in all directions [16,55], and have uniform reflectance [16].
They should be placed horizontally and have an area large enough to produce pure pixels according to
the resolution of the images. Shading of the panels must be avoided. The illumination conditions should
be as constant as possible; hence, these experiments or actual field surveys should be undertaken under
clear sky conditions and only cover short time periods to avoid substantial solar angle changes [16].

The workflow followed in this document and presented in Figure 1 corresponds to our suggested
assessment protocol for ensuring consistency, reliability, and repeatability of the collection of UAV-based
hyperspectral push-broom data. For the relative radiometric calibration assessment experiments, it is
recommended to keep the camera away from any other sources of radiation, which might increase its
temperature. For the dark current experiments, the cap of the lens should be on before starting the
experiment, and it is advisable to turn external lights off. The camera should also be allowed to cool to
room temperature before running subsequent experiments. Each of our experiments was conducted
one day apart. For the white reference experiments, the Spectralon panel should be placed horizontally,
and the camera should be pointed toward the panel at nadir, while the angle of the halogen lamp must
be kept constant. Ideally, the set-up should not be moved between experiments. The spectral calibration
assessment experiments require no sources of radiation other than the Hg/Ar lamp. The lamp should
be pointed directly to the lens, but within a safe distance from it (2 to 3 cm) to avoid touching the
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camera lenses. The intensity should be large enough to allow a clear capture of the lamp’s spectrum
and can be attained by adjusting the exposure. The implementation of the protocol suggested in
this study showed that overall, the Nano-Hyperspec camera was spatially consistent and time stable.
Moreover, this protocol is suitable for any push-broom hyperspectral camera. The workflow and the
experimental setup may also be used for other types of cameras. The data processing is largely the
same with pixels being averaged between successive images. The end product for a snapshot camera
would be a 2D array of pixels instead of the 1D array obtained with push-broom sensors, which might
complicate data visualization for the wavelengths recorded. The analysis of snapshot sensors should
also include an assessment of vignetting effects.

5. Conclusions

As with any instrument, UAV-based hyperspectral sensors require a thorough evaluation prior to
their deployment. Assessing a camera’s performance ensures the quality of the data being collected
and facilitates the detection of any sources of error or noise. Knowing the noise levels of recorded
spectral signatures across a sensor’s spatial pixels and over time allows the quantification of how these
are likely to impact mapping results and the assessment of collected reflectance values to determine
their suitability to confidently monitor land-cover change, discriminate vegetation species, and assess
variations in biophysical and biochemical plant properties.

Results for the relative radiometric calibration assessment performed here were consistent
throughout the experiments, indicating that the electronic and optical components of the
Nano-Hyperspec sensor are working in a manner that allows accurate spectral information to be
collected. For the relative radiometric calibration experiments, the output can be considered uniform
in space and time for both the dark current and the white reference assessments. Identified deviations
or non-uniformities were reproduced for every experiment, and their influence characterized to allow
removal if necessary. Overall, it was determined that no warm-up period is required prior to camera
deployment due to dark current or optic effects. The spectral calibration showed a shift between 1 and
3 nm of the measured peaks of spectral intensity with respect to the emission lines of documented
Hg/Ar wavelengths. This small shift was found to be consistent and can be rectified by adjustment,
as previously suggested. Conversion from radiance to reflectance through the empirical line method
was achieved with optimal results for all three panel materials employed. As long as the Masonite
and oak plywood panels are carefully produced to ensure even and near-Lambertian reflectance
properties, they can provide a convenient and cost-effective solution for estimating reflectance values.
Panels can be replaced as needed when normal wear and tear caused by field conditions degrade their
spectral properties.

The work presented here constitutes a simple, yet effective, protocol for assessing the performance
and radiometric accuracy of UAV-based hyperspectral push-broom cameras. Future work should
expand the evaluation to non-laboratory UAV-based experiments and develop suitable data quality
assurance steps and protocols for assessing the impact of flight planning, acquisition parameters and
external factors on the radiometric accuracy of the Nano-Hyperspec image data.
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