Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = HRSL

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 2818 KiB  
Article
Risk Assessment of Rising Temperatures Using Landsat 4–9 LST Time Series and Meta® Population Dataset: An Application in Aosta Valley, NW Italy
by Tommaso Orusa, Annalisa Viani, Boineelo Moyo, Duke Cammareri and Enrico Borgogno-Mondino
Remote Sens. 2023, 15(9), 2348; https://doi.org/10.3390/rs15092348 - 29 Apr 2023
Cited by 40 | Viewed by 3480
Abstract
Earth observation data have assumed a key role in environmental monitoring, as well as in risk assessment. Rising temperatures and consequently heat waves due to ongoing climate change represent an important risk considering the population, as well as animals, exposed. This study was [...] Read more.
Earth observation data have assumed a key role in environmental monitoring, as well as in risk assessment. Rising temperatures and consequently heat waves due to ongoing climate change represent an important risk considering the population, as well as animals, exposed. This study was focused on the Aosta Valley Region in NW Italy. To assess population exposure to these patterns, the following datasets have been considered: (1) HDX Meta population dataset refined and updated in order to map population distribution and its features; (2) Landsat collection (missions 4 to 9) from 1984 to 2022 obtained and calibrated in Google Earth Engine to model LST trends. A pixel-based analysis was performed considering Aosta Valley settlements and relative population distribution according to the Meta population dataset. From Landsat data, LST trends were modelled. The LST gains computed were used to produce risk exposure maps considering the population distribution and structure (such as ages, gender, etc.). To check the consistency and quality of the HDX population dataset, MAE was computed considering the ISTAT population dataset at the municipality level. Exposure-risk maps were finally realized adopting two different approaches. The first one considers only LST gain maximum by performing an ISODATA unsupervised classification clustering in which the separability of each class obtained and was checked by computing the Jeffries–Matusita (J-M) distances. The second one was to map the rising temperature exposure by developing and performing a risk geo-analysis. In this last case the input parameters considered were defined after performing a multivariate regression in which LST maximum was correlated and tested considering (a) Fractional Vegetation Cover (FVC), (b) Quote, (c) Slope, (d) Aspect, (e) Potential Incoming Solar Radiation (mean sunlight duration in the meteorological summer season), and (f) LST gain mean. Results show a steeper increase in LST maximum trend, especially in the bottom valley municipalities, and especially in new built-up areas, where more than 60% of the Aosta Valley population and domestic animals live and where a high exposure has been detected and mapped with both approaches performed. Maps produced may help the local planners and the civil protection services to face global warming from a One Health perspective. Full article
(This article belongs to the Special Issue Integrating Remote Sensing and GIS in Environmental Health Assessment)
Show Figures

Figure 1

26 pages, 3771 KiB  
Article
Attention Mechanism and Depthwise Separable Convolution Aided 3DCNN for Hyperspectral Remote Sensing Image Classification
by Wenmei Li, Huaihuai Chen, Qing Liu, Haiyan Liu, Yu Wang and Guan Gui
Remote Sens. 2022, 14(9), 2215; https://doi.org/10.3390/rs14092215 - 5 May 2022
Cited by 47 | Viewed by 7182
Abstract
Hyperspectral Remote Rensing Image (HRSI) classification based on Convolution Neural Network (CNN) has become one of the hot topics in the field of remote sensing. However, the high dimensional information and limited training samples are prone to the Hughes phenomenon for hyperspectral remote [...] Read more.
Hyperspectral Remote Rensing Image (HRSI) classification based on Convolution Neural Network (CNN) has become one of the hot topics in the field of remote sensing. However, the high dimensional information and limited training samples are prone to the Hughes phenomenon for hyperspectral remote sensing images. Meanwhile, high-dimensional information processing also consumes significant time and computing power, or the extracted features may not be representative, resulting in unsatisfactory classification efficiency and accuracy. To solve these problems, an attention mechanism and depthwise separable convolution are introduced to the three-dimensional convolutional neural network (3DCNN). Thus, 3DCNN-AM and 3DCNN-AM-DSC are proposed for HRSI classification. Firstly, three hyperspectral datasets (Indian pines, University of Pavia and University of Houston) are used to analyze the patchsize and dataset allocation ratio (Training set: Validation set: Test Set) in the performance of 3DCNN and 3DCNN-AM. Secondly, in order to improve work efficiency, principal component analysis (PCA) and autoencoder (AE) dimension reduction methods are applied to reduce data dimensionality, and maximize the classification accuracy of the 3DCNN, but it will still take time. Furthermore, the HRSI classification model 3DCNN-AM and 3DCNN-AM-DSC are applied to classify with the three classic HRSI datasets. Lastly, the classification accuracy index and time consumption are evaluated. The results indicate that 3DCNN-AM could improve classification accuracy and reduce computing time with the dimension reduction dataset, and the 3DCNN-AM-DSC model can reduce the training time by a maximum of 91.77% without greatly reducing the classification accuracy. The results of the three classic hyperspectral datasets illustrate that 3DCNN-AM-DSC can improve the classification performance and reduce the time required for model training. It may be a new way to tackle hyperspectral datasets in HRSl classification tasks without dimensionality reduction. Full article
(This article belongs to the Special Issue Hyperspectral Remote Sensing: Current Situation and New Challenges)
Show Figures

Graphical abstract

31 pages, 28098 KiB  
Article
Satellite-Based Human Settlement Datasets Inadequately Detect Refugee Settlements: A Critical Assessment at Thirty Refugee Settlements in Uganda
by Jamon Van Den Hoek and Hannah K. Friedrich
Remote Sens. 2021, 13(18), 3574; https://doi.org/10.3390/rs13183574 - 8 Sep 2021
Cited by 22 | Viewed by 5809
Abstract
Satellite-based broad-scale (i.e., global and continental) human settlement data are essential for diverse applications spanning climate hazard mitigation, sustainable development monitoring, spatial epidemiology and demographic modeling. Many human settlement products report exceptional detection accuracies above 85%, but there is a substantial blind spot [...] Read more.
Satellite-based broad-scale (i.e., global and continental) human settlement data are essential for diverse applications spanning climate hazard mitigation, sustainable development monitoring, spatial epidemiology and demographic modeling. Many human settlement products report exceptional detection accuracies above 85%, but there is a substantial blind spot in that product validation typically focuses on large urban areas and excludes rural, small-scale settlements that are home to 3.4 billion people around the world. In this study, we make use of a data-rich sample of 30 refugee settlements in Uganda to assess the small-scale settlement detection by four human settlement products, namely, Geo-Referenced Infrastructure and Demographic Data for Development settlement extent data (GRID3-SE), Global Human Settlements Built-Up Sentinel-2 (GHS-BUILT-S2), High Resolution Settlement Layer (HRSL) and World Settlement Footprint (WSF). We measured each product’s areal coverage within refugee settlement boundaries, assessed detection of 317,416 building footprints and examined spatial agreement among products. For settlements established before 2016, products had low median probability of detection and F1-score of 0.26 and 0.24, respectively, a high median false alarm rate of 0.59 and tended to only agree in regions with the highest building density. Individually, GRID3-SE offered more than five-fold the coverage of other products, GHS-BUILT-S2 underestimated the building footprint area by a median 50% and HRSL slightly underestimated the footprint area by a median 7%, while WSF entirely overlooked 8 of the 30 study refugee settlements. The variable rates of coverage and detection partly result from GRID3-SE and HRSL being based on much higher resolution imagery, compared to GHS-BUILT-S2 and WSF. Earlier established settlements were generally better detected than recently established settlements, showing that the timing of satellite image acquisition with respect to refugee settlement establishment also influenced detection results. Nonetheless, settlements established in the 1960s and 1980s were inconsistently detected by settlement products. These findings show that human settlement products have far to go in capturing small-scale refugee settlements and would benefit from incorporating refugee settlements in training and validating human settlement detection approaches. Full article
Show Figures

Graphical abstract

32 pages, 24723 KiB  
Article
Evaluating the Accuracy of Gridded Population Estimates in Slums: A Case Study in Nigeria and Kenya
by Dana R. Thomson, Andrea E. Gaughan, Forrest R. Stevens, Gregory Yetman, Peter Elias and Robert Chen
Urban Sci. 2021, 5(2), 48; https://doi.org/10.3390/urbansci5020048 - 20 Jun 2021
Cited by 37 | Viewed by 8235
Abstract
Low- and middle-income country cities face unprecedented urbanization and growth in slums. Gridded population data (e.g., ~100 × 100 m) derived from demographic and spatial data are a promising source of population estimates, but face limitations in slums due to the dynamic nature [...] Read more.
Low- and middle-income country cities face unprecedented urbanization and growth in slums. Gridded population data (e.g., ~100 × 100 m) derived from demographic and spatial data are a promising source of population estimates, but face limitations in slums due to the dynamic nature of this population as well as modelling assumptions. In this study, we compared field-referenced boundaries and population counts from Slum Dwellers International in Lagos (Nigeria), Port Harcourt (Nigeria), and Nairobi (Kenya) with nine gridded population datasets to assess their statistical accuracy in slums. We found that all gridded population estimates vastly underestimated population in slums (RMSE: 4958 to 14,422, Bias: −2853 to −7638), with the most accurate dataset (HRSL) estimating just 39 per cent of slum residents. Using a modelled map of all slums in Lagos to compare gridded population datasets in terms of SDG 11.1.1 (percent of population living in deprived areas), all gridded population datasets estimated this indicator at just 1–3 per cent compared to 56 per cent using UN-Habitat’s approach. We outline steps that might improve that accuracy of each gridded population dataset in deprived urban areas. While gridded population estimates are not yet sufficiently accurate to estimate SDG 11.1.1, we are optimistic that some could be used in the future following updates to their modelling approaches. Full article
Show Figures

Graphical abstract

Back to TopTop