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Abstract: Earth observation data have assumed a key role in environmental monitoring, as well as in
risk assessment. Rising temperatures and consequently heat waves due to ongoing climate change
represent an important risk considering the population, as well as animals, exposed. This study was
focused on the Aosta Valley Region in NW Italy. To assess population exposure to these patterns, the
following datasets have been considered: (1) HDX Meta population dataset refined and updated in
order to map population distribution and its features; (2) Landsat collection (missions 4 to 9) from
1984 to 2022 obtained and calibrated in Google Earth Engine to model LST trends. A pixel-based
analysis was performed considering Aosta Valley settlements and relative population distribution
according to the Meta population dataset. From Landsat data, LST trends were modelled. The LST
gains computed were used to produce risk exposure maps considering the population distribution
and structure (such as ages, gender, etc.). To check the consistency and quality of the HDX population
dataset, MAE was computed considering the ISTAT population dataset at the municipality level.
Exposure-risk maps were finally realized adopting two different approaches. The first one considers
only LST gain maximum by performing an ISODATA unsupervised classification clustering in which
the separability of each class obtained and was checked by computing the Jeffries–Matusita (J-M)
distances. The second one was to map the rising temperature exposure by developing and performing
a risk geo-analysis. In this last case the input parameters considered were defined after performing a
multivariate regression in which LST maximum was correlated and tested considering (a) Fractional
Vegetation Cover (FVC), (b) Quote, (c) Slope, (d) Aspect, (e) Potential Incoming Solar Radiation (mean
sunlight duration in the meteorological summer season), and (f) LST gain mean. Results show a
steeper increase in LST maximum trend, especially in the bottom valley municipalities, and especially
in new built-up areas, where more than 60% of the Aosta Valley population and domestic animals
live and where a high exposure has been detected and mapped with both approaches performed.
Maps produced may help the local planners and the civil protection services to face global warming
from a One Health perspective.

Keywords: Google Earth Engine; USGS NASA Landsat 4–9 missions; LST timeseries analysis;
risk population assessment; HDX meta population; trends modeling; Aosta Valley; Italy; Alps;
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1. Introduction

Temperature and summer heatwave monitoring due to ongoing climate change has
assumed a crucial role in the last years worldwide [1–3]. Although studies on extreme
events are increasing, and in particular on heatwaves and urban heat islands [4–8], few
focus on time series derived from free Earth observation images [4,9–15]. Furthermore,
there is still a lack regarding scientific and technical studies that focus on land surface
temperature (hereinafter called LST) climatic trends through an analysis of the exposed
population and related risks [16–18].

Nowadays, many studies focus on LST and epidemiological relationships but do
not concern themselves with spatial population exposure [19–21] or animals, including
wildlife [22].

1.1. Earth Observation (EO) Data Role in the Climate Change Framework

The evaluation of exposure to ambient temperatures in epidemiological studies has
generally been based on records from meteorological stations which may not adequately
represent local temperature variability [23].

To go beyond this limiting factor, Earth observation images represent a possible
solution to carefully map environmental conditions at the local scale [20,24]. The health
sector and civil protection services in recent years at the European, Italian, and local levels
are particularly interested in having cartographic products and GIS to assess the risks
and effects of extreme temperatures on the population by identifying the most vulnerable
areas [19]. The identification of these areas would make it possible to direct territorial
planning towards greening policies or measures aimed at mitigating warming and at the
same time implementing forms of adaptation (for example, creation of emergency response
hubs in the case of an area with a vulnerable population such as the elderly). Although free
thermal data are increasing by offering medium-high spatial resolution (such as Landsat
missions [25,26] with a resampled GSD of 30 m or ECOSTRESS with 60 m GSD [27–32], their
use for the development of various services and applications is still limited [33–36] and
therefore, offer numerous exploitation possibilities when combined with new databases
made available by various governmental or research bodies.

Thermal data are widely applied nowadays to map LST and urban heat island phe-
nomena [8,37–41]. However, their use is often confined to analysis at given moments
and not in timeseries due to the need to calibrate them [34,42]. Platforms such as Google
Earth Engine [43] in the case of Landsat data allow, thanks to the algorithm developed by
Ermida [36], to quickly calibrate the thermal data allowing analysis on historical series.

1.2. Population Datasets

In recent years, datasets on the spatial and temporal distribution of the global popula-
tion have been developed [44–46]. Nevertheless, they still have a coarse resolution. One
of the most detailed is provided by the World Bank with the World Population dataset
with a spatial resolution of 1 km and another of 100 m. This last is spatially coeval with
the native geometric resolution for the thermal bands of the Landsat missions [46]. This
dataset contains a top-down constrained breakdown of estimated population by age and
gender groups from 2000 to the present year [45]. Top-down constrained age/sex structure
estimate datasets for individual countries for 2020 at 100 m spatial resolution with country
totals adjusted to match the corresponding official United Nations population estimates
have been prepared by the Population Division of the Department of Economic and Social
Affairs of the United Nations Secretariat (2019 Revision of World Population Prospects).
It is worth noting that WorldPop gridded datasets on population age structures, poverty,
urban growth, and population dynamics are freely available. Despite the huge amount
of data, this dataset still has limited application in rural contexts and outside wide urban
areas due to its geometric resolution that has limited the application at regional and local
levels [47–49].
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Accurate information on global population distribution is crucial to many disciplines.
A population and housing census is the traditional tool for deriving small-area detailed
statistics on population and its spatial distribution [50,51]. However, censuses are time-
consuming, and the spatial resolution is naturally set by the census enumeration areas
(EA), which lack fine-grained information about the aggregation of population. The sizes
of the EAs vary by many orders of magnitude from country to country, ranging from
hundreds of square meters in urban areas to tens of thousands of square kilometers in
low-population areas, resulting in an average spatial resolution [50] of a census unit of
33 km at a global scale. Recently, multiple higher-resolution maps of human-made built-up
areas have emerged [52,53], most notably the Global Human Settlement Layer (GHSL) [54],
the Global Urban Footprint (GUF) [51,55], the WorldPop project [44,56], Landscan [57,58],
and Missing Maps project [59,60]. However, none provide a scalable solution with high
accuracy in rural areas. Over the last decade high-resolution (sub-meter) satellite imagery
has become widely available, enabling the global collection of recent and cloud-free Earth
imagery. Additionally, in the last years, the surge in research on computer vision and in
particular convolutional neural networks (CNNs) have enabled bulk processing of imagery
in a rapid manner [50]. The combination of these methods enables the global analysis of
high-resolution imagery as a promising method for detecting individual buildings; combin-
ing building estimates with available census data to produce updated and higher-resolution
population maps; and offering alternative, state-of-the-art population estimates in the ab-
sence of census data. Various approaches using machine learning have been demonstrated
on small areas [50], yet a method which allows global mapping has remained elusive.

Nowadays, in fact, high-resolution datasets of population density which accurately
map sparsely-distributed human populations do not exist at a global scale [49,50,61]. Typi-
cally, population data are obtained using censuses and statistical modeling. More recently,
methods using remotely-sensed data have emerged, capable of effectively identifying ur-
banized areas. Obtaining high accuracy in the estimation of population distribution in rural
areas remains a very challenging task due to the simultaneous requirements of sufficient
sensitivity and resolution to detect very sparse populations through remote sensing as well
as reliable performance at a global scale. Meta has recently developed a computer vision
method based on machine learning to create population maps from satellite imagery and
phone GNSS tracking at a global scale, with a spatial sensitivity corresponding to individual
buildings and suitable for global deployment. By combining these settlement data with
census data, Meta has created the HDX Meta population dataset, including raster maps
with ~30 m spatial resolution for 18 countries in the world [50]. HDX is a platform which
lets users, for research and management purposes, access socio-economic data mostly
collected by Meta through Data for Good (https://dataforgood.facebook.com/dfg, last
accessed on 18 April 2023). Data for Good at Meta’s program includes tools built from
de-identified Meta data, as well as tools that the company develops using satellite imagery
and other publicly available sources.

1.3. Remote Sensing in Climate Change Risk Assessment

There is a growing need for the assessment and reduction of climate change risk.
The effects of global warming are already bringing harm to human communities and the
natural world. Further temperature rises will have a devastating impact and more action
on greenhouse gas emissions is urgently required. Multiple factors contribute to climate
change, and multiple actions are needed to address it [8,37–41]. Especially concerning is
population exposure to climate change. In fact, nowadays, EO data and more generally
remote sensing may help in mapping and developing services with particular regard to
climate change risk assessment involving communities at different levels. Space-borne
images for civil applications have been routinely acquired since the 1980s (Landsat and
SPOT), while more recently, the European Union’s Copernicus program has been acquiring
images. EO data can provide remotely sensed information regarding floods, forest fires,
and droughts. In general, remote sensing data from space, but also from airborne or drone

https://dataforgood.facebook.com/dfg
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platforms, can be profitably used to manage many risks, from geo-hydrological to volcanic,
and from seismic to anthropogenic. Less exploited is the application and coupling of
remote sensing data with GIS health data, with particular regard to the climate change
framework. Remote sensing can play a key role in managing risks, leading to a new
level of understanding of the complex Earth systems and planning. In recent decades,
satellite-based observations and the derived geospatial products have been successfully
demonstrated to be highly valuable tools in each different phase of the risk and exposure
management (forecasting, planning, emergency, and post-emergency) [34,42]. For example,
synthetic aperture radar (SAR) images can facilitate risk management since they are also
acquired through dense cloud cover and in both night and day conditions. This ability can
help during the emergency phase. Stacks of SAR data can be used to detect subtle ground
deformation induced by slow movement phenomena (e.g., slow landslides, subsidence)
that can dangerously evolve, involving elements of risk [62]. On the other hand, optical
images are fundamental products for monitoring land cover changes induced by several
hazards (e.g., fast landslides, volcanic eruptions) or thermal data to assess, for example,
urban heath islands (UHIs) and their intensity or the water stress on forests and crops.
These data are routinely used to map and evaluate the elements at risk scattered over wide
areas. The application of a combined use of population data at higher resolution with
thermal EO data in order to evaluate the exposure to rising temperature in light of climate
change has been poorly explored in the scientific community. This is due to the fact that
the population datasets at higher resolution are relatively new, as is the application of EO
data in the domain. For the climate change adaptation regarding the civil component, the
first steps are being taken.

Moreover, the One Health approach involving thermal remote-sensed time-series
analysis to assess the temperature trend gain represents a novelty compared with the
well-known and over-studied UHI phenomenon which is focused only on a given time and
does not permit the development of strong models. The LST trends analysis modelling and
its application to coupling population data represent a novelty especially in the assessment
of rising temperature exposure [8].

1.4. Coupling Population and EO Data in Climate Change Adaptation and Risk Assessment

The approach developed to map population (thanks to Meta Geo for Good) combined
with free thermal EO data to model rising temperature represents a first attempt of this kind.
In order to map the population exposure and risk for the first time, the highest available
population dataset has been used, with a native geometrical resolution (GSD—Ground
Sample Distance 30 m), which is the same as Landsat’s. This may enforce the applicability
and coupling of these kinds of data in the planning and management of climate change risks
and adaptation, suggesting new solutions [18,63]. Furthermore, mapping the exposure
of population involved according to different levels of temperature (LST) gain permits
greening actions and policies to be addressed, favors the identification of new medical or
health centers, permits the areas that will be more subject to emergency calls to be known in
advance, allows areas or zones most at risk to be redeveloped with a view to mitigation and
above all adaptation, makes forecasts on access to hospitals in case of heat waves and the
impact of costs on the health sector having mapped data, and evaluates the effectiveness of
requalification policies and actions and its effects on heat flows and on the risk associated
with the exposed population. Then, the development of new applications and services in a
technological perspective can help the transfer also to other sectors.

1.5. Aims

Finally, the main aim of this work was to perform a risk population assessment on
rising temperatures and heat waves by Landsat LST timeseries in Aosta Valley, NW Italy by
realizing a scalable application to all 18 countries that already have an HDX Meta dataset.
The analysis was performed at a pixel level, grouping the final population exposure at a
municipality level. It is worth noting that the map generated will be available at a pixel level.
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Moreover, the quality of the population dataset was checked, and a risk map performed
considering the population distribution and the LST gains modelized. In particular, LST
maximum and mean trends were computed considering their significance, and possible
correlations were tested considering the following parameters: (a) fractional vegetation
cover (FVC), (b) quote, (c) slope, (d) aspect, and (e) potential incoming solar radiation
(mean sunlight duration in the meteorological summer season) in order to assess which
parameters include in the risk model.

The final outputs have permitted the mapping and assessment of the LST gain in the
last 39 years (1984–2022) and relative population exposure to LST trends per age bands
and gender groups, providing hopefully useful information to civil protection services
and the health sector, permitting them to detect areas in which calls to health emergencies
would be more likely during heatwaves and allowing urban planners to promote greening
actions in a mitigation and adaptation perspective to climate change according to a One
Health approach.

2. Materials and Methods
2.1. Aosta Valley Study Area

The study was carried out considering the Aosta Valley Autonomous Region in the
northwest of Italy (please see Figure 1 below). To perform zonal statistics on the study terri-
tory, ESRI shapefile municipality boundaries were downloaded from the SCT Geoportale
della Valle d’Aosta (https://geoportale.regione.vda.it/, last accessed on 22 March 2023)
and adopted for the computation.

Figure 1. Study Area corresponding to the boundaries of the Aosta Valley francophone Autonomous
Region (NW Italy).

2.2. Landsat Timeseries Datasets and LST Processing

LSTs have been computed from all Landsat missions that have been processed in
Google Earth Engine (GEE). The United States Geological Survey (USGS) provides TOA
brightness temperature images (hereinafter called Tb) as obtained from the thermal sensors
of Landsat satellite missions. USGS Tb images collection 1 (from Landsat 4–5–7–8–9
missions, sensors TM, ETM+, TIRS) can be accessed through GEE. USGS also provides the
corresponding at-the-surface reflectance-calibrated bands that can be, similarly, accessed

https://geoportale.regione.vda.it/
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through GEE. Additionally, the quality-assessment band (BQA) is available too, making
it possible to retrieve cloud coverage and shadowing information. All the bands are
supplied with a ground sampling distance (GSD) of 30 m. Coarser thermal bands that
natively have 100 m GSD have been oversampled by NASA using a bilinear approach at
30 m. The following GEE thermal collections were adopted to compute LST starting from
brightness temperature:

(a) USGS Landsat 4 Collection 2 Tier 1 TOA Reflectance (LANDSAT/LT04/C02/T1_TOA);
(b) USGS Landsat 5 Collection 2 Tier 1 TOA Reflectance (LANDSAT/LT05/C02/T1_TOA);
(c) USGS Landsat 7 Collection 2 Tier 1 TOA Reflectance (LANDSAT/LE07/C02/T1_TOA);
(d) USGS Landsat 8 Collection 2 Tier 1 TOA Reflectance (LANDSAT/LC08/C02/T1_TOA);
(e) USGS Landsat 9 Collection 2 Tier 1 TOA Reflectance (LANDSAT/LC09/C02/T1_TOA).

It is worth noting that, to compute LST from Landsat missions, TOA datasets bands
B6 (from Landsat 4–5–7) and B10 (from Landsat 8–9) have been used.

Landsat data were processed in GEE [43] by adopting the approach proposed by [36].
Surface emissivity maps, needed for LST computation from Tb images, were obtained
according to the Fractional Vegetation Cover (FVC) approach [64]. Therefore, to obtain
FVC, NDVI was computed from surface-reflectance Landsat collections retrieved from all
GEE collection products as follows:

(1) USGS Landsat 4 Level 2, Collection 2, Tier 1 (LANDSAT/LT04/C02/T1_L2);
(2) USGS Landsat 5 Level 2, Collection 2, Tier 1 (LANDSAT/LT05/C02/T1_L2);
(3) USGS Landsat 7 Level 2, Collection 2, Tier 1 (LANDSAT/LE07/C02/T1_L2);
(4) USGS Landsat 8 Level 2, Collection 2, Tier 1 (LANDSAT/LC08/C02/T1_L2);
(5) USGS Landsat 9 Level 2, Collection 2, Tier 1 (LANDSAT/LC09/C02/T1_L2).

According to [36,64], FVC from NDVI and emissivity were computed as follows,
respectively (collection from points 1 to 5). According to previous studies [65], NDVI was
computed [66,67]:

NDVI =
NIR− RED
NIR + RED

(1)

Fractional vegetation cover (FVC) was computed as follows:

FVC =
NDVI−NDVIS

NDVIV −NDVIS
(2)

where NDVIs and NDVIv are the NDVI values corresponding to completely bare soil and
vegetated pixels, respectively [68]. It is worth noting that NDVIs and NDVIv were set to 0.2
and 0.86, respectively.

ε = FVCεv + (1− FVCεs) (3)

where ε is the emissivity and FVCεv and FVCεs are the FVC values computed for a
completely vegetated and a pure bare soil pixel, respectively.

Once emissivity maps were obtained for all the acquisitions, corresponding LST
images were finally computed by the Statistical Mono-Window (SMW) algorithm from
the Climate Monitoring Satellite Application Facility (CM-SAF). This technique uses an
empirical relationship between Tb and LST [34], based on a linearization of the radiative
transfer equation showing an explicit dependence from emissivity.

LST = Ai

(
Tb
ε

)
+

Bi

ε
+ Ci (4)

where Tb is the TOA brightness temperature, and ε is the surface emissivity. Ai, Bi, and
Ci are coefficients modelling the Total Column Water Vapor (TCWV) effect on LST. These
coefficients have been made available by the NCEP/NCAR re-analysis 1 project and can be
accessed and used through GEE depending on the considered Landsat collection.
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Landsat data were analyzed from 1984 to 2022 including, therefore, 39 years of Landsat
data. All acquisitions have been considered with more than 900 images and bidirectional
reflection disturbance compensated with a self-made function in GEE according to [69]
regarding the NDVI. Clouds, shadows, and saturated pixels have been masked out by
considering pixel quality and radiometric saturation layers for each scene. Since the merged
Landsat collections were not equally distributed in time and are therefore not suitable to
perform timeseries analysis due to temporal gaps. All data have been filtered with a
Savitzky–Golay filter [70–72] and regularized with a monthly timestep on GEE by adopting
the Open Earth Engine Library (OEEL). It is worth noting that the year 2012 was derived
after creating yearly composites through linear interpolation as explained below.

Landsat images after November 2011 (last acquisition by Landsat 5) and before March
2013 (beginning of Landsat 8 mission) were retrieved by interpolation and regularization
due to the lack of images during the period mentioned above. Landsat 7 data starting from
31 May 2003 onwards were not considered and therefore not included in the timeseries
regularization phase due to the failure of the Scan Line Corrector (SLC) which has affected
the usage of these images. The correction of SLC was not performed with the ENVI tool,
despite there being an algorithm able to do it, because we processed them in GEE.

Then, yearly composite images were computed for each year in the time range 1984–
2022 by using the ee.Reducer GEE function in order to obtain the mean and the maximum
pixel values in each year.

It is worth noting that LST is normally and more accurately estimated by using
nighttime-acquired images to avoid the effect of direct solar irradiation in case of study of
UHI. Nevertheless, the present study has focused on LST maximum trends that normally
occur during the day. Moreover, the risk and exposure to the population are higher during
sunlight. For these reasons, this research has been focused on daytime LST.

From the LST stack, computed and regularized maximum and mean trends were
modelled in [73] with a 1st-order polynomial and the significance of the related gain
evaluated performing Pettitt’s trend test in R Studio [62,74–76]. It is worth noting that only
significant gain values were averaged at the class level (distribution of population in each
municipality in the study area). Finally gain, offset, standard errors, and p-value maps were
realized in order to join these data with the Meta Population dataset to assess population
risk from rising temperatures.

2.3. HDX Meta Population Dataset

The HDX Meta Facebook Population dataset was obtained as follows. Under the
assumption that buildings act as a proxy for where people live, Meta (previously known
as Facebook) obtains population estimates on a country-wide level, with 1 × 1 arcsecond
resolution (~30 × 30 m at the equator) and sensitivity to individual buildings, enabling
accurate studies of population aggregation in rural areas. To enable global analysis, Meta
has developed a building-detection model. The Meta pipeline consists of several steps:
extraction of 64 × 64-pixel images (patches) around detected straight lines using a con-
ventional edge detector, which reduces the amount of data for classification by a factor of
approximately 4. A portion of those candidates are sampled across all countries and labeled
as training and evaluation data for the CNNs. The computer vision models are trained
on a single machine with four GPUs, whereas the classification runs on Meta Facebook’s
infrastructure on a CPU cluster. During this phase, three different types of CNN were used:
a classification model based on the SegNet [50]; a feedback neural network (FeedbackNet)
performing weakly-supervised segmentation of the satellite images enabling Facebook to
obtain building footprints [50]; and a denoising network which is capable of improving the
quality of the source data by removing high-frequency noise from the satellite imagery. The
encoder–decoder-style SegNet is customized to perform the classification at the level of a
patch. The encoder (a convolutional sub-network) is used to extract abstract information
about the input, and the decoder (a deconvolutional sub-network) is trained to upsample
the output of the encoder into a spatially meaningful probability map representing the
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possibility of house existence in the input. The probabilities generated by the decoder
are averaged over all spatial locations within the patch to derive the final classification,
including GNSS tracking. This yields high accuracy and a reduced false positive rate on
a global scale compared to other methods. To facilitate a generalized and scalable model,
Meta employs weakly-supervised learning that takes the abundant and easy-to-acquire
image-level categorical supervision (binary labeling) into training, and performs pixel-
level prediction during deployment [50]. The methodology is motivated by the feedback
mechanism in human cognition and recent advances of computational models in Feedback
Neural Networks [50], which deactivates the non-relevant neurons within hidden layers of
neural networks and achieves pixel-wise semantic segmentation. Both models are trained
on 150,000 binary-labeled (building/no building) patches, randomly sampled from all
countries and seasons, covering both rural areas and urban areas. The output layer was
validated considering censuses at a country level, reaching a global overall accuracy of
98.3% [50]. Then these data have been yearly coupled with aggregated tracking from
Meta phone applications (such as Instagram, Facebook, WhatsApp). These data can be ac-
cessed through Meta Data for Good (https://dataforgood.facebook.com/, last accessed on
19 April 2023). The format is raster (30 m GSD) or a dataframe, and the updating frequency
is yearly or more under request. In each dataset the pixel value reports the population
number according to a given characteristic.

To test the quality of the Meta population 2020 product in a rural and mountain
area such as Aosta Valley Autonomous Region, in the northwest of Italy, this dataset was
tested considering the 2020 census at municipality level in Aosta Valley. The HDX Meta
Population dataset was considered as the predicted population while the regional census
was the observed true population. For each municipality in Aosta Valley the Mean Absolute
Error (MAE) was computed as follows:

MAE =
∑n

i=1(pi − oi)

n
(5)

where pi is the prediction (Meta Population), oi is the observed true value (ISTAT Popula-
tion), and n is the number of samples (in this case the number of Aosta Valley municipalities
74) see Table A1 in Appendix A.

The population dataset, properly processed, allowed the spatial distribution of the
following variables to be obtained according to the international standard of the World
Bank (see Table 1) and adopted into the present study.

Table 1. HDX Meta Population dataset properly processed structure.

Population Structure Description

VDA general Overall population within a pixel
VDA men Male population within a pixel

VDA women Women population within a pixel

VDA women of reproductive age 15–49 Women population in reproductive age
between 15–49 years old

VDA elderly 60 plus Population older than 60 years old
VDA children under 5 Children population younger than 5 years old

VDA youth 15–24 Young population aged between
15 and 24 years old

2.4. Other Geospatial Layers

Since LST trends can reasonably be affected by multiple factors, some of them were
considered and a correlation was tested in order to decide if it was reasonable to de-
velop a multivariate suitability model including all of them or not. A multiple-correlation
analysis in R was performed considering population distribution according to the follow-
ing parameters: (a) fractional vegetation cover (FVC), (b) altitude, (c) slope, (d) aspect,

https://dataforgood.facebook.com/
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(e) potential incoming solar radiation (mean sunlight duration in the meteorological sum-
mer season), (f) LST gain maximum, and (g) LST gain mean.

2.4.1. Fractional Vegetation Cover

Fractional vegetation cover was computed from Landsat data to calibrate the LST as
previously reported. Moreover, to define the vegetation percentage in a single present layer
used as possible input into the risk model, FVC was also estimated in ESA SNAP 8.0.0
open-source software, starting from Copernicus Sentinel-2A (S2A) images. In particular
a mean composite multi-band image in the 2020 summer meteorological season (from
1 June to 31 August) was generated in GEE with the function .mean() after applying cloud
and shadow masking, and the bidirectional reflectance distribution function (BRDF) with a
self-made algorithm implemented in GEE. The composite output was exported from GEE,
preserving the native resolution of each S2A band and then processed in ESA SNAP 8.0.0
by applying the Biophysical Processor S2_10 m function. FVC was considered in the model
in order to assess if vegetation may have a mitigating effect on temperature trends [8].

2.4.2. Potential Incoming Solar Radiation and Terrain Analysis

As previously said, the population distribution was analyzed considering also the
geomorphology and sun irradiance. In particular, altitude and duration of solar insolation
have been considered. In order to retrieve these two parameters, the Aosta Valley Digital
Terrain Model (DTM) and Digital Surface Model (DSM) retrieved from aerial Lidar flight
during 2005/2008 were adopted. These datasets, with a native spatial resolution of 2 m,
were oversampled at 30 m with a bilinear interpolation, as described in [73]. The DTM was
used to map the altitude while the DSM was used to map the duration of insolation at pixel
level as a mean of the entire 2020 meteorological summer season. In Table 2 the settings
parameters adopted are reported:

Table 2. Modelling solar duration.

Solar Constant (Wm−2) 1367
Time Period Range of days

Start day 1 June 2020
End day 31 August 2020

Resolution (day) 1
Time Span (h) 24
Resolution (h) 0.5

Atmospheric Effects Lumped Atmospheric Trasmittance

To detect surface height, the regional deep learning dataset realized in 2020 was
adopted. In fact, this dataset contains the buildings patches, with their heights, on the
Aosta Valley territory. Slope and aspect were computed from the Aosta Valley Digital
Terrain Model (DTM) freely available in the SCT Geoportale della Regione Autonoma Valle
d’Aosta (https://geoportale.regione.vda.it/, last accessed on 30 January 2023) in SAGA
GIS v.8.5.0.

2.5. Geostatistical Analysis

Before performing geostatistics and modeling LST trends, a normal distribution test
was executed to understand the type of data. In particular, a Kolmogorov–Smirnov test
concerning LST profile time-series was performed in R. Then, a self-made script in R Studio
was adopted to map gain, offset, and p-value (Pettitt’s test). Pettitt’s test was carried out
because, as indicated in the workflow, only the significant pixels were modeled. Therefore,
thanks to it, break points were identified in the time series. In LST max and mean gain layers,
pixels not significant were masked out considering only significant Pettitt’s p-value < 0.05
(hereinafter called CM) after clipping the data onto the Population dataset. Subsequently,
the ISODATA unsupervised classification–clustering algorithm was performed on CM and

https://geoportale.regione.vda.it/
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the separability of each class obtained was checked by computing the Jeffries–Matusita
(J-M) distances as follows:

JMub =
√

2(1− e−α) (6)

α =
1
8
(µu − µb)

T
(

Cu + Cb
2

)−1

(µu − µb) +
1
2

ln

[
1
2 |Cu + Cb|√
|Cu| × |Cb|

]
(7)

where:

u and b: the classes to separate,
Cu: the covariance matrix of u,
µu: the mean vector of u,
T: transposition function.

The same procedure was applied to the FVC, solar duration, quote, aspect, and slope.
Each cluster (hereinafter called CLU) generated was considered in the model only if it had a
strong and statistically significant correlation to the other to assess population exposure by
performing zonal statistics in SAGA GIS v.8.5 [73]. All the input data have been normalized.
The maximum number of iterations has been set to 20 while the initial number of clusters
and samples in the cluster is 5 and the maximum number of clusters is 16. Finally, in each
CLU, zonal statistics considering Aosta Valley municipalities were performed. In particular,
to assess rising temperature exposure, the following procedure was deployed:

Rexp = CLULSTgain(x, y) ∩ Metapop(x, y) (8)

where:

Rexp is the risk exposure;
CLULSTgain is the Cluster performed on LST maximum and mean significant layer respec-
tively;
Metapop is the Meta population processed dataset.

Since in each municipality different clusters of the same type were present after
performing Equation (8) to define the risk exposure in each municipality, considering each
type of cluster, a pivot spatial table was realized by using the Group Stat tool available in
QGIS.

Moreover, a suitability risk map modeler was realized and performed starting from
native input datasets to map rising temperature risk exposure. An analytic hierarchical
process (AHP) was followed, and it was decided that only correlated and significant
variables would be tested after performing a multivariate geostatistical analysis (see in
Section 3). The risk was mapped as follows:

Rexp = {[(Zα(x, y)×ωα) + (Zβ(x, y)×ωβ) + (Zγ(x, y)×ωγ)]× 100} (9)

ω =
M

(n + M− 1)
(10)

where Rexp = risk exposure.

TfMSSmallZ =
σ× ϑ

[X− (τ× µ) + (σ× ϑ)]

where:

σ = standard deviation;
µ = mean;
ϑ = a σmultiplier;
τ = a µmultiplier;
ω = input value;
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ω = the weight defined in each input (in this case 0.333);
M = the maximum of the AHP scale;
n = the number of criteria (in this case 10);
α, β, γ = the three input datasets respectively (LST Gain mean, LST Gain max, and DSM).

3. Result

The first phase was to check the consistency of the Meta Population dataset. Therefore,
the MAE was computed as reported in Equation (5). The predictor was assumed to be the
Meta Population dataset and the true value data to be the ISTAT Population in each Aosta
Valley municipality. In Appendix A (in Table A1) we report the MAE results obtained.
The dataset seems to have a consistency by observing the results obtained. Moreover, the
gender and age distribution were tested but not reported showing a strong consistency.
After checking the quality of the population dataset and modeling the LST maximum and
mean trend and defining their significance, correlations were tested considering the follow-
ing parameters: (a) fractional vegetation cover (FVC), (b) quote, (c) slope, (d) aspect, and
(e) potential incoming solar radiation (mean sunlight duration in the meteorological sum-
mer season). In Figure 2 we report the results obtained. LST gain mean and maximum are
positively and strongly correlated with each other, as computed by their linear R Pearson
coefficient, as well as slope (but with a negative correlation). Moreover, they are statistically
significant, with p-value < 0.05. The other variables have a lower Pearson correlation
coefficient and are not statistically significant. Therefore, we decided to model population
distribution in each variable but computed the risk exposure model in two ways: the first
as reported in Equation (8) considering only the LST gain and clustering them, and then
computing and mapping each Aosta Valley municipality, taking into account the popu-
lation involved according to their structural parameters (please see Table 1); the second
way was by mapping, with a suitability model, the population risk exposure as reported in
Equation (9).

In the tables below (see Table 3), the ISODATA clustering performed per LST Gain
Max has been reported, which represents the major risk exposure in a given area with the
optimal number of clusters with their mean range, standard deviation, and distance. It is
worth noting that, onto these clusters, Equation (8) was computed, a map generated, and
zonal statistics performed by realizing a pivot spatial analysis onto population datasets at
municipality level. In this work only LST Gain Max tables have been reported due to the
fact that they represent the extreme conditions.

Table 3. LST Clusters.

Cluster ID Mean Gain LST Max (◦C) StDev Gain LST Max Exposure–Risk
Class Assessment

Mean
Distance

1—I 0.21 0.00 7 0.05
2—II 0.01 0.04 1 0.28
3—III 0.19 0.01 6 0.06
4—IV 0.27 0.02 9 0.10
5—V 0.23 0.01 8 0.08
6—VI 0.17 0.01 5 0.08
7—VII 0.10 0.02 3 0.07
8—VIII 0.31 0.04 10 0.16
9—IX 0.07 0.00 2 0.13
10—X 0.13 0.00 4 0.09
11—XI 0.38 0.00 11 0.29

In the figure below, the maps obtained from Equation (8) and from which Table A2 in
Appendix B was obtained have been reported. The exposure-risk class assessment reported
in the map was defined considering the gain values, from major to minor, where higher
gain values have higher class numbers. Consider Figures 3 and 4.
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Figure 2. Multiple correlation testing involving LST Gain Maximum, LST Gain Mean, Quote, FVC (Fractional Vegetation Cover), Slope, Aspect, Sun Duration (DS).
Positive correlation is in blue, negative in red. Rectangles represent statistically significant p-value < 0.05.
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Figure 3. Exposure-Risk class assessment map (scale 1:3,300,000). EPSG: 23032.

Figure 4. Exposure-Risk class assessment map (with some zooms in in the bottom valley from East to
West with a scale of 1:50,000). EPSG: 23032.

Then, as reported previously, a risk map was developed by adopting Equation (9). In
this last case the map produced from the suitability risk modeler has considered not only
LST gain maximum such as those in Figures 3 and 4 but also LST gain mean and quote,
due to the fact that they have been tested as previously described. It is worth noting that
the model developed suggests a risk exposure to rising LST, taking into consideration the
variables previously described in risk-exposure ranges between 0 and 100%, where 100% is
the maximum risk exposure considered according to the input parameters considered in the
model. In these areas, attention must be paid to the high risk represented by the LST trends
and their locations. In these areas, the emissivity of the materials, and consequently their
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albedo, is very different from those with materials that are able to mitigate heatwaves and
LST trends. The results obtained have permitted the population involved to be mapped,
thanks to the zonal statistics performed adopting the HDX Meta population dataset.

From these last maps obtained from the risk modeler developed, it is possible to see
how more than 60% of the Aosta Valley population, who mostly live in the bottom of the
valley, are exposed to a risk of rising temperature and heatwaves with a probability greater
than 55%. These effects have and will have important socio-economic impacts, not only
on the health sector but also on pets and domestic animals (particularly if we consider
that one of the main items of the GDP of Aosta Valley comes from animal husbandry
and how, therefore, certain breeding farms and related production and animal welfare
are more at risk than others, although the practice of summer pasture can mitigate this
through a mechanism of escape from mapped and modeled thermal trends) (please see
Figures 5 and 6).

Figure 5. Risk population exposure to rising LST mapped according to Equation (9). EPSG: 23032.

Figure 6. Risk population exposure to rising LST mapped according to Equation (9) (with zooms in
given areas with a scale of 1:50,000), EPSG: 23032.

4. Discussion

The results obtained constitute a first example on the Aosta Valley territory of climate
risk assessment through the use of a unique high-resolution dataset (being currently the
most detailed raster data for scientific applications). Moreover, the Meta dataset has never
been used until today, based on the information available in the scientific literature, in this
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way. A combined use with Earth observation data or weather station data can certainly be
an important tool of added value in the creation of new information layers and GIS and risk
analysis. The maps obtained can thus represent added value in the context of upgrading
hospitals and clinical outpatient clinics, or even from an urban planning perspective with
regard to urban-greening policies and actions. We hope this instrument will have added
value for civil defense. Certainly, a future development that focuses on individual buildings
taking into consideration increasingly timely data of population and physical characteristics
of surfaces is desirable so as to provide more and more detailed, but most importantly
up-to-date, data.

In this study, it is worth noting that the HDX Meta population dataset from empirical
ground data collected by some municipalities in Aosta Valley seemed to be more accurate
in terms of people that are present in a given area than the ISTAT residents. In fact, many
people are resident in a given municipality but live in a different municipality in which
they are domiciled. Therefore, a population dataset based on a tracking system seems to
better fit the real population distribution which still remains a great challenge considering
also privacy policies.

Given the quality of the data, an increasingly up-to-date and detailed population
dataset at both spatial and temporal resolution levels is desirable for studies of this kind.
Moreover, cross-referencing such data with geo-referenced animal population data would
certainly allow the development of models of the risk to domestic animals and their
productivity in the case of non-pet animals, while also allowing the development of new
lines on animal welfare with a view to adapting to climate change while avoiding stresses
such triggering possible disease from a weakened situation.

Nowadays, in fact, there is no high-detail geospatial dataset of both domestic and
affectionate animal populations (such as cats and dogs) at a global level. A datum of this
kind would allow not only a modeling of climate risk but also, and above all, health risk in
the case of zoonosis and eco-epidemiology towards a real and concrete application of One
Health. It is worth noting that the implementation would not be complex, considering that
in many countries there is an obligation to chip pets and in the case of livestock there is a
specific registry managed by veterinary services.

Surely a global effort in this direction together with a high temporal resolution and
good detail mapping of the population with information aggregated in respect of privacy
would allow a significant technological transfer to the health sector through cross studies for
health and risk analysis related to the effects of climate change. In this case, an application
on a local scale was attempted, also testing the quality of the population dataset. Surely,
future missions such as those from the Albedo enterprise which will provide thermal data
with GSD 2 m (if they will be made free for applied scientific research) will allow extremely
detailed studies if they are accompanied by other very-high-resolution information datasets.
With the data currently in possession, however, precious information can be obtained from
a planning and management point of view. It still seems difficult and complex to suggest
punctual actions at the sub-district level. In fact, it must be said that the Landsat data have
a thermal resolution at 30 m, equal to 900 square meters but resampled by NASA and that
the thermal sensors have an average resolution of 100 m, equal to an area of one hectare.

Currently the only scientific mission with a higher-resolution thermal sensor, ECOSTRESS
on board the International Space Station, does not allow long-term studies and was mainly
designed as a tool for monitoring vegetation. Unfortunately, other scientific missions
that make satellite data available free of charge, such as the European space program’s
Copernicus, have thermal data that are not suitable for conducting detailed studies. In fact,
Sentinel-3 has a GSD of 1 Km. The development of high thermal resolution sensors with
free access data would be desirable. Only the Albedo company is currently investing in
high-resolution commercial satellite data as previously said, but it is not yet known whether
its distribution policies will be free for research. However, in a mitigation and adaptation
perspective to climate change, their implementation is not only desirable on a global level
but also strategic in defining concrete One Health actions [77–79]. It is worth noting that
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mapping the exposure of population involved according to different levels of temperature
(LST) gain permits greening actions and policies to be addressed, favors the identification
of new medical or health centers, predicts in advance the areas that will be more subject
to emergency calls, redevelops areas or zones most at risk with a view to mitigation and
above all adaptation, makes forecasts on access to hospitals in case of heat waves and the
impact of costs on the health sector having mapped data, and evaluates the effectiveness of
requalification policies and actions and its effects on heat flows and on the risk associated
with the exposed population. Nevertheless, at the present time, analyses of exposures
to thermal trends are linked to EO data with GSD at 30 m (natively 100 m resampled at
30 m in case of Landsat). They currently represent the highest resolution available for
scientific purposes. The hope is that the missions of the private company Albedo, which
will provide satellite thermal data at 2 m GSD, will be free for scientific purposes and will
allow a significant technological and application leap. An increasingly detailed population
dataset is also desirable, although the aggregate Meta dataset is currently the most detailed
from a spatial point of view. To date, in fact, although the present application is notable, it
still limits the analyses at a cluster level by areas, making analyses at a building level more
complex, which would certainly be desirable for the future. In fact, mapping the risk at the
level of a single residential structure and its surroundings would allow increasingly precise
actions with a view to adaptation and capillary and punctual analysis of the risk.

Concerning the present study, it is interesting to see how the bottom of the valley is
more affected by rising temperature and how FVCs do not play a statistically significant role
(probably this is due to the fact that Landsat pixel GSD does not permit one to appreciate
in urban areas the effect offered by sparse vegetation (that normally, considering the study
area, is less than half a pixel). It is interesting to know how most of the highly risk areas are
located in industrial areas and in modern buildings rather than in historical buildings. At
the same time, it is interesting to underline from a civil protection perspective how more
than 60% of the Aosta Valley population (mostly concentrated in the valley floor for work
reasons) is in high exposure and risk classes with both approaches adopted. Although
in the summer some prefer to find refuge in the side valleys, the fact that a large part of
the mostly elderly population is exposed to a greater risk should lead to rethinking urban
planning and the creation of services or assistance hubs in areas with greater exposure. We
hope to see a major application of EO Data in a One Health perspective [80].

Regardless of the considerations on the planning developments of climate adaptation
and mitigation, we hope that this study will be useful and can also be scaled to other
realities and become more and more detailed.

5. Conclusions

The rising temperatures due to the effects of climate change require the rapid develop-
ment of adaptation and mitigation plans and concrete actions. In this study, an attempt
was made for the first time by coupling the HDX Meta population dataset and free satellite
data from the USGS NASA Landsat 4–9 missions. In particular LST trends were used to
map the exposure and risk deriving from the increase in temperatures in Aosta Valley, the
smallest region of Italy but one of the hardest hit by the effects of climate change. The
developed approaches can be scaled to other realities and at national and international level
by enhancing not only the Meta data but also by promoting a technological and knowledge
transfer to the health and environmental sector through concrete tools useful for tackling
climate change. In the case of the Aosta Valley, the punctual mapping of the risk and trend
of exposure to temperatures has made it possible, thanks to the Meta dataset, to define
risk and exposure classes according to the distribution and structure of the population
at the municipal level which we hope will be useful to the sector of civil protection and
medical-health including veterinary. If we think of domestic and bred animals, their spa-
tial distribution has not been considered. Therefore, further studies on them as well as
more and more punctual monitoring of the population with increasingly updated data are
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certainly desirable in the climate change framework adaptation and mitigation planning,
adaptation and policies.

Finally, results have shown a steeper increase in LST maximum trend, especially in
the bottom valley municipalities, and especially in new built-up areas around factories
where more of 60% of the Aosta Valley population (especially elderly and younger people)
live and where a high exposure risk has been detected and mapped with both approaches
performed. We strongly hope that maps produced may help the local planners and the
civil protection services to face global warming in a One Health perspective. Last but not
least, we hope this type of application may become ordinary and useful to other regions,
countries, studies, and more in general realities enhancing the exploitation of a combined
use of free satellite data and population data social tracking for the purposes of rational
territorial planning and management according to a real One Health approach.
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Appendix A

Below, the MAE computed considering the HDX Meta Population dataset and the
ISTAT population data is reported:

Table A1. Population validation.

ID
Italian

Municipality

Municipalities in
Aosta Valley Region HDX Meta Population 2020 (pi)

ISTAT Effective Resident on 31
December 2020 (oi)

MAE

A205 Allein 244 210 34
A305 Antey-Saint-Andre 645 565 80
A326 Aosta 33,204 33,916 −712
A424 Arnad 1278 1245 33
A452 Arvier 917 870 47
A521 Avise 378 306 72
A094 Ayas 1406 1393 13
A108 Aymavilles 2266 2104 162
A643 Bard 110 122 −12
A877 Bionaz 224 225 −1
B192 Brissogne 1034 948 86
B230 Brusson 792 883 −91
C593 Challand-Saint-Anselme 804 758 46
C594 Challand-Saint-Victor 618 548 70
C595 Chambave 908 919 −11
B491 Chamois 92 98 −6
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Table A1. Cont.

ID
Italian

Municipality

Municipalities in
Aosta Valley Region HDX Meta Population 2020 (pi)

ISTAT Effective Resident on 31
December 2020 (oi)

MAE

C596 Champdepraz 742 714 28
B540 Champorcher 365 394 −29
C598 Charvensod 2688 2338 350
C294 Chatillon 5023 4524 499
C821 Cogne 1403 1377 26
D012 Courmayeur 2759 2761 −2
D338 Donnas 2551 2448 103
D356 Doues 580 512 68
D402 Emarese 247 223 24
D444 Etroubles 539 481 58
D537 Fenis 1860 1769 91
D666 Fontainemore 472 431 41
D839 Gaby 496 460 36
E029 Gignod 2094 1715 379
E165 Gressan 3819 3393 426
E167 Gressoney-La-Trinite 315 318 −3
E168 Gressoney-Saint-Jean 815 812 3
E273 Hone 1170 1189 −19
E306 Introd 696 661 35
E369 Issime 430 407 23
E371 Issogne 1405 1349 56
E391 Jovencan 895 723 172
A308 La Magdeleine 129 109 20
E458 La Salle 2200 2001 199
E470 La Thuile 810 812 −2
E587 Lillianes 444 445 −1
F367 Montjovet 1864 1802 62
F726 Morgex 2166 2096 70
F987 Nus 3228 2950 278
G045 Ollomont 150 165 −15
G012 Oyace 223 217 6
G459 Perloz 413 457 −44
G794 Pollein 1617 1536 81
G854 Pontboset 185 173 12
G545 Pontey 907 801 106
G860 Pont-Saint-Martin 4014 3592 422
H042 Pre-Saint-Didier 1031 1031
H110 Quart 4601 4045 556
H262 Rhemes-Notre-Dame 111 85 26
H263 Rhemes-Saint-Georges 192 174 18
H497 Roisan 1217 1038 179
H669 Saint-Christophe 3598 3446 152
H670 Saint-Denis 399 382 17
H671 Saint-Marcel 1385 1365 20
H672 Saint-Nicolas 311 320 −9
H673 Saint-Oyen 240 199 41
H674 Saint-Pierre 3512 3195 317
H675 Saint-Rhemy 328 329 −1
H676 Saint-Vincent 4509 4432 77
I442 Sarre 5497 4817 680
L217 Torgnon 525 567 −42
L582 Valgrisenche 198 196 2
L643 Valpelline 691 618 73
L647 Valsavarenche 187 175 12
L654 Valtournenche 2037 2255 −218
L783 Verrayes 1389 1264 125
C282 Verres 2712 2577 135
L981 Villeneuve 1380 1259 121

Aosta Valley Region 130,683 125,034 76
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Appendix B

Below we report the number of people and their relative structure exposed to each
class of rising temperature (LST) in each Aosta Valley municipality:

Table A2. Risk assessment defined by adopting the first method (see Equation (8)).

ID Italian VDA
Municipality

Cluster ID—Mean Gain LST Max—n◦ Population Exposed VDA General
I II III IV V VI VII VIII IX X XI

A205 34 65 17 86 6 3 33
A305 4 16 75 1 231 65 38 215
A326 166 4 138 2805 546 66 7 12,346 13 45 17,069
A424 326 3 436 17 94 155 69 3 57 117
A452 12 9 534 171 4 186 1
A521 64 32 95 143 10 21 2 1 10
A094 32 58 103 2 4 160 302 1 396 350
A108 32 26 529 122 11 1203 3 340
A643 14 23 29 17 29
A877 17 1 55 23 31 47 8 5 17 20
B192 44 54 427 178 39 1 281 2 8
B230 7 6 144 1 304 58 61 211
C593 184 219 11 127 176 13 4 71
C594 36 13 295 143 9 119 3
C595 151 1 232 128 195 115 2 65 18
B491 3 1 27 29 32
C596 214 1 217 6 114 164 4 3 18
B540 58 2 76 120 109
C598 68 70 609 170 32 1476 1 263
C294 785 6 1356 611 1352 843 4 32 4 31
C821 235 11 275 41 347 249 65 5 31 144
D012 224 161 1036 944 76 179 3 135
D338 69 788 1 1 1289 32 3 367
D356 39 41 233 104 28 2 123 8 1
D402 33 2 62 49 3 5 93
D444 114 1 97 163 141 18 1 3
D537 103 28 986 604 15 122 1
D666 38 9 105 3 193 24 18 82
D839 4 84 238 40 8 122
E029 162 3 116 492 364 127 22 661 24 96 29
E165 53 64 230 165 70 1 1723 25 1488
E167 4 20 10 1 21 86 129 43 1
E168 2 18 14 141 202 184 253
E273 48 9 291 24 28 492 58 16 22 183
E306 64 1 51 233 304 21 2 11 2 8
E369 15 22 36 3 150 32 55 116
E371 344 25 326 10 411 154 41 31 63
E391 40 502 352
A308 6 11 23 69 20
E458 164 102 711 393 28 2 790 1 4 5
E470 34 27 364 240 3 142
E587 8 4 162 210 8 10 41
F367 302 250 471 737 61 1 36 1 5
F726 32 8 769 150 4 976 3 225
F987 221 1 159 1368 612 104 15 558 23 46 121
G045 22 2 67 43 1 14 1
G012 31 15 71 83 19 3
G459 4 27 203 31 8 141
G794 15 3 575 102 3 1 871 2 44
G854 3 37 67 7 72
G545 126 89 143 532 8 9
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Table A2. Cont.

ID Italian VDA
Municipality

Cluster ID—Mean Gain LST Max—n◦ Population Exposed VDA General
I II III IV V VI VII VIII IX X XI

G860 1017 3 1525 165 507 691 27 7 72
H042 86 38 318 365 8 3 182 2 6 25
H110 220 2 208 1912 692 102 17 1209 6 51 182
H262 18 18 1 7 32 2 32
H263 37 27 20 65 28 3 11
H497 11 1 670 92 1 440
H669 17 45 737 64 2 2340 391
H670 45 11 46 35 59 63 35 7 28 71
H671 69 1 79 651 226 28 4 308 3 10 6
H672 38 55 97 93 10 5 4 8
H673 14 59 3 82 24 13 46
H674 16 12 16 830 77 34 17 1773 17 21 700
H675 29 37 24 40 140 2 12 41 3
H676 801 3 403 884 2068 117 34 93 22 83
I442 178 1 128 1655 358 139 4 2338 16 42 640
L217 56 6 28 141 134 159
L582 35 15 49 87 4 4 2 2
L643 94 87 202 185 22 1 93 6 2
L647 51 1 21 19 46 29 1 2 1 16
L654 81 73 426 381 358 717
L783 191 8 242 75 234 310 95 7 43 184
C282 714 1 591 394 449 265 3 167 2 91 35
L981 70 40 475 198 9 1 553 1 34

VDA overall 8443 480 10,420 23,334 15,635 9077 2235 31,980 2033 4946 22,101
VDA overall % 6.5 0.4 8.0 17.9 12.0 6.9 1.7 24.5 1.6 3.8 16.9

ID Italian VDA
Municipality

Cluster ID—Mean Gain LST Max—n◦ Population Exposed VDA Men
I II III IV V VI VII VIII IX X XI

A205 17 33 6 46 3 1 16
A305 2 9 34 114 32 19 105
A326 86 2 72 1381 274 35 4 5852 7 23 7704
A424 155 1 203 8 43 73 34 1 29 56
A452 6 4 273 84 2 96 1
A521 31 16 45 69 6 10 1 1 5
A094 17 31 54 1 2 80 154 194 174
A108 16 12 262 61 5 597 1 168
A643 6 11 13 8 13
A877 9 29 12 16 27 4 2 7 12
B192 26 28 218 92 21 144 1 4
B230 4 4 70 142 29 30 98
C593 90 107 6 63 90 7 2 38
C594 18 7 147 73 5 61 2
C595 75 1 113 67 99 56 1 34 10
B491 2 1 13 14 15
C596 100 1 103 3 57 79 2 2 9
B540 27 1 37 59 56
C598 35 37 303 86 17 731 131
C294 375 3 658 303 656 413 2 15 2 15
C821 115 5 135 20 177 123 33 2 15 70
D012 113 84 510 468 40 90 1 71
D338 33 371 1 615 16 2 179
D356 19 20 114 51 14 1 58 4 1
D402 15 1 33 26 2 2 53
D444 58 1 49 83 71 9 2
D537 51 14 500 297 7 63 1
D666 20 5 53 2 97 13 10 42
D839 2 42 115 21 4 58
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Table A2. Cont.

ID Italian VDA
Municipality

Cluster ID—Mean Gain LST Max—n◦ Population Exposed VDA General
I II III IV V VI VII VIII IX X XI

E029 78 1 60 233 175 68 12 326 12 50 15
E165 29 34 116 89 36 859 12 735
E167 2 8 5 10 40 56 21 1
E168 1 8 6 68 100 90 125
E273 24 4 137 11 14 234 27 8 11 87
E306 32 26 119 147 10 1 6 1 4
E369 8 12 18 1 72 16 28 57
E371 167 12 157 5 203 74 20 15 29
E391 21 255 181
A308 3 6 13 36 12
E458 82 50 352 199 14 1 386 2 2
E470 18 14 179 119 2 70
E587 4 2 74 99 5 5 21
F367 156 131 239 381 31 1 18 3
F726 17 4 378 70 2 474 1 105
F987 111 82 662 302 52 8 270 13 24 60
G045 10 1 36 21 8
G012 16 9 37 46 13 2
G459 2 12 96 18 5 70
G794 8 2 289 52 2 1 434 1 22
G854 2 17 35 4 34
G545 62 43 69 266 4 5
G860 497 2 740 78 244 335 14 4 39
H042 43 18 167 187 4 2 94 1 3 12
H110 113 1 108 958 347 53 9 606 4 27 98
H262 10 9 1 4 20 1 21
H263 18 13 10 32 14 2 6
H497 5 337 46 218
H669 8 22 361 31 1 1149 193
H670 22 6 23 18 29 33 18 4 16 38
H671 34 39 319 112 14 2 151 2 6 3
H672 18 31 49 44 5 3 2 4
H673 7 28 1 39 11 6 22
H674 8 6 8 412 38 18 9 889 9 10 350
H675 16 20 12 20 77 1 6 23 2
H676 396 2 203 429 995 61 18 46 10 42
I442 89 1 64 801 180 70 2 1148 13 20 316
L217 27 3 15 75 70 82
L582 18 8 24 46 3 2 1 1
L643 50 46 107 98 11 50 3 1
L647 23 10 9 20 15 1 1 9
L654 38 37 217 201 184 380
L783 98 4 125 39 120 158 47 4 21 90
C282 346 1 286 195 217 126 2 82 1 43 17
L981 36 20 246 100 5 1 281 1 17

VDA overall 4172 237 5118 11,574 7744 4476 1141 15,594 1019 2490 10,210
VDA overall % 6.5 0.4 8.0 18.1 12.1 7.0 1.8 24.5 1.6 3.9 16.0

ID Italian VDA
Municipality

Cluster ID—Mean Gain LST Max—n◦ Population Exposed VDA Women
I II III IV V VI VII VIII IX X XI

A205 17 32 10 41 3 2 17
A305 2 7 40 1 117 33 19 110
A326 80 2 66 1423 273 31 3 6493 6 21 9365
A424 172 2 233 9 50 82 35 1 29 61
A452 6 5 261 88 2 90 1
A521 33 16 49 73 4 11 1 5
A094 15 27 49 1 2 79 148 201 176
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Table A2. Cont.

ID Italian VDA
Municipality

Cluster ID—Mean Gain LST Max—n◦ Population Exposed VDA General
I II III IV V VI VII VIII IX X XI

A108 16 14 267 61 6 606 2 173
A643 7 12 15 9 15
A877 8 26 11 15 20 4 3 10 8
B192 18 26 209 85 17 137 1 4
B230 4 3 74 161 29 30 112
C593 94 112 5 63 86 6 2 32
C594 18 6 148 70 4 58 1
C595 75 1 119 61 96 59 1 31 9
B491 1 1 14 15 17
C596 114 1 114 3 57 85 2 1 9
B540 31 1 39 61 53
C598 32 33 306 83 15 746 132
C294 410 3 698 308 695 431 2 17 2 15
C821 121 5 140 20 170 126 32 2 16 74
D012 111 77 526 477 36 90 1 64
D338 36 417 1 674 15 1 187
D356 20 21 119 53 14 1 65 4
D402 19 1 29 23 1 2 39
D444 56 1 48 81 70 9 2
D537 53 14 486 307 8 59 1
D666 18 4 53 2 95 11 8 40
D839 2 43 124 18 3 64
E029 83 2 56 259 189 59 10 335 12 46 14
E165 24 29 114 77 34 1 864 12 753
E167 2 12 5 11 46 73 22 1
E168 1 11 8 73 102 94 128
E273 25 5 154 12 14 257 30 8 11 96
E306 32 26 114 157 11 1 5 1 4
E369 8 10 18 1 78 16 26 59
E371 177 13 169 5 208 80 21 16 34
E391 20 247 171
A308 3 4 10 33 9
E458 82 51 359 194 14 1 405 2 3
E470 17 13 184 121 1 72
E587 5 2 87 111 3 5 20
F367 146 120 232 355 29 1 17 3
F726 15 4 391 80 2 502 2 120
F987 109 77 706 311 51 7 289 9 22 60
G045 12 1 32 22 5
G012 14 7 34 37 6 1
G459 1 14 107 13 3 71
G794 7 1 287 50 2 1 437 1 22
G854 1 20 32 2 38
G545 64 46 75 266 4 4
G860 521 1 785 87 263 356 13 3 32
H042 43 20 151 178 4 2 87 1 3 13
H110 107 1 100 954 345 49 8 602 2 24 84
H262 8 9 3 13 1 11
H263 19 14 10 33 14 1 5
H497 6 1 333 46 1 222
H669 9 24 376 33 1 1192 198
H670 22 5 23 17 30 30 17 4 12 33
H671 35 40 332 113 14 2 156 1 4 3
H672 20 24 49 50 5 2 2 4
H673 7 31 1 43 13 7 24
H674 9 5 9 418 38 16 8 883 8 11 350
H675 13 17 12 20 63 1 6 19 2
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Table A2. Cont.

ID Italian VDA
Municipality

Cluster ID—Mean Gain LST Max—n◦ Population Exposed VDA General
I II III IV V VI VII VIII IX X XI

H676 405 2 200 456 1073 57 16 46 12 40
I442 89 63 854 179 68 1 1190 3 22 323
L217 29 3 14 66 65 77
L582 17 7 24 41 1 1 1
L643 44 41 95 86 11 43 3 1
L647 28 11 10 26 14 1 7
L654 44 36 209 180 174 337
L783 93 4 116 37 114 152 48 3 22 94
C282 368 1 305 199 232 139 1 85 1 48 18
L981 34 20 230 98 3 271 17

VDA overall 4274 244 5304 11,763 7890 4597 1094 16,384 1008 2451 11,892
VDA overall % 6.4 0.4 7.9 17.6 11.8 6.9 1.6 24.5 1.5 3.7 17.8

ID Italian VDA
Municipality

Cluster ID—Mean Gain LST Max—n◦ Population Exposed VDA Women of Reproductive Age 15–49
I II III IV V VI VII VIII IX X XI

A205 8 13 7 12 1 4
A305 1 3 18 51 14 9 51
A326 36 1 30 610 121 15 2 2504 3 10 3690
A424 70 1 97 4 22 33 14 1 11 25
A452 3 2 124 39 1 45
A521 13 6 19 29 1 5 2
A094 9 11 26 1 1 36 65 76 76
A108 6 6 121 26 4 282 1 81
A643 3 5 6 3 6
A877 4 12 5 7 9 2 1 4 4
B192 8 11 95 40 7 62 1
B230 2 1 32 66 12 10 44
C593 43 50 2 31 37 3 1 14
C594 6 3 74 28 2 28 1
C595 30 48 26 39 25 15 4
B491 5 5 7
C596 53 50 2 30 37 1 1 4
B540 14 17 29 22
C598 17 18 143 42 9 349 62
C294 183 2 304 136 309 182 1 8 1 7
C821 48 2 58 7 69 53 12 1 6 30
D012 51 35 238 214 16 44 1 33
D338 16 173 283 7 1 81
D356 8 10 46 20 7 32 1
D402 10 1 14 9 1 1 17
D444 25 20 38 32 2 1
D537 23 6 211 132 3 26
D666 8 2 22 1 36 4 3 15
D839 1 15 43 10 1 24
E029 39 1 26 125 89 30 6 165 7 25 7
E165 14 17 57 41 20 383 7 343
E167 1 6 2 5 20 32 10
E168 1 4 4 33 44 42 55
E273 11 2 76 5 6 118 13 4 5 41
E306 16 12 49 71 5 1 2 1 2
E369 3 4 7 1 31 6 11 24
E371 67 5 65 2 79 35 11 6 15
E391 10 129 86
A308 1 2 5 15 4
E458 32 20 162 84 6 173 1 1
E470 7 6 76 53 1 31
E587 2 1 34 47 2 2 9
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ID Italian VDA
Municipality

Cluster ID—Mean Gain LST Max—n◦ Population Exposed VDA General
I II III IV V VI VII VIII IX X XI

F367 69 55 108 162 15 1 8 2
F726 8 2 175 36 1 226 1 54
F987 48 34 337 139 21 2 139 3 8 28
G045 5 14 11 2
G012 7 3 17 16 3 1
G459 7 49 3 31
G794 3 1 135 23 1 205 10
G854 1 7 12 1 14
G545 31 22 36 129 2 1
G860 231 1 330 40 118 147 5 1 14
H042 20 9 73 82 2 1 45 2 7
H110 50 44 458 164 21 3 291 1 11 38
H262 4 4 1 6 4
H263 6 6 4 12 7 1 2
H497 3 161 23 104
H669 4 11 173 16 1 525 92
H670 11 3 13 9 13 12 9 2 7 16
H671 15 18 148 51 6 1 68 1 2 1
H672 8 14 22 22 2 1 1 1
H673 3 13 1 18 5 3 10
H674 5 2 5 195 20 7 4 420 4 6 166
H675 6 7 5 8 27 2 8
H676 171 1 88 195 431 26 7 22 4 18
I442 41 26 411 83 29 1 567 1 11 147
L217 12 2 8 29 28 34
L582 7 3 7 14 1
L643 19 18 46 40 5 20 1
L647 12 4 4 11 7 4
L654 20 16 92 84 78 156
L783 40 1 50 16 47 62 18 2 7 39
C282 147 122 81 89 56 38 18 7
L981 16 10 102 45 2 123 7

VDA overall 1866 106 2291 5360 3468 1958 475 7095 427 1062 4862
VDA overall % 6.4 0.4 7.9 18.5 12.0 6.8 1.6 24.5 1.5 3.7 16.8

ID Italian VDA
Municipality

Cluster ID—Mean Gain LST Max—n◦ Population Exposed VDA Elderly 60 Plus
I II III IV V VI VII VIII IX X XI

A205 10 19 1 35 3 1 13
A305 1 3 21 61 18 10 55
A326 39 1 31 775 143 14 1 4048 2 9 5644
A424 102 1 131 5 26 44 17 1 14 30
A452 5 5 125 48 2 41 1
A521 16 8 19 33 3 3 1 2
A094 8 18 27 1 38 73 106 88
A108 9 6 130 34 2 306 1 88
A643 5 9 11 6 11
A877 4 14 6 8 11 3 1 6 4
B192 8 14 96 38 11 62 1 2
B230 2 2 37 84 17 20 65
C593 51 69 4 32 54 4 2 24
C594 13 3 76 47 3 34 1
C595 46 1 71 35 57 36 1 16 6
B491 1 1 10 11 11
C596 48 55 1 23 44 1 5
B540 19 1 28 40 38
C598 13 12 138 35 5 333 58
C294 223 1 376 168 381 247 6 5
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Table A2. Cont.

ID Italian VDA
Municipality

Cluster ID—Mean Gain LST Max—n◦ Population Exposed VDA General
I II III IV V VI VII VIII IX X XI

C821 80 3 90 15 119 82 21 1 11 49
D012 57 43 263 254 21 37 1 27
D338 18 231 372 9 1 104
D356 11 12 71 30 8 1 31 5
D402 9 16 16 1 1 30
D444 28 25 43 39 7 2
D537 29 8 251 161 4 30
D666 13 3 36 1 63 8 5 28
D839 3 29 86 9 6 42
E029 35 23 102 78 26 3 133 3 17 6
E165 9 12 53 30 14 463 5 354
E167 1 4 3 6 20 28 8
E168 1 4 4 40 59 47 75
E273 14 2 80 7 8 143 17 5 6 55
E306 15 12 59 75 5 3 2
E369 3 6 8 1 45 10 16 38
E371 104 8 97 3 128 44 10 9 19
E391 8 101 71
A308 1 3 7 18 6
E458 42 24 172 104 8 196 1 2
E470 8 7 89 56 1 38
E587 3 1 54 67 3 3 13
F367 71 60 105 185 13 8 1
F726 4 1 200 37 1 242 55
F987 53 39 292 137 29 4 115 7 12 26
G045 7 1 20 14 3
G012 7 4 13 17 5 1
G459 2 7 56 14 4 43
G794 4 1 133 25 1 193 1 10
G854 14 25 1 25
G545 29 21 34 122 2 2
G860 288 440 48 147 198 7 2 21
H042 23 11 79 98 1 43 1 1 6
H110 49 1 49 431 158 26 5 273 4 14 43
H262 3 3 1 8 1 9
H263 15 6 7 24 5 1 2
H497 2 149 19 100
H669 4 10 186 16 1 610 102
H670 12 3 9 7 15 18 9 2 5 19
H671 20 22 171 58 10 85 3 2
H672 10 10 26 24 3 2 1 2
H673 4 17 1 24 7 4 13
H674 4 3 3 206 20 11 4 418 4 4 167
H675 8 11 6 12 41 4 12 1
H676 234 114 265 646 31 5 24 4 20
I442 44 34 389 87 35 1 565 5 8 165
L217 17 2 9 41 41 50
L582 11 5 16 29 1 1 1
L643 25 24 49 47 5 24 1
L647 14 9 6 14 9 1 3
L654 20 20 119 87 87 160
L783 51 2 68 22 64 95 31 2 15 59
C282 204 1 168 123 150 75 2 44 1 26 11
L981 18 8 116 52 2 130 9
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Table A2. Cont.

ID Italian VDA
Municipality

Cluster ID—Mean Gain LST Max—n◦ Population Exposed VDA General
I II III IV V VI VII VIII IX X XI

VDA overall 2299 135 2901 5816 4210 2613 611 8772 553 1383 6851
VDA overall % 6.4 0.4 8.0 16.1 11.6 7.2 1.7 24.3 1.5 3.8 19.0

ID Italian VDA
Municipality

Cluster ID—Mean Gain LST Max—n◦ Population Exposed Children under 5
I II III IV V VI VII VIII IX X XI

A205 2 6 1 4 3
A305 2 3 12 5 2 14
A326 9 10 127 27 3 520 1 2 732
A424 15 20 1 4 6 3 2 6
A452 29 8 11
A521 5 3 10 13 1 3 2
A094 2 5 8 12 15 29 21
A108 1 27 5 57 16
A643 1 1 1 1
A877 1 3 1 2 2 1 1 1
B192 1 2 19 8 13
B230 10 15 2 3 9
C593 8 9 8 9 4
C594 1 15 5 1 6
C595 7 9 5 9 4 2 1
B491 1 1 1
C596 9 9 6 7 1
B540 1 2 5 3
C598 4 4 34 10 2 82 14
C294 39 1 70 33 76 32 2 1
C821 9 11 1 12 9 2 1 4
D012 9 5 50 44 2 8 8
D338 3 34 66 1 19
D356 2 2 10 4 2 8
D402 1 3 4 6
D444 7 7 6 6 1
D537 5 2 56 30 1 8
D666 1 4 9 1 1 4
D839 2 8 3 4
E029 8 7 31 21 8 1 45 1 5 2
E165 2 2 11 7 3 87 1 91
E167 2 1 1 7 10 4
E168 2 1 8 7 9 10
E273 2 1 7 1 1 17 3 1 1 8
E306 4 4 16 20 1 1 1
E369 1 1 2 10 2 4 6
E371 17 2 17 19 8 3 2 4
E391 2 28 20
A308 1 1 3 1
E458 11 7 41 23 1 49
E470 1 1 16 10 7
E587 5 7 1 1 2
F367 12 12 23 35 3 2
F726 3 1 39 9 48 10
F987 12 8 76 31 3 1 31 1 1 7
G045 1 2 2
G012 2 1 5 5 1
G459 1 8 1 7
G794 1 27 4 48 2
G854 3 4
G545 4 3 4 20
G860 50 69 8 24 31 1 1
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Table A2. Cont.

ID Italian VDA
Municipality

Cluster ID—Mean Gain LST Max—n◦ Population Exposed VDA General
I II III IV V VI VII VIII IX X XI

H042 5 2 16 18 1 9 1 1
H110 12 10 114 40 5 1 70 2 9
H262 1 1 3 3
H263 1 2 1 2 2 1
H497 1 35 6 21
H669 1 3 45 4 122 18
H670 2 4 2 3 3 2 1 4
H671 3 6 31 13 1 1 15 1
H672 3 3 4 4 1
H673 1 2 3 1 2
H674 1 1 2 42 5 1 2 95 2 2 45
H675 1 1 2 2 4 1 1
H676 30 17 29 76 4 3 4 4
I442 10 8 85 19 8 114 3 33
L217 3 1 7 6 7
L582 1 2
L643 6 5 11 11 1 5
L647 2 1 2 2 2
L654 4 4 21 19 19 33
L783 15 1 17 4 18 17 4 3 8
C282 39 31 16 18 13 7 5 1
L981 2 1 21 9 33 3

VDA overall 409 30 504 1190 760 420 110 1562 114 241 1013
VDA overall % 6.4 0.5 7.9 18.7 12.0 6.6 1.7 24.6 1.8 3.8 15.9

ID Italian VDA
Municipality

Cluster ID—Mean Gain LST Max—n◦ Population Exposed VDA Youth 15–24
I II III IV V VI VII VIII IX X XI

A205 3 3 2 3 1
A305 2 5 20 5 3 16
A326 17 15 262 56 7 1 1044 2 6 1493
A424 26 39 2 10 16 6 5 11
A452 1 53 19 17
A521 4 2 9 9 1
A094 4 3 10 12 34 32 34
A108 2 1 39 8 97 28
A643 1 2 2 1 2
A877 1 6 1 2 4 1
B192 3 5 37 15 5 24 1
B230 1 1 14 26 6 6 18
C593 23 23 1 15 17 1 4
C594 2 1 27 10 10
C595 13 19 15 20 8 9 1
B491 2 2 3
C596 19 20 1 9 14 1
B540 6 9 13 14
C598 7 7 57 18 4 136 29
C294 76 1 126 58 127 82 4 2
C821 18 1 21 3 26 19 5 2 9
D012 23 16 100 88 6 19 14
D338 7 65 112 3 35
D356 3 5 19 9 3 12
D402 1 3 2 7
D444 9 8 14 13 2
D537 8 2 69 46 1 10
D666 3 1 10 12 2 2 6
D839 6 15 3 10
E029 17 11 42 34 11 2 53 2 8 2
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Table A2. Cont.

ID Italian VDA
Municipality

Cluster ID—Mean Gain LST Max—n◦ Population Exposed VDA General
I II III IV V VI VII VIII IX X XI

E165 4 6 19 12 6 140 2 119
E167 1 2 2 4 7 9 6
E168 2 1 12 19 20 22
E273 4 1 31 2 3 46 5 2 2 16
E306 8 5 21 35 3 1
E369 1 1 2 13 2 3 11
E371 27 1 24 1 34 15 4 2 5
E391 4 54 34
A308 1 2 6 2
E458 12 7 57 29 2 67 1
E470 4 3 37 28 15
E587 1 15 18 1 3
F367 28 22 41 60 5 3
F726 2 1 67 13 86 22
F987 20 15 132 57 8 56 3 11
G045 2 2 3
G012 1 6 8
G459 2 16 1 13
G794 2 63 11 89 5
G854 2 10 1 6
G545 14 11 18 55 1 1
G860 93 141 15 47 60 3 1 7
H042 7 3 31 34 1 17 2
H110 20 17 168 65 6 1 112 3 15
H262 2 2 1 3 2
H263 2 4 2 4 4 1
H497 1 70 9 45
H669 2 5 63 7 177 26
H670 5 1 4 4 7 4 1 1 1 3
H671 8 9 56 21 2 25 1
H672 2 8 8 8 1 1
H673 1 6 9 3 1 5
H674 2 1 2 77 7 4 2 155 2 2 52
H675 2 3 1 3 12 4
H676 69 33 80 172 10 2 10 4
I442 18 10 156 36 10 1 230 3 59
L217 3 2 4 10 11 13
L582 3 1 5 6 1
L643 10 9 20 19 3 9 1
L647 3 1 1 4 1 1
L654 8 6 34 34 35 62
L783 10 13 4 13 17 5 1 2 14
C282 61 50 37 42 20 17 7 3
L981 9 6 48 21 1 51 2

VDA overall 753 39 926 2122 1408 767 196 2799 168 417 1918
VDA overall % 6.5 0.3 8.0 18.4 12.2 6.7 1.7 24.3 1.5 3.6 16.7
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