Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = HJ-1A imagery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 7044 KB  
Article
Comparing Gaofen-5, Ground, and Huanjing-1A Spectra for the Monitoring of Soil Salinity with the BP Neural Network Improved by Particle Swarm Optimization
by Xiaofang Jiang and Xian Xue
Remote Sens. 2022, 14(22), 5719; https://doi.org/10.3390/rs14225719 - 12 Nov 2022
Cited by 5 | Viewed by 2833
Abstract
Most of the world’s saline soils are found in arid or semiarid areas, where salinization is becoming serious. Ground laboratory hyperspectral data (analytical spectral devices, ASD) as well as spaceborne hyperspectral data, including Gaofen-5 (GF-5) and Huanjing-1A (HJ-1A), provide convenient salinity monitoring. However, [...] Read more.
Most of the world’s saline soils are found in arid or semiarid areas, where salinization is becoming serious. Ground laboratory hyperspectral data (analytical spectral devices, ASD) as well as spaceborne hyperspectral data, including Gaofen-5 (GF-5) and Huanjing-1A (HJ-1A), provide convenient salinity monitoring. However, the difference among ASD, GF-5, and HJ-1A spectra in salinity monitoring remains unclear. So, we used ASD, GF-5, and HJ-1A spectra as data sources in Gaotai County of Hexi Corridor, which has been affected by salinization. For a more comprehensive comparison of the three spectra datum, four kinds of band screening methods, including Pearson correlation coefficient (PCC), principal component analysis (PCA), successive projections algorithm (SPA), and random forest (RF) were used to reduce the dimension of hyperspectral data. Particle swarm optimization (PSO) was used to improve the random initialization of weights and thresholds of the back propagation neural network (BPNN) model. The results showed that root mean square error (RMSE) and determination of the coefficients (R2) of models based on ASD and HJ-1A spectra were basically similar. ASD spectra (RMSE = 4 mS·cm−1, R2 = 0.82) and HJ-1A (RMSE = 2.98 mS·cm−1, R2 = 0.93) performed better than GF-5 spectra (RMSE = 6.45 mS·cm−1, R2 = 0.67) in some cases. The good modelling result of HJ-1A and GF-5 data confirmed that spaceborne hyperspectral imagery has great potential in salinity mapping. Then, we used HJ-1A and GF-5 hyperspectral imagery to map soil salinity. The results of GF-5 and HJ-1A showed that extremely and highly saline soil mainly occurred in grassland and the southern part of arable land in Gaotai County. Other lands mainly featured non-saline and slightly saline soil. This can provide a reference for salinity monitoring research. Full article
Show Figures

Figure 1

20 pages, 6464 KB  
Article
Methods of Sandy Land Detection in a Sparse-Vegetation Scene Based on the Fusion of HJ-2A Hyperspectral and GF-3 SAR Data
by Yi Li, Junjun Wu, Bo Zhong, Xiaoliang Shi, Kunpeng Xu, Kai Ao, Bin Sun, Xiangyuan Ding, Xinshuang Wang, Qinhuo Liu, Aixia Yang, Fei Chen and Mengqi Shi
Remote Sens. 2022, 14(5), 1203; https://doi.org/10.3390/rs14051203 - 1 Mar 2022
Cited by 6 | Viewed by 3284
Abstract
Accurate identification of sandy land plays an important role in sandy land prevention and control. It is difficult to identify the nature of sandy land due to vegetation covering the soil in the sandy area. Therefore, HJ-2A hyperspectral data and GF-3 Synthetic Aperture [...] Read more.
Accurate identification of sandy land plays an important role in sandy land prevention and control. It is difficult to identify the nature of sandy land due to vegetation covering the soil in the sandy area. Therefore, HJ-2A hyperspectral data and GF-3 Synthetic Aperture Radar (SAR) data were used as the main data sources in this article. The advantages of the spectral characteristics of a hyperspectral image and the penetration characteristics of SAR data were used synthetically to carry out mixed-pixel decomposition in the “horizontal” direction and polarization decomposition in the “vertical” direction. The results showed that in the study area of the Otingdag Sandy Land, in China, the accuracy of sandy land detection based on feature-level fusion and single GF-3 data was verified to be 92% in both cases by field data; the accuracy of sandy land detection based on feature-level fusion was verified to be 88.74% by the data collected from Google high-resolution imagery, which was higher than that based on single HJ-2A (74.17%) and single GF-3 data (88.08%). To further verify the universality of the feature-level fusion method for sandy land detection, Alxa sandy land was also used as a verification area and the accuracy of sandy land detection was verified to be as high as 88.74%. The method proposed in this paper made full use of the horizontal and vertical structural information of remote sensing data. The problem of mixed pixels in sparse-vegetation scenes in the horizontal direction and the problem of vegetation covering sandy soil in the vertical direction were both well solved. Accurate identification of sandy land can be realized effectively, which can provide technical support for sandy land prevention and control. Full article
Show Figures

Figure 1

13 pages, 4910 KB  
Article
Estimation of Cultivated Land Quality Based on Soil Hyperspectral Data
by Chenjie Lin, Yueming Hu, Zhenhua Liu, Yiping Peng, Lu Wang and Dailiang Peng
Agriculture 2022, 12(1), 93; https://doi.org/10.3390/agriculture12010093 - 11 Jan 2022
Cited by 11 | Viewed by 3146
Abstract
Efficient monitoring of cultivated land quality (CLQ) plays a significant role in cultivated land protection. Soil spectral data can reflect the state of cultivated land. However, most studies have used crop spectral information to estimate CLQ, and there is little research on using [...] Read more.
Efficient monitoring of cultivated land quality (CLQ) plays a significant role in cultivated land protection. Soil spectral data can reflect the state of cultivated land. However, most studies have used crop spectral information to estimate CLQ, and there is little research on using soil spectral data for this purpose. In this study, soil hyperspectral data were utilized for the first time to evaluate CLQ. We obtained the optimal spectral variables from dry soil spectral data using a gradient boosting decision tree (GBDT) algorithm combined with the variance inflation factor (VIF). Two estimation algorithms (partial least-squares regression (PLSR) and back-propagation neural network (BPNN)) with 10-fold cross-validation were employed to develop the relationship model between the optimal spectral variables and CLQ. The optimal algorithms were determined by the degree of fit (determination coefficient, R2). In order to estimate CLQ at the regional scale, HuanJing-1A Hyperspectral Imager (HJ-1A HSI) data were transformed into dry soil spectral data using the linkage model of original soil spectral reflectance to dry soil spectral reflectance. This study was conducted in the Guangdong Province, China and the Conghua district within the same province. The results showed the following: (1) the optimal spectral variables selected from the dry soil spectral variables were 478 nm, 502 nm, 614 nm, 872 nm, 966 nm, 1007 nm, and 1796 nm. (2) The BPNN was the optimal model, with an R2(C) of 0.71 and a normalized root mean square error (NRMSE) of 12.20%. (3) The results showed the R2 of the regional-scale CLQ estimation based on the proposed method was 0.05 higher, and the NRMSE was 0.92% lower than that of the CLQ map obtained using the traditional method. Additionally, the NRMSE of the regional-scale CLQ estimation base on dry soil spectral variables from HJ-1A HSI data was 2.00% lower than that of the model base on the original HJ-1A HSI data. Full article
(This article belongs to the Special Issue Image Analysis Techniques in Agriculture)
Show Figures

Figure 1

21 pages, 4465 KB  
Article
DBMF: A Novel Method for Tree Species Fusion Classification Based on Multi-Source Images
by Xueliang Wang and Honge Ren
Forests 2022, 13(1), 33; https://doi.org/10.3390/f13010033 - 28 Dec 2021
Cited by 9 | Viewed by 2688
Abstract
Multi-source data remote sensing provides innovative technical support for tree species recognition. Tree species recognition is relatively poor despite noteworthy advancements in image fusion methods because the features from multi-source data for each pixel in the same region cannot be deeply exploited. In [...] Read more.
Multi-source data remote sensing provides innovative technical support for tree species recognition. Tree species recognition is relatively poor despite noteworthy advancements in image fusion methods because the features from multi-source data for each pixel in the same region cannot be deeply exploited. In the present paper, a novel deep learning approach for hyperspectral imagery is proposed to improve accuracy for the classification of tree species. The proposed method, named the double branch multi-source fusion (DBMF) method, could more deeply determine the relationship between multi-source data and provide more effective information. The DBMF method does this by fusing spectral features extracted from a hyperspectral image (HSI) captured by the HJ-1A satellite and spatial features extracted from a multispectral image (MSI) captured by the Sentinel-2 satellite. The network has two branches in the spatial branch to avoid the risk of information loss, of which, sandglass blocks are embedded into a convolutional neural network (CNN) to extract the corresponding spatial neighborhood features from the MSI. Simultaneously, to make the useful spectral feature transfer more effective in the spectral branch, we employed bidirectional long short-term memory (Bi-LSTM) with a triple attention mechanism to extract the spectral features of each pixel in the HSI with low resolution. The feature information is fused to classify the tree species after the addition of a fusion activation function, which could allow the network to obtain more interactive information. Finally, the fusion strategy allows for the prediction of the full classification map of three study areas. Experimental results on a multi-source dataset show that DBMF has a significant advantage over other state-of-the-art frameworks. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

17 pages, 5488 KB  
Article
Estimation of Soil Nutrient Content Using Hyperspectral Data
by Yiping Peng, Lu Wang, Li Zhao, Zhenhua Liu, Chenjie Lin, Yueming Hu and Luo Liu
Agriculture 2021, 11(11), 1129; https://doi.org/10.3390/agriculture11111129 - 11 Nov 2021
Cited by 41 | Viewed by 7369
Abstract
Soil nutrients play a vital role in plant growth and thus the rapid acquisition of soil nutrient content is of great significance for agricultural sustainable development. Hyperspectral remote-sensing techniques allow for the quick monitoring of soil nutrients. However, at present, obtaining accurate estimates [...] Read more.
Soil nutrients play a vital role in plant growth and thus the rapid acquisition of soil nutrient content is of great significance for agricultural sustainable development. Hyperspectral remote-sensing techniques allow for the quick monitoring of soil nutrients. However, at present, obtaining accurate estimates proves to be difficult due to the weak spectral features of soil nutrients and the low accuracy of soil nutrient estimation models. This study proposed a new method to improve soil nutrient estimation. Firstly, for obtaining characteristic variables, we employed partial least squares regression (PLSR) fit degree to select an optimal screening algorithm from three algorithms (Pearson correlation coefficient, PCC; least absolute shrinkage and selection operator, LASSO; and gradient boosting decision tree, GBDT). Secondly, linear (multi-linear regression, MLR; ridge regression, RR) and nonlinear (support vector machine, SVM; and back propagation neural network with genetic algorithm optimization, GABP) algorithms with 10-fold cross-validation were implemented to determine the most accurate model for estimating soil total nitrogen (TN), total phosphorus (TP), and total potassium (TK) contents. Finally, the new method was used to map the soil TK content at a regional scale using the soil component spectral variables retrieved by the fully constrained least squares (FCLS) method based on an image from the HuanJing-1A Hyperspectral Imager (HJ-1A HSI) of the Conghua District of Guangzhou, China. The results identified the GBDT-GABP was observed as the most accurate estimation method of soil TN ( of 0.69, the root mean square error of cross-validation (RMSECV) of 0.35 g kg−1 and ratio of performance to interquartile range (RPIQ) of 2.03) and TP ( of 0.73, RMSECV of 0.30 g kg−1 and RPIQ = 2.10), and the LASSO-GABP proved to be optimal for soil TK estimations ( of 0.82, RMSECV of 3.39 g kg−1 and RPIQ = 3.57). Additionally, the highly accurate LASSO-GABP-estimated soil TK (R2 = 0.79) reveals the feasibility of the LASSO-GABP method to retrieve soil TK content at the regional scale. Full article
(This article belongs to the Special Issue Digital Innovations in Agriculture)
Show Figures

Figure 1

21 pages, 5030 KB  
Article
Estimation of Surface Canopy Water in Pacific Northwest Forests by Fusing Radar, Lidar, and Meteorological Data
by Scott Heffernan and Bogdan M Strimbu
Forests 2021, 12(3), 339; https://doi.org/10.3390/f12030339 - 14 Mar 2021
Cited by 4 | Viewed by 2489
Abstract
Surface Canopy Water (SCW) is the intercepted rain water that resides within the tree canopy and plays a significant role in the hydrological cycle. Challenges arise in measuring SCW in remote areas using traditional ground-based techniques. Remote sensing in the radio [...] Read more.
Surface Canopy Water (SCW) is the intercepted rain water that resides within the tree canopy and plays a significant role in the hydrological cycle. Challenges arise in measuring SCW in remote areas using traditional ground-based techniques. Remote sensing in the radio spectrum has the potential to overcome the challenges where traditional modelling approaches face difficulties. In this study, we aim at estimating the SCW by fusing information extracted from the radar imagery acquired with the Sentinel-1 constellation, aerial laser scanning, and meteorological data. To describe the change of radar backscatter with moisture, we focused on six forest stands in the H.J. Andrews experimental forest in central Oregon, as well as four clear cut areas and one golf course, over the summers of 2015–2017. We found significant relationships when we executed the analysis on radar images in which individual tree crowns were delineated from lidar, as opposed to SCW estimated from individual pixel backscatter. Significant differences occur in the mean backscatter between radar images taken during rain vs. dry periods (no rain for >1 h), but these effects only last for roughly 30 min after the end of a rain event. We developed a predictive model for SCW using the radar images acquired at dawn, and proved the capability of space-based radar systems to provide information for estimation of the canopy moisture under conditions of fresh rainfall during the dry season. Full article
Show Figures

Figure 1

16 pages, 4975 KB  
Technical Note
An Atmospheric Correction Method over Bright and Stable Surfaces for Moderate to High Spatial-Resolution Optical Remotely Sensed Imagery
by Bo Zhong, Shanlong Wu, Aixia Yang, Kai Ao, Jinhua Wu, Junjun Wu, Xueshuang Gong, Haibo Wang and Qinhuo Liu
Remote Sens. 2020, 12(4), 733; https://doi.org/10.3390/rs12040733 - 22 Feb 2020
Cited by 5 | Viewed by 3930
Abstract
Although many attempts have been made, it has remained a challenge to retrieve the aerosol optical depth (AOD) at 550 nm from moderate to high spatial-resolution (MHSR) optical remotely sensed imagery in arid areas with bright surfaces, such as deserts and bare ground. [...] Read more.
Although many attempts have been made, it has remained a challenge to retrieve the aerosol optical depth (AOD) at 550 nm from moderate to high spatial-resolution (MHSR) optical remotely sensed imagery in arid areas with bright surfaces, such as deserts and bare ground. Atmospheric correction for remote-sensing images in these areas has not been good. In this paper, we proposed a new algorithm that can effectively estimate the spatial distribution of atmospheric aerosols and retrieve surface reflectance from moderate to high spatial-resolution imagery in arid areas with bright surfaces. Land surface in arid areas is usually bright and stable and the variation of atmosphere in these areas is also very small; consequently, the land-surface characteristics, specifically the bidirectional reflectance distribution factor (BRDF), can be retrieved easily and accurately using time series of satellite images with relatively lower spatial resolution like the Moderate-resolution Imaging Spectroradiometer (MODIS) with 500 m resolution and the retrieved BRDF is then used to retrieve the AOD from MHSR images. This algorithm has three advantages: (i) it is well suited to arid areas with bright surfaces; (ii) it is very efficient because of employed lower resolution BRDF; and (iii) it is completely automatic. The derived AODs from the Multispectral Instrument (MSI) on board Sentinel-2, Landsat 5 Thematic Mapper (TM), Landsat 8 Operational Land Imager (OLI), Gao Fen 1 Wide Field Viewer (GF-1/WFV), Gao Fen 6 Wide Field Viewer (GF-6/WFV), and Huan Jing 1 CCD (HJ-1/CCD) data are validated using ground measurements from 4 stations of the AErosol Robotic NETwork (AERONET) around the world. Full article
Show Figures

Graphical abstract

26 pages, 11637 KB  
Article
Estimation of Soil Heavy Metal Content Using Hyperspectral Data
by Zhenhua Liu, Ying Lu, Yiping Peng, Li Zhao, Guangxing Wang and Yueming Hu
Remote Sens. 2019, 11(12), 1464; https://doi.org/10.3390/rs11121464 - 20 Jun 2019
Cited by 75 | Viewed by 7731
Abstract
Quickly and efficiently monitoring soil heavy metal content is crucial for protecting the natural environment and for human health. Estimating heavy metal content in soils using hyperspectral data is a cost-efficient method but challenging due to the effects of complex landscapes and soil [...] Read more.
Quickly and efficiently monitoring soil heavy metal content is crucial for protecting the natural environment and for human health. Estimating heavy metal content in soils using hyperspectral data is a cost-efficient method but challenging due to the effects of complex landscapes and soil properties. One of the challenges is how to make a lab-derived model based on soil samples applicable to mapping the contents of heavy metals in soil using air-borne or space-borne hyperspectral imagery at a regional scale. For this purpose, our study proposed a novel method using hyperspectral data from soil samples and the HuanJing-1A (HJ-1A) HyperSpectral Imager (HSI). In this method, estimation models were first developed using optimal relevant spectral variables from dry soil spectral reflectance (DSSR) data and field observations of soil heavy metal content. The relationship of the ratio of DSSR to moisture soil spectral reflectance (MSSR) with soil moisture content was then derived, which built up the linkage of DSSR with MSSR and provided the potential of applying the models developed in the laboratory to map soil heavy metal content at a regional scale using hyperspectral imagery. The optimal relevant spectral variables were obtained by combining the Boruta algorithm with a stepwise regression and variance inflation factor. This method was developed, validated, and applied to estimate the content of heavy metals in soil (As, Cd, and Hg) in Guangdong, China, and the Conghua district of Guangzhou city. The results showed that based on the validation datasets, the content of Cd could be reliably estimated and mapped by the proposed method, with relative root mean square error (RMSE) values of 17.41% for the point measurements of soil samples from Guangdong province and 17.10% for the Conghua district at the regional scale, while the content of heavy metals As and Hg in soil were relatively difficult to predict with the relative RMSE values of 32.27% and 28.72% at the soil sample level and 51.55% and 36.34% at the regional scale. Moreover, the relationship of the DSSR/MSSR ratio with soil moisture content varied greatly before the wavelength of 1029 nm and became stable after that, which linked DSSR with MSSR and provided the possibility of applying the DSSR-based models to map the soil heavy metal content at the regional scale using the HJ-1A images. In addition, it was found that overall there were only a few soil samples with the content of heavy metals exceeding the health standards in Guangdong province, while in Conghua the seriously polluted areas were mainly distributed in the cities and croplands. This study implies that the new approach provides the potential to map the content of heavy metals in soil, but the estimation model of Cd was more accurate than those of As and Hg. Full article
(This article belongs to the Special Issue Applications of Spectroscopy in Agriculture and Vegetation Research)
Show Figures

Figure 1

18 pages, 8342 KB  
Article
Spatial Pattern of Forest Carbon Storage in the Vertical and Horizontal Directions Based on HJ-CCD Remote Sensing Imagery
by Kaisheng Luo
Remote Sens. 2019, 11(7), 788; https://doi.org/10.3390/rs11070788 - 2 Apr 2019
Cited by 8 | Viewed by 2943
Abstract
To provide a comprehensive understanding of the spatial distribution of forest carbon reserves, this study explores carbon storage and its spatial pattern in the horizontal and vertical directions on a provincial scale using HJ-CCD remote sensing imagery. Results show that carbon storage in [...] Read more.
To provide a comprehensive understanding of the spatial distribution of forest carbon reserves, this study explores carbon storage and its spatial pattern in the horizontal and vertical directions on a provincial scale using HJ-CCD remote sensing imagery. Results show that carbon storage in the forests of Hubei Province was 784.46 Tg. In the horizontal direction, Enshi Prefecture contributed the most, with a contribution rate of 22.01%, followed by Yichang (18.74%), Shiyan (15.21%), and Xiangfan (10.61%). Coniferous forests contributed the most to the total carbon reserves of the forests, with a contribution rate of 71.34%, followed by broadleaf forests (25.36%), and mixed forests (3.30%). In the vertical direction, the environmental difference in the vertical direction of the forest ecosystem led to the obvious stratification of carbon storage in the vertical direction, that is: soil layer > tree canopy layer > shrub layer > litter layer. The soil layer had the largest carbon storage, contributing 76.63%, followed by the tree canopy layer (19.05%), shrub layer (2.39%), and litter layer (1.93%). The different contributing layers of coniferous, broadleaf, and mixed forests to carbon storage followed the same order: soil layer > tree canopy layer > shrub layer > litter layer. Full article
Show Figures

Figure 1

23 pages, 5469 KB  
Article
Mapping Forest Cover in Northeast China from Chinese HJ-1 Satellite Data Using an Object-Based Algorithm
by Chunying Ren, Bai Zhang, Zongming Wang, Lin Li and Mingming Jia
Sensors 2018, 18(12), 4452; https://doi.org/10.3390/s18124452 - 16 Dec 2018
Cited by 8 | Viewed by 4164
Abstract
Forest plays a significant role in the global carbon budget and ecological processes. The precise mapping of forest cover can help significantly reduce uncertainties in the estimation of terrestrial carbon balance. A reliable and operational method is necessary for a rapid regional forest [...] Read more.
Forest plays a significant role in the global carbon budget and ecological processes. The precise mapping of forest cover can help significantly reduce uncertainties in the estimation of terrestrial carbon balance. A reliable and operational method is necessary for a rapid regional forest mapping. In this study, the goal relies on mapping forest and subcategories in Northeast China through the use of high spatio-temporal resolution HJ-1 imagery and time series vegetation indices within the context of an object-based image analysis and decision tree classification. Multi-temporal HJ-1 images obtained in a single year provide an opportunity to acquire phenology information. By analyzing the difference of spectral and phenology information between forest and non-forest, forest subcategories, decision trees using threshold values were finally proposed. The resultant forest map has a high overall accuracy of 0.91 ± 0.01 with a 95% confidence interval, based on the validation using ground truth data from field surveys. The forest map extracted from HJ-1 imagery was compared with two existing global land cover datasets: GlobCover 2009 and MCD12Q1 2009. The HJ-1-based forest area is larger than that of MCD12Q1 and GlobCover and more closely resembles the national statistics data on forest area, which accounts for more than 40% of the total area of the Northeast China. The spatial disagreement primarily occurs in the northern part of the Daxing’an Mountains, Sanjiang Plain and the southwestern part of the Songliao Plain. The compared result also indicated that the forest subcategories information from global land cover products may introduce large uncertainties for ecological modeling and these should be cautiously used in various ecological models. Given the higher spatial and temporal resolution, HJ-1-based forest products could be very useful as input to biogeochemical models (particularly carbon cycle models) that require accurate and updated estimates of forest area and type. Full article
Show Figures

Graphical abstract

25 pages, 4147 KB  
Article
Forecasting Transplanted Rice Yield at the Farm Scale Using Moderate-Resolution Satellite Imagery and the AquaCrop Model: A Case Study of a Rice Seed Production Community in Thailand
by Kulapramote Prathumchai, Masahiko Nagai, Nitin K. Tripathi and Nophea Sasaki
ISPRS Int. J. Geo-Inf. 2018, 7(2), 73; https://doi.org/10.3390/ijgi7020073 - 23 Feb 2018
Cited by 18 | Viewed by 9284
Abstract
Thailand has recently introduced agricultural policies to promote large-scale rice farming through supporting and integrating small-scale farmers. However, achieving these policies requires agricultural tools that can assist farmers in rice farming planning and management. Crop models, along with remote sensing technologies, can be [...] Read more.
Thailand has recently introduced agricultural policies to promote large-scale rice farming through supporting and integrating small-scale farmers. However, achieving these policies requires agricultural tools that can assist farmers in rice farming planning and management. Crop models, along with remote sensing technologies, can be useful for farmers and field managers in this regard. In this study, we used the AquaCrop model along with moderate-resolution satellite images (30 m) to simulate the rice yield for small-scale farmers. We conducted field surveys on rice characteristics in order to calibrate the crop model parameters. Data on rice crop, leaf area index (LAI), canopy cover (CC) and agricultural practices were used to calibrate the model. In addition, the optimal rice constant value for conversion of CC was investigated. HJ-1A/B satellite images were used to calculate the CC value, which was then used to simulate yield. The validated results were applied to 126 sample pixels within transplanted rice fields, which were extracted from satellite imagery of activated rice plots using equivalent transplanting methods to the study area. The rice yield simulated using the AquaCrop model and assimilated with the results of HJ-1A/B, produced a satisfactory outcome when implemented into the validated rice plots, with RMSE = 0.18 t ha−1 and R2 = 0.88. These results suggest that integration of moderate-resolution satellite imagery and this crop model are useful tools for assisting rice farmers and field managers in their planning and management. Full article
Show Figures

Figure 1

25 pages, 17410 KB  
Article
Robust Feature Matching Method for SAR and Optical Images by Using Gaussian-Gamma-Shaped Bi-Windows-Based Descriptor and Geometric Constraint
by Min Chen, Ayman Habib, Haiqing He, Qing Zhu and Wei Zhang
Remote Sens. 2017, 9(9), 882; https://doi.org/10.3390/rs9090882 - 25 Aug 2017
Cited by 34 | Viewed by 6329
Abstract
Improving the matching reliability of multi-sensor imagery is one of the most challenging issues in recent years, particularly for synthetic aperture radar (SAR) and optical images. It is difficult to deal with the noise influence, geometric distortions, and nonlinear radiometric difference between SAR [...] Read more.
Improving the matching reliability of multi-sensor imagery is one of the most challenging issues in recent years, particularly for synthetic aperture radar (SAR) and optical images. It is difficult to deal with the noise influence, geometric distortions, and nonlinear radiometric difference between SAR and optical images. In this paper, a method for SAR and optical images matching is proposed. First, interest points that are robust to speckle noise in SAR images are detected by improving the original phase-congruency-based detector. Second, feature descriptors are constructed for all interest points by combining a new Gaussian-Gamma-shaped bi-windows-based gradient operator and the histogram of oriented gradient pattern. Third, descriptor similarity and geometrical relationship are combined to constrain the matching processing. Finally, an approach based on global and local constraints is proposed to eliminate outliers. In the experiments, SAR images including COSMO-Skymed, RADARSAT-2, TerraSAR-X and HJ-1C images, and optical images including ZY-3 and Google Earth images are used to evaluate the performance of the proposed method. The experimental results demonstrate that the proposed method provides significant improvements in the number of correct matches and matching precision compared with the state-of-the-art SIFT-like methods. Near 1 pixel registration accuracy is obtained based on the matching results of the proposed method. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Figure 1

16 pages, 4801 KB  
Article
An Improved Aerosol Optical Depth Retrieval Algorithm for Moderate to High Spatial Resolution Optical Remotely Sensed Imagery
by Bo Zhong, Shanlong Wu, Aixia Yang and Qinhuo Liu
Remote Sens. 2017, 9(6), 555; https://doi.org/10.3390/rs9060555 - 2 Jun 2017
Cited by 18 | Viewed by 5021
Abstract
To extract quantitative land information accurately and monitor the air pollution at city scale from moderate to high spatial resolution (MHSR) with a resolution no coarser than 30 m, optical remotely sensed imagery and aerosol parameters, especially aerosol optical depth (AOD), are a [...] Read more.
To extract quantitative land information accurately and monitor the air pollution at city scale from moderate to high spatial resolution (MHSR) with a resolution no coarser than 30 m, optical remotely sensed imagery and aerosol parameters, especially aerosol optical depth (AOD), are a necessary step. In this paper, we introduce a new algorithm that can effectively estimate the spatial distribution of atmospheric aerosols and retrieve surface reflectance from moderate to high spatial resolution imagery under general atmosphere and land surface conditions. This algorithm has been improved in the following three aspects: (i) it has been developed for most of the moderate to high spatial resolution remotely sensed imagery; (ii) it can be applied to all kinds of land surface types including bright surface; and (iii) it is completely automatic. This algorithm is therefore suitable for operational applications. The derived AOD in Beijing from Landsat Thematic Mapper (TM), Landsat Enhanced Thematic Mapper Plus (ETM+), and Huan Jing 1 (HJ-1/CCD) data is validated with AErosol Robotic NETwork (AERONET) ground measurements at Beijng and Xianghe stations. Full article
Show Figures

Figure 1

17 pages, 3146 KB  
Article
Radiometric Cross-Calibration of GF-4 in Multispectral Bands
by Aixia Yang, Bo Zhong, Shanlong Wu and Qinhuo Liu
Remote Sens. 2017, 9(3), 232; https://doi.org/10.3390/rs9030232 - 3 Mar 2017
Cited by 31 | Viewed by 5640
Abstract
The GaoFen-4 (GF-4), launched at the end of December 2015, is China’s first high-resolution geostationary optical satellite. A panchromatic and multispectral sensor (PMS) is onboard the GF-4 satellite. Unfortunately, the GF-4 has no onboard calibration assembly, so on-orbit radiometric calibration is required. Like [...] Read more.
The GaoFen-4 (GF-4), launched at the end of December 2015, is China’s first high-resolution geostationary optical satellite. A panchromatic and multispectral sensor (PMS) is onboard the GF-4 satellite. Unfortunately, the GF-4 has no onboard calibration assembly, so on-orbit radiometric calibration is required. Like the charge-coupled device (CCD) onboard HuanJing-1 (HJ) or the wide field of view sensor (WFV) onboard GaoFen-1 (GF-1), GF-4 also has a wide field of view, which provides challenges for cross-calibration with narrow field of view sensors, like the Landsat series. A new technique has been developed and used to calibrate HJ-1/CCD and GF-1/WFV, which is verified viable. The technique has three key steps: (1) calculate the surface using the bi-directional reflectance distribution function (BRDF) characterization of a site, taking advantage of its uniform surface material and natural topographic variation using Landsat Enhanced Thematic Mapper Plus (ETM+)/Operational Land Imager (OLI) imagery and digital elevation model (DEM) products; (2) calculate the radiance at the top-of-the atmosphere (TOA) with the simulated surface reflectance using the atmosphere radiant transfer model; and (3) fit the calibration coefficients with the TOA radiance and corresponding Digital Number (DN) values of the image. This study attempts to demonstrate the technique is also feasible to calibrate GF-4 multispectral bands. After fitting the calibration coefficients using the technique, extensive validation is conducted by cross-validation using the image pairs of GF-4/PMS and Landsat-8/OLI with similar transit times and close view zenith. The validation result indicates a higher accuracy and frequency than that given by the China Centre for Resources Satellite Data and Application (CRESDA) using vicarious calibration. The study shows that the new technique is also quite feasible for GF-4 multispectral bands as a routine long-term procedure. Full article
Show Figures

Figure 1

25 pages, 4894 KB  
Article
A MODIS-Based Novel Method to Distinguish Surface Cyanobacterial Scums and Aquatic Macrophytes in Lake Taihu
by Qichun Liang, Yuchao Zhang, Ronghua Ma, Steven Loiselle, Jing Li and Minqi Hu
Remote Sens. 2017, 9(2), 133; https://doi.org/10.3390/rs9020133 - 6 Feb 2017
Cited by 91 | Viewed by 11926
Abstract
Satellite remote sensing can be an effective alternative for mapping cyanobacterial scums and aquatic macrophyte distribution over large areas compared with traditional ship’s site-specific samplings. However, similar optical spectra characteristics between aquatic macrophytes and cyanobacterial scums in red and near infrared (NIR) wavebands [...] Read more.
Satellite remote sensing can be an effective alternative for mapping cyanobacterial scums and aquatic macrophyte distribution over large areas compared with traditional ship’s site-specific samplings. However, similar optical spectra characteristics between aquatic macrophytes and cyanobacterial scums in red and near infrared (NIR) wavebands create a barrier to their discrimination when they co-occur. We developed a new cyanobacteria and macrophytes index (CMI) based on a blue, a green, and a shortwave infrared band to separate waters with cyanobacterial scums from those dominated by aquatic macrophytes, and a turbid water index (TWI) to avoid interference from high turbid waters typical of shallow lakes. Combining CMI, TWI, and the floating algae index (FAI), we used a novel classification approach to discriminate lake water, cyanobacteria blooms, submerged macrophytes, and emergent/floating macrophytes using MODIS imagery in the large shallow and eutrophic Lake Taihu (China). Thresholds for CMI, TWI, and FAI were determined by statistical analysis for a 2010–2016 MODIS Aqua time series. We validated the accuracy of our approach by in situ reflectance spectra, field investigations and high spatial resolution HJ-CCD data. The overall classification accuracy was 86% in total, and the user’s accuracy was 88%, 79%, 85%, and 93% for submerged macrophytes, emergent/floating macrophytes, cyanobacterial scums and lake water, respectively. The estimated aquatic macrophyte distributions gave consistent results with that based on HJ-CCD data. This new approach allows for the coincident determination of the distributions of cyanobacteria blooms and aquatic macrophytes in eutrophic shallow lakes. We also discuss the utility of the approach with respect to masking clouds, black waters, and atmospheric effects, and its mixed-pixel effects. Full article
(This article belongs to the Special Issue Water Optics and Water Colour Remote Sensing)
Show Figures

Graphical abstract

Back to TopTop