Estimation of Soil Nutrient Content Using Hyperspectral Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Pre-Processing
2.2.1. Soil Sampling and Chemical Analysis
2.2.2. Spectral Measurements and Pre-Processing of Soil Samples
2.2.3. Image Acquisition and Pre-Processing
2.3. Methods
2.3.1. Determining the Optimal Screening Algorithm of the Characteristic Variables
2.3.2. Determining the Accurate Model for Estimating Soil Nutrients
- (1)
- Multi-Linear Regression
- (2)
- Ridge Regression
- (3)
- Support Vector Machine
- (4)
- Genetic Algorithm-Back Propagation Neural Network
2.3.3. Estimating Regional-Scale Soil Nutrient Contents Using HJ-1A Hyperspectral Data
2.3.4. Accuracy Validation
3. Results
3.1. Optimal Algorithm for the Screening of the Characteristic Variables
3.2. Determining the Optimal Model for Soil Nutrient Content Estimations
3.3. Mapping Soil Nutrient Contents Using the Proposed Method
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jacquemoud, S.; Baret, F.; Hanocq, J.F. Modeling spectral and bidirectional soil reflectance. Remote Sens. Environ. 1992, 41, 123–132. [Google Scholar] [CrossRef]
- Yu, X.; Liu, Q.; Wang, Y.B.; Liu, X.Y.; Liu, X. Evaluation of MLSR and PLSR for estimating soil element contents using visible/near-infrared spectroscopy in apple orchards on the Jiaodong peninsula. Catena 2016, 137, 340–349. [Google Scholar] [CrossRef]
- Rossel, R.A.V.; Walvoort, D.J.J.; Mcbratney, A.B.; Janik, L.J.; Skjemstad, J.O. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 2006, 131, 59–75. [Google Scholar] [CrossRef]
- An, X.F.; Li, M.Z.; Zheng, L.H.; Liu, Y.M.; Sun, H. A portable soil nitrogen detector based on NIRS. Precis. Agric. 2014, 15, 3–16. [Google Scholar] [CrossRef]
- Liu, H.J.; Zhang, B.; Zhao, J.; Zhang, X.Y.; Song, K.S.; Wang, Z.M.; Duan, H.T. Spectral models for prediction of organic matter in black soil. Acta Pedol. Sin. 2007, 44, 27–32. [Google Scholar]
- Vibhute, A.D.; Kale, K.V.; Gaikwad, S.V.; Dhumal, R.K. Estimation of soil nitrogen in agricultural regions by VNIR reflectance spectroscopy. SN Appl. Sci. 2020, 2, 1523. [Google Scholar] [CrossRef]
- Liu, Q.; Qin, Z.G.; Luo, X.C.; Cheng, H.R. Summary of Feature Selection Methods in Statistical Machine Learning; China National Computer Congress: Tianjin, China, 2009. [Google Scholar]
- Zhang, Y.; Li, M.Z.; Zheng, L.H.; Qin, Q.M.; Lee, W.S. Spectral features extraction for estimation of soil total nitrogen content based on modified ant colony optimization algorithm. Geoderma 2019, 333, 23–34. [Google Scholar] [CrossRef]
- Casa, R.; Castaldi, F.; Pascucci, S.; Basso, B.; Pignatti, S. Geophysical and Hyperspectral Data Fusion Techniques for In-Field Estimation of Soil Properties. Vadose Zone J. 2013, 12, vzj2012.0201. [Google Scholar] [CrossRef]
- Cao, F.X.; Yang, Z.J.; Ren, J.C.; Jiang, M.Y.; Ling, W.K. Linear vs Nonlinear Extreme Learning Machine for Spectral-Spatial Classification of Hyperspectral Image. Sensors 2017, 17, 2603. [Google Scholar] [CrossRef] [Green Version]
- Leone, A.P.; Viscarra-Rossel, R.A.; Amenta, P.; Buondonno, A. Prediction of Soil Properties with PLSR and vis-NIR Spectroscopy: Application to Mediterranean Soils from Southern Italy. Curr. Anal. Chem. 2012, 8, 283–299. [Google Scholar] [CrossRef]
- Song, Y.Q.; Xin, Z.; Su, H.Y.; Li, B.; Hu, Y.M.; Cui, X.S. Predicting Spatial Variations in Soil Nutrients with Hyperspectral Remote Sensing at Regional Scale. Sensors 2018, 18, 3086. [Google Scholar] [CrossRef] [Green Version]
- Mouazen, A.M.; Kuang, B.; De Baerdemaeker, J.; Ramon, H. Comparison among principal component, partial least squares and back propagation neural network analyses for accuracy of measurement of selectedsoil properties with visible and near infrared spectroscopy. Geoderma 2010, 158, 23–31. [Google Scholar] [CrossRef]
- Peng, X.T.; Shi, T.Z.; Song, A.H.; Chen, Y.Y.; Gao, W.X. Estimating soil organic carbon using VIS/NIR spectroscopy with SVMR and SPA methods. Remote Sens. 2014, 6, 2699–2717. [Google Scholar] [CrossRef] [Green Version]
- Moura-Bueno, J.M.; Dalmolin, R.S.D.; Caten, A.T.; Dotto, A.C.; Demattê, J.A.M. Stratification of a local VIS-NIR-SWIR spectral library by homogeneity criteria yields more accurate soil organic carbon predictions. Geoderma 2019, 337, 565–581. [Google Scholar] [CrossRef]
- Tang, F.; Chen, M.; Wang, Z. New approach to training support vector machine. J. Syst. Eng. Electron 2006, 17, 200–219. [Google Scholar]
- Cutler, D.R.; Edwards, T.C.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random forests for classification in ecology. Ecology 2007, 88, 2783–2793. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Chen, C.; Shen, Y.; Wu, L.H.; Huang, Z.L.; Gao, H.L. Determinants of tree survival at local scale in a sub-tropical forest. Ecol. Res. 2014, 29, 69–80. [Google Scholar] [CrossRef]
- Wen, J. Research of Neural Network Theory and Application; Southwest Jiaotong University Press: Chengdu, China, 1996. [Google Scholar]
- Wang, F.; Gao, J.; Zha, Y. Hyperspectral sensing of heavy metals in soil and vegetation: Feasibility and challenges. ISPRS J. Photogramm. Remote Sens. 2018, 136, 73–84. [Google Scholar] [CrossRef]
- Zhang, S.M.; Xu, M.X.; Zhang, Z.X.; Li, B.B. Methods of sampling soil organic carbon in farmlands with different landform types on the Loess Plateau. J. Nat. Resour. 2018, 33, 634–643. [Google Scholar]
- Yang, J.Y.; Tang, S.; Yun, W.J.; Zhang, C.; Zhu, D.H.; Chen, Y.Q. Sampling method for monitoring classification of cultivated land in county area based on Kriging estimation error. Trans. CSAE 2013, 29, 223–230. [Google Scholar]
- Walkley, A.J.; Black, C.A. An estimation of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Petropoulos, G.P.; Arvanitis, K.; Sigrimis, N. Hyperion hyperspectral imagery analysis combined with machine learning classifiers for land use/cover mapping. Expert Syst. Appl. 2012, 39, 3800–3809. [Google Scholar] [CrossRef]
- Sorol, N.; Arancibia, E.; Bortolato, S.A.; Olivieri, A.C. Visible/near infrared-partial least-squares analysis of Brix in sugar cane juice: A test field for variable selection methods. Chemom. Intell. Lab. Syst. 2010, 102, 100–109. [Google Scholar] [CrossRef]
- Allouis, T.; Durrieu, S.; Véga, V.; Couteron, P. Stem Volume and Above-Ground Biomass Estimation of Individual Pine Trees from LiDAR Data: Contribution of Full-Waveform Signals. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 924–934. [Google Scholar] [CrossRef]
- Tibshirani, R.J. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Xu, W.Q.; Ning, L.K.; Luo, Y. Wind Speed Forecast Based on Post-Processing of Numerical Weather Predictions Using a Gradient Boosting Decision Tree Algorithm. Atmosphere 2020, 11, 738. [Google Scholar] [CrossRef]
- Wold, H. Nonlinear Estimation by Iterative Least Squares Procedure. Res. Pap. Stat. 1966, 441–444. [Google Scholar]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemometr. Intell. Lab. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Ni, W.C. Discussion on the definition of R2 equivalence. Stat. Decis. 2009, 09, 141–142. [Google Scholar]
- Zhang, H.M.; Liu, W.; Han, W.T.; Liu, Q.Z.; Song, R.J.; Hou, G.H. Inversion of Summer Maize Leaf Area Index Based on Gradient Boosting Decision Tree Algorithm. Trans. Chin. Soc. Agric. Mach. 2019, 50, 251–259. [Google Scholar]
- Wang, F.; Shi, Z.; Biswas, A.; Yang, S.T.; Ding, J.L. Multi-algorithm comparison for predicting soil salinity. Geoderma 2020, 365, 114211. [Google Scholar] [CrossRef]
- Fathololoumi, S.; Vaezi, A.R.; Alavipanah, S.K.; Ghorbani, A.; Biswas, A. Comparison of spectral and spatial-based approaches for mapping the local variation of soil moisture in a semi-arid mountainous area. Sci. Total Environ. 2020, 724, 138319. [Google Scholar] [CrossRef]
- Zhang, Z.T.; Wang, H.F.; Karnieli, A.; Chen, J.Y.; Han, W.T. Inversion of Soil Moisture Content from Hyperspectra Based on Ridge Regression. Trans. Chin. Soc. Agric. Mach. 2018, 49, 240–248. [Google Scholar]
- Kennard, H.R.W. Ridge Regression: Applications to Nonorthogonal Problems. Technometrics 1970, 12, 69–82. [Google Scholar]
- Hernandez, J.; Lobos, G.A.; Matus, I.; Del Pozo, A.; Silva, P.; Galleguillos, M. Using Ridge Regression Models to Estimate Grain Yield from Field Spectral Data in Bread Wheat (Triticum Aestivum L.) Grown under Three Water Regimes. Remote Sens. 2015, 7, 2109–2126. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wang, Z.Q.; Jin, G.; Yang, J. Land reserve prediction using different kernel based support vector regression. Trans. Chin. Soc. Agric. Eng. 2014, 30, 204–211. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Saleh, S.M.; Ibrahim, K.H.; Magdi Eiteba, M.B. Study of genetic algorithm performance through design of multi-step LC compensator for time-varying nonlinear loads. Appl. Soft Comput. 2016, 48, 535–545. [Google Scholar] [CrossRef]
- Xie, H.; Luo, X.; Xu, X.; Pan, H.; Tong, X. Automated Subpixel Surface Water Mapping from Heterogeneous Urban Environments Using Landsat 8 OLI Imagery. Remote Sens. 2016, 8, 584. [Google Scholar] [CrossRef] [Green Version]
- Hermansen, C.; Norgaard, T.; Jonge, L.; Moldrup, P.; Müller, K.; Knadel, M. Predicting glyphosate sorption across New Zealand pastoral soils using basic soil properties or Vis–NIR spectroscopy. Geoderma 2020, 360, 114009. [Google Scholar] [CrossRef]
- Jia, S.; Li, H.; Wang, Y.; Tong, R.; Li, Q. Hyperspectral Imaging Analysis for the Classification of Soil Types and the Determination of Soil Total Nitrogen. Sensors 2017, 17, 2252. [Google Scholar] [CrossRef]
- Kawamura, K.; Tsujimoto, Y.; Rabenarivo, M.; Asai, H.; Andriamananjara, A.; Rakotoson, T. Vis-NIR Spectroscopy and PLS Regression with Waveband Selection for Estimating the Total C and N of Paddy Soils in Madagascar. Remote Sens. 2017, 9, 1081. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.; Ma, R.H.; Zhu, Q.; Li, J.T. Using hyper-spectral indices to detect soil phosphorus concentration for various land use patterns. Environ. Monit. Assess. 2015, 187, 4130. [Google Scholar] [CrossRef]
- Yang, M.H.; Mouazen, A.; Zhao, X.M.; Guo, X. Assessment of a soil fertility index using visible and near-infrared spectroscopy in the rice paddy region of southern China. Eur. J. Soil Sci. 2020, 71, 615–626. [Google Scholar] [CrossRef]
- Baldock, J.A.; Beare, M.H.; Curtin, D.; Hawke, B. Stocks, composition and vulnerability to loss of soil organic carbon predicted using mid-infrared spectroscopy. Soil Res. 2018, 56, 468–480. [Google Scholar] [CrossRef]
- Munnaf, M.A.; Guerrero, A.; Nawar, S.; Haesaert, G.; Meirvenne, M.V.; Mouazen, A.M. A combined data mining approach for on-line prediction of key soil quality indicators by Vis-NIR spectroscopy. Soil Tillage Res. 2021, 205, 104808. [Google Scholar] [CrossRef]
- An, X.F.; Zheng, L.H.; Li, M.Z. Real-Time Analysis of Soil Total Nitrogen and Soil Total Phosphorus with NIR Spectroscopy. Sens. Lett. 2010, 8, 163–166. [Google Scholar] [CrossRef]
- Udelhoven, T.; Emmerling, C.; Jarmer, T. Quantitative analysis of soil chemical properties with diffuse reflectance spectrometry and partial least-square regression: A feasibility study. Plant Soil 2003, 251, 319–329. [Google Scholar] [CrossRef]
- Shi, T.Z.; Cui, L.J.; Wang, J.J.; Fei, T.; Chen, Y.Y.; Wu, G.F. Comparison of multivariate methods for estimating soil total nitrogen with visible/near-infrared spectroscopy. Plant Soil 2013, 366, 363–375. [Google Scholar] [CrossRef]
- Xue, Y.H.; Vasques, G.M.; Grunwald, S. Application of Visible/Near-Infrared Spectra in Modeling of Soil Total Phosphorus. Pedosphere 2013, 23, 417–421. [Google Scholar]
- Hu, G.T.; He, D.J.; Kenneth, A.S. Soil Phosphorus and Potassium Estimation Using Visible-near Infrared Reflectance Spectroscopy with Direct Orthogonal Signal Correction. Trans. Chin. Soc. Agric. Mach. 2015, 46, 139–145. [Google Scholar]
- Li, M.; Qin, K.; Zhao, N.B.; Tian, F.; Zhao, Y.J. Study on the Relationship Between Black Soil Emissivity Spectrum and Total Potassium Content Based on TASI Thermal Infrared Data. Spectrosc. Spectr. Anal. 2020, 40, 2862–2868. [Google Scholar]
Soil Nutrients | Min | Q1 | Median | Q3 | Max | Mean | SD | Skewness | Kurtosis | CV |
---|---|---|---|---|---|---|---|---|---|---|
TN | 0.21 | 0.99 | 1.33 | 1.70 | 2.79 | 1.36 | 0.57 | 0.43 | 0.21 | 41.91 |
TP | 0.13 | 0.37 | 0.59 | 1.00 | 3.15 | 0.75 | 0.55 | 1.90 | 5.21 | 73.33 |
TK | 0.62 | 4.75 | 9.66 | 16.84 | 30.39 | 10.55 | 7.61 | 0.61 | −0.23 | 72.13 |
Soil Nutrient | Spectral Variables | Correlation Coefficients | VIF |
---|---|---|---|
TN | FD562, SD714 | −0.44, −0.26 | 1.70, 1.51 |
TP | FD1009, FD356, SD905 | −0.50, 0.45, −0.32 | 2.65, 1.32, 1.42 |
TK | R2498, FD442 | 0.20, 0.50 | 1.08, 4.14 |
Models | Soil Nutrient | Spectral Variables | VIF |
---|---|---|---|
LASSO | TN | FD454, FD904, FD1302, FD1418, FD1707, FD2342, FD2367, SD529, SD668 | 3.14, 2.85, 4.42, 6.35, 3.48, 3.68, 6.44, 3.99, 3.78 |
TP | FD423, FD489, FD516, FD649, FD1816, FD2222, FD2386 | 2.34, 2.48, 2.28, 2.13, 3.01, 1.66, 6.07 | |
TK | FD659, FD904, FD965, FD1128, FD1521, SD1006 | 2.89, 4.21, 2.78, 4.40, 3.10, 1.48 | |
GBDT | TN | FD572, FD977, FD1084, FD1015, FD2051, SD418 | 8.97, 4.56, 1.45, 3.87, 1.37, 3.42 |
TP | FD663, FD747, FD1009, SD831 | 2.68, 3.00, 3.42, 7.45 | |
TK | FD1045, FD1069, FD1784, FD1796, FD2348 | 4.42, 2.52, 5.57, 8.53, 6.17 |
Soil Nutrients | Model | R2 (C) | CCC | RMSEC | RMSECV | RPIQ | |
---|---|---|---|---|---|---|---|
TN | MLR | 0.22 | 0.37 | 0.50 | 0.17 | 0.51 | 1.39 |
RR | 0.21 | 0.35 | 0.50 | 0.18 | 0.51 | 1.39 | |
SVM | 0.13 | 0.26 | 0.53 | 0.11 | 0.57 | 1.25 | |
GABP | 0.76 | 0.86 | 0.28 | 0.69 | 0.35 | 2.03 | |
TP | MLR | 0.36 | 0.55 | 0.40 | 0.32 | 0.47 | 1.34 |
RR | 0.34 | 0.47 | 0.43 | 0.33 | 0.44 | 1.43 | |
SVM | 0.36 | 0.49 | 0.41 | 0.35 | 0.41 | 1.54 | |
GABP | 0.77 | 0.87 | 0.26 | 0.73 | 0.30 | 2.10 | |
TK | MLR | 0.48 | 0.67 | 5.30 | 0.42 | 5.52 | 2.19 |
RR | 0.44 | 0.61 | 5.32 | 0.43 | 5.33 | 2.27 | |
SVM | 0.54 | 0.72 | 5.17 | 0.52 | 5.31 | 2.28 | |
GABP | 0.86 | 0.92 | 2.88 | 0.82 | 3.39 | 3.57 |
Dataset | Mean | Max | Min | SD | R2 | RMSE | RPIQ | |
---|---|---|---|---|---|---|---|---|
Soil TK | Measured Value | 18.35 | 30.57 | 2.64 | 6.67 | 0.79 | 4.01 | 1.86 |
Estimated Value | 20.01 | 36.42 | 1.36 | 8.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Y.; Wang, L.; Zhao, L.; Liu, Z.; Lin, C.; Hu, Y.; Liu, L. Estimation of Soil Nutrient Content Using Hyperspectral Data. Agriculture 2021, 11, 1129. https://doi.org/10.3390/agriculture11111129
Peng Y, Wang L, Zhao L, Liu Z, Lin C, Hu Y, Liu L. Estimation of Soil Nutrient Content Using Hyperspectral Data. Agriculture. 2021; 11(11):1129. https://doi.org/10.3390/agriculture11111129
Chicago/Turabian StylePeng, Yiping, Lu Wang, Li Zhao, Zhenhua Liu, Chenjie Lin, Yueming Hu, and Luo Liu. 2021. "Estimation of Soil Nutrient Content Using Hyperspectral Data" Agriculture 11, no. 11: 1129. https://doi.org/10.3390/agriculture11111129
APA StylePeng, Y., Wang, L., Zhao, L., Liu, Z., Lin, C., Hu, Y., & Liu, L. (2021). Estimation of Soil Nutrient Content Using Hyperspectral Data. Agriculture, 11(11), 1129. https://doi.org/10.3390/agriculture11111129