Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = HIV-based VLP

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 191 KiB  
Viewpoint
Navigating the Complexities of HIV Vaccine Development: Lessons from the Mosaico Trial and Next-Generation Development Strategies
by Victor Abiola Adepoju, Donald C. Udah, Okechukwu Innocent Onyezue, Qorinah Estiningtyas Sakilah Adnani, Safayet Jamil and Mohammed Nadir Bin Ali
Vaccines 2025, 13(3), 274; https://doi.org/10.3390/vaccines13030274 - 5 Mar 2025
Cited by 1 | Viewed by 1500
Abstract
Background/Objectives: The development of an effective HIV vaccine has faced persistent challenges, as evidenced by the recent discontinuation of the Mosaico phase 3 trial. This study aims to critically examine the obstacles encountered in HIV vaccine development, with a focus on the Mosaico [...] Read more.
Background/Objectives: The development of an effective HIV vaccine has faced persistent challenges, as evidenced by the recent discontinuation of the Mosaico phase 3 trial. This study aims to critically examine the obstacles encountered in HIV vaccine development, with a focus on the Mosaico trial, which tested the Ad26.Mos4.HIV vaccine among 3,900 participants across multiple countries. We also explore emerging vaccine technologies and their potential in overcoming these challenges, while reflecting on lessons from previous trials to inform future strategies. Methods: We reviewed the Mosaico trial’s approach, which involved testing the efficacy of the Ad26.Mos4.HIV vaccine. We compared the outcomes of the Mosaico trial with other major HIV vaccine trials, including HVTN 702, Imbokodo, and RV144. We explored the limitations of the immune responses elicited by the Mosaico vaccine. The review focused on the generation of broadly neutralizing antibodies (bNAbs) and the challenges related to antigenic diversity and B-cell engagement. Emerging vaccine technologies, such as virus-like particles (VLPs), nanoparticles, SOSIP trimers, and mRNA platforms, were also analysed for their scalability, immune durability, and potential to advance HIV vaccine development. Results: The Mosaico trial was discontinued due to insufficient efficacy in reducing HIV acquisition, primarily due to the inability of the vaccine to induce bNAbs, which are crucial for targeting the diverse HIV-1 strains. A major challenge was the inadequate engagement of germline B-cell precursors, compounded by the antigenic diversity of the virus. The analysis showed that emerging vaccine platforms, such as VLPs, nanoparticles, SOSIP trimers, and mRNA-based approaches, hold promise but present challenges related to scalability and the durability of immune responses. The role of T cells and adjuvants in enhancing vaccine efficacy was also highlighted as critical for integrating both humoral and cellular immunity. Conclusions: The Mosaico trial, as well as other major HIV vaccine trials, underscores the need for a multi-pronged approach that incorporates both antibody and T-cell responses to tackle the complexities of HIV-1. Future efforts in HIV vaccine development must focus on inducing bNAbs, generating robust T-cell responses, and utilizing scalable vaccine platforms. The integration of artificial intelligence (AI) into vaccine design offers new opportunities to optimize immunogenic targets, which could significantly improve the potential for durable and broad immune protection. The development of a successful HIV vaccine by 2030 is achievable but relies on leverage on advanced technologies including artificial intelligence, innovation and insights from past trial data. Full article
(This article belongs to the Special Issue HIV Vaccine Development and Clinical Trails)
15 pages, 3580 KiB  
Article
Immunogenicity of HIV-1 Env mRNA and Env-Gag VLP mRNA Vaccines in Mice
by Qi Ma, Jing Yang, Xiaoguang Zhang, Hongxia Li, Yanzhe Hao and Xia Feng
Vaccines 2025, 13(1), 84; https://doi.org/10.3390/vaccines13010084 - 17 Jan 2025
Viewed by 1854
Abstract
Background: The development of a protective vaccine is critical for conclusively ending the human immunodeficiency virus (HIV) epidemic. Methods: We constructed nucleotide-modified mRNA vaccines expressing HIV-1 Env and Gag proteins. Env–gag virus-like particles (VLPs) were generated through co-transfection with env and gag mRNA [...] Read more.
Background: The development of a protective vaccine is critical for conclusively ending the human immunodeficiency virus (HIV) epidemic. Methods: We constructed nucleotide-modified mRNA vaccines expressing HIV-1 Env and Gag proteins. Env–gag virus-like particles (VLPs) were generated through co-transfection with env and gag mRNA vaccines. BALB/c mice were immunized with env mRNA, env–gag VLP mRNA, env plasmid DNA vaccine, or lipid nanoparticle (LNP) controls. HIV Env-specific binding and neutralizing antibodies in mouse sera were assessed via enzyme-linked immunosorbent assay (ELISA) and pseudovirus-based neutralization assays, respectively. Env-specific cellular immune responses in mouse splenocytes were evaluated using an Enzyme-linked immunosorbent assay (ELISpot) and in vivo cytotoxic T cell-killing assays. Results: The Env-specific humoral and cellular immune responses elicited by HIV-1 env mRNA and env–gag VLP mRNA vaccine were stronger than those induced by the DNA vaccine. Specific immune responses induced by the env mRNA vaccine were significantly stronger in the high-dose group than in the low-dose group. Immunization with co-formulated env and gag mRNAs elicited superior cellular immune responses compared to env mRNA alone. Conclusions: These findings suggest that the env–gag VLP mRNA platform holds significant promise for HIV-1 vaccine development. Full article
(This article belongs to the Special Issue Research on HIV/AIDS Vaccine)
Show Figures

Figure 1

14 pages, 1974 KiB  
Article
Production and Immunogenicity of FeLV Gag-Based VLPs Exposing a Stabilized FeLV Envelope Glycoprotein
by Raquel Ortiz, Ana Barajas, Anna Pons-Grífols, Benjamin Trinité, Ferran Tarrés-Freixas, Carla Rovirosa, Víctor Urrea, Antonio Barreiro, Anna Gonzalez-Tendero, Maria Rovira-Rigau, Maria Cardona, Laura Ferrer, Bonaventura Clotet, Jorge Carrillo, Carmen Aguilar-Gurrieri and Julià Blanco
Viruses 2024, 16(6), 987; https://doi.org/10.3390/v16060987 - 19 Jun 2024
Viewed by 1900
Abstract
The envelope glycoprotein (Env) of retroviruses, such as the Feline leukemia virus (FeLV), is the main target of neutralizing humoral response, and therefore, a promising vaccine candidate, despite its reported poor immunogenicity. The incorporation of mutations that stabilize analogous proteins from other viruses [...] Read more.
The envelope glycoprotein (Env) of retroviruses, such as the Feline leukemia virus (FeLV), is the main target of neutralizing humoral response, and therefore, a promising vaccine candidate, despite its reported poor immunogenicity. The incorporation of mutations that stabilize analogous proteins from other viruses in their prefusion conformation (e.g., HIV Env, SARS-CoV-2 S, or RSV F glycoproteins) has improved their capability to induce neutralizing protective immune responses. Therefore, we have stabilized the FeLV Env protein following a strategy based on the incorporation of a disulfide bond and an Ile/Pro mutation (SOSIP) previously used to generate soluble HIV Env trimers. We have characterized this SOSIP-FeLV Env in its soluble form and as a transmembrane protein present at high density on the surface of FeLV Gag-based VLPs. Furthermore, we have tested its immunogenicity in DNA-immunization assays in C57BL/6 mice. Low anti-FeLV Env responses were detected in SOSIP-FeLV soluble protein-immunized animals; however, unexpectedly no responses were detected in the animals immunized with SOSIP-FeLV Gag-based VLPs. In contrast, high humoral response against FeLV Gag was observed in the animals immunized with control Gag VLPs lacking SOSIP-FeLV Env, while this response was significantly impaired when the VLPs incorporated SOSIP-FeLV Env. Our data suggest that FeLV Env can be stabilized as a soluble protein and can be expressed in high-density VLPs. However, when formulated as a DNA vaccine, SOSIP-FeLV Env remains poorly immunogenic, a limitation that must be overcome to develop an effective FeLV vaccine. Full article
Show Figures

Graphical abstract

9 pages, 1224 KiB  
Brief Report
Generation of JC Polyoma Pseudovirus for High-Throughput Measurement of Neutralizing Antibodies
by Mami Matsuda, Tian-Cheng Li, Akira Nakanishi, Kazuo Nakamichi, Makoto Saito, Tadaki Suzuki, Tomokazu Matsuura, Masamichi Muramatsu, Tetsuro Suzuki, Yoshiharu Miura and Ryosuke Suzuki
Diagnostics 2024, 14(3), 311; https://doi.org/10.3390/diagnostics14030311 - 31 Jan 2024
Viewed by 2177
Abstract
Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease of the central nervous system (CNS) caused by reactivation of dormant JC polyomavirus (JCPyV). PML was mainly observed in immunocompromised individuals, such as HIV-positive patients, autoimmune disease patients, and cancer patients. Given that the presence [...] Read more.
Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease of the central nervous system (CNS) caused by reactivation of dormant JC polyomavirus (JCPyV). PML was mainly observed in immunocompromised individuals, such as HIV-positive patients, autoimmune disease patients, and cancer patients. Given that the presence of anti-JCPyV antibodies in serum is a risk indicator for PML development, it is essential to monitor anti-JCPyV antibody levels. In the present study, we established reporter-based single-infection neutralization assays for JCPyV and the genetically similar BK polyoma virus (BKPyV). We then confirmed the lack of cross-reactivity between the two viruses using test sera obtained from mice immunized with plasmids encoding the JCPyV or BKPyV capsid. Next, we compared neutralization antibody titers in sera from healthy donors, patients with multiple sclerosis (MS), and HIV-positive patients using an in-house enzyme-linked immunosorbent assay (ELISA) with JCPyV-like particles (virus-like particles; VLPs). A positive correlation was demonstrated between the neutralization titer (75% infectious concentration; IC75) against JCPyV and the antibody titer obtained by VLP-based JCPyV ELISA. This assay system may be applied to detect antibodies against other PyVs by generation of pseudoviruses using the respective capsid expression plasmids, and is expected to contribute to the surveillance of PyV as well as basic research on these viruses. Full article
(This article belongs to the Special Issue Advances in the Diagnosis of Infectious Diseases and Microorganisms)
Show Figures

Figure 1

16 pages, 2435 KiB  
Article
Gag Virus-like Particles Functionalized with SARS-CoV-2 Variants: Generation, Characterization and Recognition by COVID-19 Convalescent Patients’ Sera
by Arnau Boix-Besora, Francesc Gòdia and Laura Cervera
Vaccines 2023, 11(11), 1641; https://doi.org/10.3390/vaccines11111641 - 26 Oct 2023
Cited by 5 | Viewed by 2482
Abstract
The robustness, safety, versatility, and high immunogenicity of virus-like particles (VLPs) make them a promising approach for the generation of vaccines against a broad range of pathogens. VLPs are recombinant macromolecular structures that closely mimic the native conformation of viruses without carrying viral [...] Read more.
The robustness, safety, versatility, and high immunogenicity of virus-like particles (VLPs) make them a promising approach for the generation of vaccines against a broad range of pathogens. VLPs are recombinant macromolecular structures that closely mimic the native conformation of viruses without carrying viral genetic material. Particularly, HIV-1 Gag-based VLPs are a suitable platform for the presentation of the SARS-CoV-2 Spike (S) protein on their surface. In this context, this work studies the effect of different rationally engineered mutations of the S protein to improve some of its characteristics. The studied variants harbored mutations such as proline substitutions for S stabilization, D614G from the early dominant pandemic form, the elimination of the S1/S2 furin cleavage site to improve S homogeneity, the suppression of a retention motif to favor its membrane localization, and cysteine substitutions to increase its immunogenicity and avoid potential undesired antibody-dependent enhancement (ADE) effects. The influence of the mutations on VLP expression was studied, as well as their immunogenic potential, by testing the recognition of the generated VLP variants by COVID-19 convalescent patients’ sera. The results of this work are conceived to give insights on the selection of S protein candidates for their use as immunogens and to showcase the potential of VLPs as carriers for antigen presentation. Full article
(This article belongs to the Special Issue Protein- and Subunit-Based Vaccines)
Show Figures

Figure 1

18 pages, 2149 KiB  
Article
Deep Characterization and Comparison of Different Retrovirus-like Particles Preloaded with CRISPR/Cas9 RNPs
by Max Wichmann, Cecile L. Maire, Niklas Nuppenau, Moataz Habiballa, Almut Uhde, Katharina Kolbe, Tanja Schröder, Katrin Lamszus, Boris Fehse and Dawid Głów
Int. J. Mol. Sci. 2023, 24(14), 11399; https://doi.org/10.3390/ijms241411399 - 13 Jul 2023
Cited by 8 | Viewed by 3890
Abstract
The CRISPR/Cas system has a broad range of possible medical applications, but its clinical translation has been hampered, particularly by the lack of safe and efficient vector systems mediating the short-term expression of its components. Recently, different virus-like particles (VLPs) have been introduced [...] Read more.
The CRISPR/Cas system has a broad range of possible medical applications, but its clinical translation has been hampered, particularly by the lack of safe and efficient vector systems mediating the short-term expression of its components. Recently, different virus-like particles (VLPs) have been introduced as promising vectors for the delivery of CRISPR/Cas genome editing components. Here, we characterized and directly compared three different types of retrovirus-based (R) VLPs, two derived from the γ-retrovirus murine leukemia virus (gRVLPs and “enhanced” egRVLPs) and one from the lentivirus human immunodeficiency virus, HIV (LVLPs). First, we unified and optimized the production of the different RVLPs. To ensure maximal comparability of the produced RVLPs, we adapted several assays, including nanoparticle tracking analysis (NTA), multi-parametric imaging flow cytometry (IFC), and Cas9-ELISA, to analyze their morphology, surface composition, size, and concentration. Next, we comparatively tested the three RVLPs targeting different genes in 293T model cells. Using identical gRNAs, we found egRVLPs to mediate the most efficient editing. Functional analyses indicated better cargo (i.e., Cas9) transfer and/or release as the underlying reason for their superior performance. Finally, we compared on- and off-target activities of the three RVLPs in human-induced pluripotent stem cells (hiPSC) exploiting the clinically relevant C-C motif chemokine receptor 5 (CCR5) as the target. Again, egRVLPs facilitated the highest, almost 100% knockout rates, importantly with minimal off-target activity. In conclusion, in direct comparison, egRVLPs were the most efficient RVLPs. Moreover, we established methods for in-depth characterization of VLPs, facilitating their validation and thus more predictable and safe application. Full article
Show Figures

Figure 1

22 pages, 3752 KiB  
Article
Exploring FeLV-Gag-Based VLPs as a New Vaccine Platform—Analysis of Production and Immunogenicity
by Raquel Ortiz, Ana Barajas, Anna Pons-Grífols, Benjamin Trinité, Ferran Tarrés-Freixas, Carla Rovirosa, Victor Urrea, Antonio Barreiro, Anna Gonzalez-Tendero, Maria Cardona, Laura Ferrer, Bonaventura Clotet, Jorge Carrillo, Carmen Aguilar-Gurrieri and Julià Blanco
Int. J. Mol. Sci. 2023, 24(10), 9025; https://doi.org/10.3390/ijms24109025 - 19 May 2023
Cited by 6 | Viewed by 3002
Abstract
Feline leukemia virus (FeLV) is one of the most prevalent infectious diseases in domestic cats. Although different commercial vaccines are available, none of them provides full protection. Thus, efforts to design a more efficient vaccine are needed. Our group has successfully engineered HIV-1 [...] Read more.
Feline leukemia virus (FeLV) is one of the most prevalent infectious diseases in domestic cats. Although different commercial vaccines are available, none of them provides full protection. Thus, efforts to design a more efficient vaccine are needed. Our group has successfully engineered HIV-1 Gag-based VLPs that induce a potent and functional immune response against the HIV-1 transmembrane protein gp41. Here, we propose to use this concept to generate FeLV-Gag-based VLPs as a novel vaccine strategy against this retrovirus. By analogy to our HIV-1 platform, a fragment of the FeLV transmembrane p15E protein was exposed on FeLV-Gag-based VLPs. After optimization of Gag sequences, the immunogenicity of the selected candidates was evaluated in C57BL/6 and BALB/c mice, showing strong cellular and humoral responses to Gag but failing to generate anti-p15E antibodies. Altogether, this study not only tests the versatility of the enveloped VLP-based vaccine platform but also sheds light on FeLV vaccine research. Full article
(This article belongs to the Special Issue Virus Engineering and Applications)
Show Figures

Figure 1

27 pages, 3866 KiB  
Article
Chimeric Human Papillomavirus-16 Virus-like Particles Presenting HIV-1 P18I10 Peptide: Expression, Purification, Bio-Physical Properties and Immunogenicity in BALB/c Mice
by Chun-Wei Chen, Narcís Saubi and Joan Joseph-Munné
Int. J. Mol. Sci. 2023, 24(9), 8060; https://doi.org/10.3390/ijms24098060 - 29 Apr 2023
Cited by 4 | Viewed by 3158
Abstract
Human papillomavirus (HPV) vaccines based on HPV L1 virus-like particles (VLPs) are already licensed but not accessible worldwide. About 38.0 million people were living with HIV in 2020 and there is no HIV vaccine yet. Therefore, safe, effective, and affordable vaccines against both [...] Read more.
Human papillomavirus (HPV) vaccines based on HPV L1 virus-like particles (VLPs) are already licensed but not accessible worldwide. About 38.0 million people were living with HIV in 2020 and there is no HIV vaccine yet. Therefore, safe, effective, and affordable vaccines against both viruses are an urgent need. In this study, the HIV-1 P18I10 CTL peptide from the V3 loop of HIV-1 gp120 glycoprotein was inserted into the HPV16 L1 protein to construct chimeric HPV:HIV (L1:P18I10) VLPs. Instead of the traditional baculovirus expression vector/insect cell (BEVS/IC) system, we established an alternative mammalian 293F cell-based expression system using cost-effective polyethylenimine-mediated transfection for L1:P18I10 protein production. Compared with conventional ultracentrifugation, we optimized a novel chromatographic purification method which could significantly increase L1:P18I10 VLP recovery (~56%). Chimeric L1:P18I10 VLPs purified from both methods were capable of self-assembling to integral particles and shared similar biophysical and morphological properties. After BALB/c mice immunization with 293F cell-derived and chromatography-purified L1:P18I10 VLPs, almost the same titer of anti-L1 IgG (p = 0.6409) was observed as Gardasil anti-HPV vaccine-immunized mice. Significant titers of anti-P18I10 binding antibodies (p < 0.01%) and P18I10-specific IFN-γ secreting splenocytes (p = 0.0002) were detected in L1:P18I10 VLP-immunized mice in comparison with licensed Gardasil-9 HPV vaccine. Furthermore, we demonstrated that insertion of HIV-1 P18I10 peptide into HPV16 L1 capsid protein did not affect the induction in anti-L1 antibodies. All in all, we expected that the mammalian cell expression system and chromatographic purification methods could be time-saving, cost-effective, scalable platforms to engineer bivalent VLP-based vaccines against HPV and HIV-1 Full article
(This article belongs to the Special Issue Host and Human Oncovirus Interaction)
Show Figures

Figure 1

11 pages, 2402 KiB  
Article
Evaluation of DNA Vaccine Candidates against Foot-and-Mouth Disease Virus in Cattle
by Michael Puckette, Benjamin A. Clark, José Barrera, John G. Neilan and Max V. Rasmussen
Vaccines 2023, 11(2), 386; https://doi.org/10.3390/vaccines11020386 - 7 Feb 2023
Cited by 6 | Viewed by 2780
Abstract
We evaluated four DNA vaccine candidates for their ability to produce virus-like particles (VLPs) and elicit a protective immune response against Foot-and-mouth disease virus (FMDV) in cattle. Two traditional DNA plasmids and two DNA minicircle constructs were evaluated. Both the pTarget O1P1-3C plasmid [...] Read more.
We evaluated four DNA vaccine candidates for their ability to produce virus-like particles (VLPs) and elicit a protective immune response against Foot-and-mouth disease virus (FMDV) in cattle. Two traditional DNA plasmids and two DNA minicircle constructs were evaluated. Both the pTarget O1P1-3C plasmid and O1P1-3C minicircle encoded a wild-type FMDV 3C protease to process the P1-2A polypeptide, whereas the O1P1-HIV-3CT minicircle used an HIV-1 ribosomal frameshift to down-regulate expression of a mutant 3C protease. A modified pTarget plasmid with a reduced backbone size, mpTarget O1P1-3CLT, used a 3C protease containing two mutations reported to enhance expression. All constructs produced mature FMDV P1 cleavage products in transfected cells, as seen by western blot analysis. Three constructs, O1P1-3C minicircles, pTarget O1P1-3C, and mpTarget O1P1-3CLT plasmids, produced intracellular VLP crystalline arrays detected by electron microscopy. Despite VLP formation in vitro, none of the DNA vaccine candidates elicited protection from clinical disease when administered independently. Administration of pTarget O1P1-3C plasmid enhanced neutralizing antibody titers when used as a priming dose prior to administration of a conditionally licensed adenovirus-vectored FMD vaccine. Further work is needed to develop these DNA plasmid-based constructs into standalone FMD vaccines in cattle. Full article
(This article belongs to the Special Issue Foot and Mouth Disease Virus Vaccines Developments)
Show Figures

Figure 1

26 pages, 3417 KiB  
Article
Chimeric Human Papillomavirus-16 Virus-like Particles Presenting P18I10 and T20 Peptides from HIV-1 Envelope Induce HPV16 and HIV-1-Specific Humoral and T Cell-Mediated Immunity in BALB/c Mice
by Chun-Wei Chen, Narcís Saubi, Athina Kilpeläinen and Joan Joseph-Munné
Vaccines 2023, 11(1), 15; https://doi.org/10.3390/vaccines11010015 - 21 Dec 2022
Cited by 8 | Viewed by 2989
Abstract
In this study, the HIV-1 P18I10 CTL peptide derived from the V3 loop of HIV-1 gp120 and the T20 anti-fusion peptide of HIV-1 gp41 were inserted into the HPV16 L1 capsid protein to construct chimeric HPV:HIV (L1:P18I10 and L1:T20) VLPs by using the [...] Read more.
In this study, the HIV-1 P18I10 CTL peptide derived from the V3 loop of HIV-1 gp120 and the T20 anti-fusion peptide of HIV-1 gp41 were inserted into the HPV16 L1 capsid protein to construct chimeric HPV:HIV (L1:P18I10 and L1:T20) VLPs by using the mammalian cell expression system. The HPV:HIV VLPs were purified by chromatography. We demonstrated that the insertion of P18I10 or T20 peptides into the DE loop of HPV16 L1 capsid proteins did not affect in vitro stability, self-assembly and morphology of chimeric HPV:HIV VLPs. Importantly, it did not interfere either with the HIV-1 antibody reactivity targeting sequential and conformational P18I10 and T20 peptides presented on chimeric HPV:HIV VLPs or with the induction of HPV16 L1-specific antibodies in vivo. We observed that chimeric L1:P18I10/L1:T20 VLPs vaccines could induce HPV16- but weak HIV-1-specific antibody responses and elicited HPV16- and HIV-1-specific T-cell responses in BALB/c mice. Moreover, could be a potential booster to increase HIV-specific cellular responses in the heterologous immunization after priming with rBCG.HIVA vaccine. This research work would contribute a step towards the development of the novel chimeric HPV:HIV VLP-based vaccine platform for controlling HPV16 and HIV-1 infection, which is urgently needed in developing and industrialized countries. Full article
(This article belongs to the Special Issue Virus-Like Particle (VLP) Vaccines)
Show Figures

Graphical abstract

17 pages, 15678 KiB  
Article
A Hydrodynamic Approach to the Study of HIV Virus-Like Particle (VLP) Tangential Flow Filtration
by Tobias Wolf, Jamila Rosengarten, Ina Härtel, Jörn Stitz and Stéphan Barbe
Membranes 2022, 12(12), 1248; https://doi.org/10.3390/membranes12121248 - 9 Dec 2022
Cited by 8 | Viewed by 2740
Abstract
Emerging as a promising pathway to HIV vaccines, Virus-Like Particles (VLPs) have drawn considerable attention in recent years. A challenge of working with HIV VLPs in biopharmaceutical processes is their low rigidity, and factors such as shear stress, osmotic pressure and pH variation [...] Read more.
Emerging as a promising pathway to HIV vaccines, Virus-Like Particles (VLPs) have drawn considerable attention in recent years. A challenge of working with HIV VLPs in biopharmaceutical processes is their low rigidity, and factors such as shear stress, osmotic pressure and pH variation have to be reduced during their production. In this context, the purification and concentration of VLPs are often achieved by means of Tangential Flow Filtration (TFF) involving ultrafiltration hollow fiber modules. Despite the urgent need for robust upscaling strategies and further process cost reduction, very little attention has been dedicated to the identification of the mechanisms limiting the performance of HIV VLP TFF processes. In this work, for the first time, a hydrodynamic approach based on particle friction was successfully developed as a methodology for both the optimization and the upscaling of HIV VLP TFF. Friction forces acting on near-membrane HIV VLPs are estimated, and the plausibility of the derived static coefficients of friction is discussed. The particle friction-based model seems to be very suitable for the fitting of experimental data related to HIV VLP TFF as well as for upscaling projections. According to our predictions, there is still considerable room for improvement of HIV VLP TFF, and operating this process at slightly higher flow velocities may dramatically enhance the efficiency of VLP purification and concentration. This work offers substantial guidance to membrane scientists during the design of upscaling strategies for HIV VLP TFF. Full article
Show Figures

Figure 1

10 pages, 2557 KiB  
Communication
Construction of HER2-Specific HIV-1-Based VLPs
by Sofia A. Martins, Joana Santos, Sandra Cabo Verde, João D. G. Correia and Rita Melo
Bioengineering 2022, 9(11), 713; https://doi.org/10.3390/bioengineering9110713 - 19 Nov 2022
Cited by 2 | Viewed by 2734
Abstract
Virus-like particles (VLPs) are nanoplatforms comprised of one or more viral proteins with the capacity to self-assemble without viral genetic material. VLPs arise as promising nanoparticles (NPs) that can be exploited as vaccines, as drug delivery vehicles or as carriers of imaging agents. [...] Read more.
Virus-like particles (VLPs) are nanoplatforms comprised of one or more viral proteins with the capacity to self-assemble without viral genetic material. VLPs arise as promising nanoparticles (NPs) that can be exploited as vaccines, as drug delivery vehicles or as carriers of imaging agents. Engineered antibody constructs, namely single-chain variable fragments (scFv), have been explored as relevant molecules to direct NPs to their target. A vector containing the scFv of an antibody, aimed at the human epidermal growth factor receptor 2 (HER2) and fused to the human immunodeficiency virus (HIV) protein gp41, was previously constructed. The work herein describes the early results concerning the production and the characterization of HIV-1-based VLPs expressing this protein, which could function as potential non-toxic tools for transporting drugs and/or imaging agents. Full article
(This article belongs to the Special Issue Feature Papers in Nanotechnology Applications in Bioengineering)
Show Figures

Figure 1

19 pages, 3992 KiB  
Article
Design and Functional Characterization of HIV-1 Envelope Protein-Coupled T Helper Liposomes
by Dominik Damm, Ehsan Suleiman, Hannah Theobald, Jannik T. Wagner, Mirjam Batzoni, Bianca Ahlfeld (née Kohlhauser), Bernd Walkenfort, Jens-Christian Albrecht, Jidnyasa Ingale, Lifei Yang, Mike Hasenberg, Richard T. Wyatt, Karola Vorauer-Uhl, Klaus Überla and Vladimir Temchura
Pharmaceutics 2022, 14(7), 1385; https://doi.org/10.3390/pharmaceutics14071385 - 30 Jun 2022
Cited by 3 | Viewed by 2895
Abstract
Functionalization of experimental HIV-1 virus-like particle vaccines with heterologous T helper epitopes (T helper VLPs) can modulate the humoral immune response via intrastructural help (ISH). Current advances in the conjugation of native-like HIV-1 envelope trimers (Env) onto liposomes and encapsulation of peptide epitopes [...] Read more.
Functionalization of experimental HIV-1 virus-like particle vaccines with heterologous T helper epitopes (T helper VLPs) can modulate the humoral immune response via intrastructural help (ISH). Current advances in the conjugation of native-like HIV-1 envelope trimers (Env) onto liposomes and encapsulation of peptide epitopes into these nanoparticles renders this GMP-scalable liposomal platform a feasible alternative to VLP-based vaccines. In this study, we designed and analyzed customizable Env-conjugated T helper liposomes. First, we passively encapsulated T helper peptides into a well-characterized liposome formulation displaying a dense array of Env trimers on the surface. We confirmed the closed pre-fusion state of the coupled Env trimers by immunogold staining with conformation-specific antibodies. These peptide-loaded Env-liposome conjugates efficiently activated Env-specific B cells, which further induced proliferation of CD4+ T cells by presentation of liposome-derived peptides on MHC-II molecules. The peptide encapsulation process was then quantitatively improved by an electrostatically driven approach using an overall anionic lipid formulation. We demonstrated that peptides delivered by liposomes were presented by DCs in secondary lymphoid organs after intramuscular immunization of mice. UFO (uncleaved prefusion optimized) Env trimers were covalently coupled to peptide-loaded anionic liposomes by His-tag/NTA(Ni) interactions and EDC/Sulfo-NHS crosslinking. EM imaging revealed a moderately dense array of well-folded Env trimers on the liposomal surface. The conformation was verified by liposomal surface FACS. Furthermore, anionic Env-coupled T helper liposomes effectively induced Env-specific B cell activation and proliferation in a comparable range to T helper VLPs. Taken together, we demonstrated that T helper VLPs can be substituted with customizable and GMP-scalable liposomal nanoparticles as a perspective for future preclinical and clinical HIV vaccine applications. The functional nanoparticle characterization assays shown in this study can be applied to other systems of synthetic nanoparticles delivering antigens derived from various pathogens. Full article
(This article belongs to the Special Issue Nanovaccine Fight against Infectious Diseases)
Show Figures

Figure 1

22 pages, 9489 KiB  
Article
Digital Twin for HIV-Gag VLP Production in HEK293 Cells
by Alina Hengelbrock, Heribert Helgers, Axel Schmidt, Florian Lukas Vetter, Alex Juckers, Jamila Franca Rosengarten, Jörn Stitz and Jochen Strube
Processes 2022, 10(5), 866; https://doi.org/10.3390/pr10050866 - 27 Apr 2022
Cited by 23 | Viewed by 3817
Abstract
The development and adoption of digital twins (DT) for Quality-by-Design (QbD)-based processes with flexible operating points within a proven acceptable range (PAR) and automation through Advanced Process Control (APC) with Process Analytical Technology (PAT) instead of conventional process execution based on offline analytics [...] Read more.
The development and adoption of digital twins (DT) for Quality-by-Design (QbD)-based processes with flexible operating points within a proven acceptable range (PAR) and automation through Advanced Process Control (APC) with Process Analytical Technology (PAT) instead of conventional process execution based on offline analytics and inflexible process set points is one of the great challenges in modern biotechnology. Virus-like particles (VLPs) are part of a line of innovative drug substances (DS). VLPs, especially those based on human immunodeficiency virus (HIV), HIV-1 Gag VLPs, have very high potential as a versatile vaccination platform, allowing for pseudotyping with heterologous envelope proteins, e.g., the S protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As enveloped VLPs, optimal process control with minimal hold times is essential. This study demonstrates, for the first time, the use of a digital twin for the overall production process of HIV-1 Gag VLPs from cultivation, clarification, and purification to lyophilization. The accuracy of the digital twins is in the range of 0.8 to 1.4% in depth filtration (DF) and 4.6 to 5.2% in ultrafiltration/diafiltration (UFDF). The uncertainty due to variability in the model parameter determination is less than 4.5% (DF) and less than 3.8% (UFDF). In the DF, a prediction of the final filter capacity was demonstrated from as low as 5.8% (9mbar) of the final transmembrane pressure (TMP). The scale-up based on DT in chromatography shows optimization potential in productivity up to a factor of 2. The schedule based on DT and PAT for APC has been compared to conventional process control, and hold-time and process duration reductions by a factor of 2 have been achieved. This work lays the foundation for the short-term validation of the DT and PAT for APC in an automated S7 process environment and the conversion from batch to continuous production. Full article
(This article belongs to the Special Issue Towards Autonomous Operation of Biologics and Botanicals)
Show Figures

Figure 1

22 pages, 4152 KiB  
Article
Process Design and Optimization towards Digital Twins for HIV-Gag VLP Production in HEK293 Cells, including Purification
by Heribert Helgers, Alina Hengelbrock, Axel Schmidt, Jamila Rosengarten, Jörn Stitz and Jochen Strube
Processes 2022, 10(2), 419; https://doi.org/10.3390/pr10020419 - 21 Feb 2022
Cited by 20 | Viewed by 3800
Abstract
Despite great efforts to develop a vaccine against human immunodeficiency virus (HIV), which causes AIDS if untreated, no approved HIV vaccine is available to date. A promising class of vaccines are virus-like particles (VLPs), which were shown to be very effective for the [...] Read more.
Despite great efforts to develop a vaccine against human immunodeficiency virus (HIV), which causes AIDS if untreated, no approved HIV vaccine is available to date. A promising class of vaccines are virus-like particles (VLPs), which were shown to be very effective for the prevention of other diseases. In this study, production of HI-VLPs using different 293F cell lines, followed by a three-step purification of HI-VLPs, was conducted. The quality-by-design-based process development was supported by process analytical technology (PAT). The HI-VLP concentration increased 12.5-fold while >80% purity was achieved. This article reports on the first general process development and optimization up to purification. Further research will focus on process development for polishing and formulation up to lyophilization. In addition, process analytical technology and process modeling for process automation and optimization by digital twins in the context of quality-by-design framework will be developed. Full article
(This article belongs to the Special Issue Towards Autonomous Operation of Biologics and Botanicals)
Show Figures

Figure 1

Back to TopTop