Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = HIK1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1921 KiB  
Article
Effects of Physical Activity on Cognitive Functioning: The Role of Cognitive Reserve and Active Aging
by Giulia D’Aurizio, Fabiana Festucci, Ilaria Di Pompeo, Daniela Tempesta and Giuseppe Curcio
Brain Sci. 2023, 13(11), 1581; https://doi.org/10.3390/brainsci13111581 - 11 Nov 2023
Cited by 10 | Viewed by 5074
Abstract
Background: The increase in average life expectancy necessitates the identification of possible mechanisms capable of promoting “active aging” to ensure adequate levels of global functioning. Numerous studies show that regular physical activity promotes, even in the elderly, a state of functional psychophysical well-being [...] Read more.
Background: The increase in average life expectancy necessitates the identification of possible mechanisms capable of promoting “active aging” to ensure adequate levels of global functioning. Numerous studies show that regular physical activity promotes, even in the elderly, a state of functional psychophysical well-being capable of slowing down age-related cognitive decline. This study aimed to clarify whether, and how, the intensity of physical activity can modulate cognitive and executive skills by influencing specific psychological variables. Methods: Our sample consisted of 151 senior subjects divided into hikers (HIK), gentle gymnastics (GYM), and sedentary (SED), who practice intense, moderate, and reduced physical activity, respectively. A battery of psychological questionnaires was administrated to evaluate attentional skills, decision-making, the ability to implement targeted behaviors, perceived self-efficacy, and psychophysical well-being. We included: the Mini-Mental State Examination, Cognitive Reserve Index Questionnaire, General Self-Efficacy Scale, Letter Cancellation Test, Everyday Competence Questionnaire, and Geriatric Depression Scale (GDS). Results: Comparisons between the scores reported by the three groups showed that the HIK group differs from the others with respect to most of the measurements, presenting better mood and cognitive performance, and a specific psychological profile. On the contrary, the GYM group appeared to have a greater affinity with the SED group than with the HIK group, both cognitively and psychologically. Conclusions: Types of physical activity, as well as the intensity and frequency with which they are practiced, are factors that promote an active aging process, protecting the psychophysical well-being and overall cognitive functioning of the elderly. Full article
Show Figures

Figure 1

9 pages, 1416 KiB  
Communication
The Molecular Mechanism of Fludioxonil Action Is Different to Osmotic Stress Sensing
by Katharina Bersching and Stefan Jacob
J. Fungi 2021, 7(5), 393; https://doi.org/10.3390/jof7050393 - 17 May 2021
Cited by 24 | Viewed by 4334
Abstract
The group III two-component hybrid histidine kinase MoHik1p in the filamentous fungus Magnaporthe oryzae is known to be a sensor for external osmotic stress and essential for the fungicidal activity of the phenylpyrrole fludioxonil. The mode of action of fludioxonil has not yet [...] Read more.
The group III two-component hybrid histidine kinase MoHik1p in the filamentous fungus Magnaporthe oryzae is known to be a sensor for external osmotic stress and essential for the fungicidal activity of the phenylpyrrole fludioxonil. The mode of action of fludioxonil has not yet been completely clarified but rather assumed to hyperactivate the high osmolarity glycerol (HOG) signaling pathway. To date, not much is known about the detailed molecular mechanism of how osmotic stress is detected or fungicidal activity is initiated within the HOG pathway. The molecular mechanism of signaling was studied using a mutant strain in which the HisKA signaling domain was modified by an amino acid change of histidine H736 to alanine A736. We found that MoHik1pH736A is as resistant to fludioxonil but not as sensitive to osmotic stress as the null mutant ∆Mohik1. H736 is required for fludioxonil action but is not essential for sensing sorbitol stress. Consequently, this report provides evidence of the difference in the molecular mechanism of fludioxonil action and the perception of osmotic stress. This is an excellent basis to understand the successful phenylpyrrole-fungicides’ mode of action better and will give new ideas to decipher cellular signaling mechanisms. Full article
(This article belongs to the Special Issue Signal Transductions in Fungi)
Show Figures

Figure 1

13 pages, 2254 KiB  
Article
Different Forms of TFF2, A Lectin of the Human Gastric Mucus Barrier: In Vitro Binding Studies
by Franziska Heuer, René Stürmer, Jörn Heuer, Thomas Kalinski, Antje Lemke, Frank Meyer and Werner Hoffmann
Int. J. Mol. Sci. 2019, 20(23), 5871; https://doi.org/10.3390/ijms20235871 - 22 Nov 2019
Cited by 22 | Viewed by 4443
Abstract
Trefoil factor family 2 (TFF2) and the mucin MUC6 are co-secreted from human gastric and duodenal glands. TFF2 binds MUC6 as a lectin and is a constituent of the gastric mucus. Herein, we investigated human gastric extracts by FPLC and identified mainly high- [...] Read more.
Trefoil factor family 2 (TFF2) and the mucin MUC6 are co-secreted from human gastric and duodenal glands. TFF2 binds MUC6 as a lectin and is a constituent of the gastric mucus. Herein, we investigated human gastric extracts by FPLC and identified mainly high- but also low-molecular-mass forms of TFF2. From the high-molecular-mass forms, TFF2 can be completely released by boiling in SDS or by harsh denaturing extraction. The low-molecular-mass form representing monomeric TFF2 can be washed out in part from gastric mucosa specimens with buffer. Overlay assays with radioactively labeled TFF2 revealed binding to the mucin MUC6 and not MUC5AC. This binding is modulated by Ca2+ and can be blocked by the lectin GSA-II and the monoclonal antibody HIK1083. TFF2 binding was also inhibited by Me-β-Gal, but not the α anomer. Thus, both the α1,4GlcNAc as well as the juxtaperipheral β-galactoside residues of the characteristic GlcNAcα1→4Galβ1→R moiety of human MUC6 are essential for TFF2 binding. Furthermore, there are major differences in the TFF2 binding characteristics when human is compared with the porcine system. Taken together, TFF2 appears to fulfill an important role in stabilizing the inner insoluble gastric mucus barrier layer, particularly by its binding to the mucin MUC6. Full article
(This article belongs to the Special Issue TFF Peptides: Lectins in Mucosal Protection and More)
Show Figures

Graphical abstract

14 pages, 1751 KiB  
Article
Aggressiveness and Fumonisins Production of Fusarium Subglutinans and Fusarium Temperatum on Korean Maize Cultivars
by Setu Bazie Tagele, Sang Woo Kim, Hyun Gu Lee and Youn Su Lee
Agronomy 2019, 9(2), 88; https://doi.org/10.3390/agronomy9020088 - 15 Feb 2019
Cited by 12 | Viewed by 5381
Abstract
Fusarium root rot and stalk rot are becoming a threat to maize production worldwide. However, there is still limited information about the aggressiveness of Fusarium subglutinans Edwards and Fusarium temperatum and their relationship with fumonisin production. In this study, for the first time, [...] Read more.
Fusarium root rot and stalk rot are becoming a threat to maize production worldwide. However, there is still limited information about the aggressiveness of Fusarium subglutinans Edwards and Fusarium temperatum and their relationship with fumonisin production. In this study, for the first time, the reaction of seven Korean maize cultivars to F. subglutinans and F. temperatum was investigated. The results showed that among the maize cultivars, Hik-chal and Miheung-chal had the highest Fusarium-induced root rot and stalk rot severity, while De Hack-chal had the lowest disease severity regardless of the Fusarium species. Furthermore, the disease resistant cv. De Hack-chal accumulated low levels of fumonisins (FUM) in the infected stalk, while cv. Hik-chal and Miheung-chal had the highest level of FUM. It is worth to note that, plants infected with F. temperatum had a higher FUM concentration compared to cultivars infected with F. subglutinans. The present study shows a significant correlation between stalk rot ratings and FUM levels and it also presents new information about the potential risk of FUM contamination of maize stalk with F. subglutinans and F. temperatum in South Korea. In addition, enzyme activities like polyphenol oxidase (PPO), peroxidase (POD), and the amount of total phenol content (TPC) were studied in selected susceptible cultivar Miheung-chal and resistant cultivar De Hack-chal. The activity of PPO, POD and concentration of TPC were generally higher in the roots of the resistant cultivar than the susceptible cultivar. Moreover, following inoculation of either F. subglutinans or F. temperatum, there was a significant increase in PPO and POD activity in the roots of both cultivars. Hence, the information provided in this study could be helpful to better understand the mechanisms of resistance response to infection of Fusarium root rot pathogens. Full article
(This article belongs to the Special Issue Genetics and Genomics of Disease Resistance in Crops)
Show Figures

Figure 1

24 pages, 4166 KiB  
Article
Mechanisms of High Temperature Resistance of Synechocystis sp. PCC 6803: An Impact of Histidine Kinase 34
by Jan Červený, Maria A. Sinetova, Tomáš Zavřel and Dmitry A. Los
Life 2015, 5(1), 676-699; https://doi.org/10.3390/life5010676 - 2 Mar 2015
Cited by 37 | Viewed by 10877
Abstract
Synechocystis sp. PCC 6803 is a widely used model cyanobacterium for studying responses and acclimation to different abiotic stresses. Changes in transcriptome, proteome, lipidome, and photosynthesis in response to short term heat stress are well studied in this organism, and histidine kinase 34 [...] Read more.
Synechocystis sp. PCC 6803 is a widely used model cyanobacterium for studying responses and acclimation to different abiotic stresses. Changes in transcriptome, proteome, lipidome, and photosynthesis in response to short term heat stress are well studied in this organism, and histidine kinase 34 (Hik34) is shown to play an important role in mediating such response. Corresponding data on long term responses, however, are fragmentary and vary depending on parameters of experiments and methods of data collection, and thus are hard to compare. In order to elucidate how the early stress responses help cells to sustain long-term heat stress, as well as the role of Hik34 in prolonged acclimation, we examined the resistance to long-term heat stress of wild-type and ΔHik34 mutant of Synechocystis. In this work, we were able to precisely control the long term experimental conditions by cultivating Synechocystis in automated photobioreactors, measuring selected physiological parameters within a time range of minutes. In addition, morphological and ultrastructural changes in cells were analyzed and western blotting of individual proteins was used to study the heat stress-affected protein expression. We have shown that the majority of wild type cell population was able to recover after 24 h of cultivation at 44 °C. In contrast, while ΔHik34 mutant cells were resistant to heat stress within its first hours, they could not recover after 24 h long high temperature treatment. We demonstrated that the early induction of HspA expression and maintenance of high amount of other HSPs throughout the heat incubation is critical for successful adaptation to long-term stress. In addition, it appears that histidine kinase Hik34 is an essential component for the long term high temperature resistance. Full article
(This article belongs to the Special Issue Cyanobacteria: Ecology, Physiology and Genetics)
Show Figures

Figure 1

30 pages, 403 KiB  
Review
Stress Sensors and Signal Transducers in Cyanobacteria
by Dmitry A. Los, Anna Zorina, Maria Sinetova, Sergey Kryazhov, Kirill Mironov and Vladislav V. Zinchenko
Sensors 2010, 10(3), 2386-2415; https://doi.org/10.3390/s100302386 - 23 Mar 2010
Cited by 113 | Viewed by 21713
Abstract
In living cells, the perception of environmental stress and the subsequent transduction of stress signals are primary events in the acclimation to changes in the environment. Some molecular sensors and transducers of environmental stress cannot be identified by traditional and conventional methods. Based [...] Read more.
In living cells, the perception of environmental stress and the subsequent transduction of stress signals are primary events in the acclimation to changes in the environment. Some molecular sensors and transducers of environmental stress cannot be identified by traditional and conventional methods. Based on genomic information, a systematic approach has been applied to the solution of this problem in cyanobacteria, involving mutagenesis of potential sensors and signal transducers in combination with DNA microarray analyses for the genome-wide expression of genes. Forty-five genes for the histidine kinases (Hiks), 12 genes for serine-threonine protein kinases (Spks), 42 genes for response regulators (Rres), seven genes for RNA polymerase sigma factors, and nearly 70 genes for transcription factors have been successfully inactivated by targeted mutagenesis in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Screening of mutant libraries by genome-wide DNA microarray analysis under various stress and non-stress conditions has allowed identification of proteins that perceive and transduce signals of environmental stress. Here we summarize recent progress in the identification of sensory and regulatory systems, including Hiks, Rres, Spks, sigma factors, transcription factors, and the role of genomic DNA supercoiling in the regulation of the responses of cyanobacterial cells to various types of stress. Full article
(This article belongs to the Special Issue Advances in Transducers)
Show Figures

Graphical abstract

Back to TopTop