Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = Grevillea robusta

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3626 KiB  
Article
Synergistic and Antagonistic Effects of Mixed-Leaf Litter Decomposition on Nutrient Cycling
by Vestine Mukamparirwa, Salim M. S. Maliondo and Canisius Patrick Mugunga
Plants 2024, 13(22), 3204; https://doi.org/10.3390/plants13223204 - 15 Nov 2024
Cited by 2 | Viewed by 1217
Abstract
Understanding decomposition patterns of mixed-leaf litter from agroforestry species is crucial, as leaf litter in ecosystems naturally occurs as mixtures rather than as separate individual species. We hypothesized that litter mixtures with larger trait divergence would lead to faster mass loss and more [...] Read more.
Understanding decomposition patterns of mixed-leaf litter from agroforestry species is crucial, as leaf litter in ecosystems naturally occurs as mixtures rather than as separate individual species. We hypothesized that litter mixtures with larger trait divergence would lead to faster mass loss and more balanced nutrient release compared to single-species litter. Specifically, we expected mixtures containing nutrient-rich species to exhibit synergistic effects, resulting in faster decay rates and sustained nutrient release, while mixtures with nutrient-poor species would demonstrate antagonistic effects, slowing decomposition. We conducted a mesocosm experiment using a custom wooden setup filled with soil, and the litterbag method was used to test various leaf litter mixtures. The study involved leaf litter from six agroforestry tree species: three species from humid highland regions and three from semi-arid regions. Treatments included three single-species leaf litter mixtures, three two-species mixtures, and one three-species mixture, based on the sampling region. Species included Calliandra calothyrsus (Ca), Croton megalocarpus (Cr), Grevillea robusta (G), Alnus acuminata (A), Markhamia lutea (M), and Eucalyptus globulus (E). Decay rate constants (k) were estimated using non-linear least-squares regression and observed mass loss was compared to predicted values for mixed-species litter treatments to assess synergistic and antagonistic effects. A two-way linear mixed-effects model was employed to explain variation in mass loss. Results indicate positive non-additive effects for leaf litter mixtures including nutrient-rich species and negative non-additive effects for mixtures including nutrient-poor species. The mixture of Ca + Cr + G had positive non-additive or synergistic effects as it decomposed faster than its corresponding single-species litter. Leaf litters with higher lignin content, such as A + M + E and Ca + Cr + G, exhibited less lignin release compared to what would be expected based on individual litter types, demonstrating antagonistic effects. These findings highlight that both litter nutrient constituents and litter diversity play an important role in decomposition processes and therefore in the restoration of the degraded and nutrient-depleted soils of Rwanda. Full article
(This article belongs to the Special Issue Soil Ecology and Nutrients' Cycling in Crops and Fruits)
Show Figures

Graphical abstract

15 pages, 2561 KiB  
Article
The Carbon Sequestration Potential of Silky Oak (Grevillea robusta A.Cunn. ex R.Br.), a High-Value Economic Wood in Thailand
by Teerawong Laosuwan, Yannawut Uttaruk, Satith Sangpradid, Chetphong Butthep and Smith Leammanee
Forests 2023, 14(9), 1824; https://doi.org/10.3390/f14091824 - 7 Sep 2023
Cited by 7 | Viewed by 9017
Abstract
Silky Oak or Silver Oak (Grevillea robusta A.Cunn. ex R.Br.) is classified as a high-value economic wood in Thailand, it is also considered to be a plant that can grow rapidly, and it has the potential to efficiently reduce greenhouse gases emitted [...] Read more.
Silky Oak or Silver Oak (Grevillea robusta A.Cunn. ex R.Br.) is classified as a high-value economic wood in Thailand, it is also considered to be a plant that can grow rapidly, and it has the potential to efficiently reduce greenhouse gases emitted into the atmosphere. This research aimed to study and develop an allometric equation to evaluate the biomass of F1 Silky Oak, which was imported to Thailand from Australia, and grown in Thailand’s economic woods in Silky Oak sites in Pak Chong District, Nakhon Ratchasima Province. The sample group consisted of trees of different ages (i.e., of 2 years, 3–4 years, and 7 years). An allometric equation was used to determine the tree biomass, based on mathematical models that describe the relationship between tree biomass and diameter at breast height (DBH). It was developed in the form of a quadratic equation by multiplying the square DBH by the total height (DBH2 × Ht). Subsequently, the equation was separated into different components, which corresponded with different parts of the tree (i.e., stem, branches, leaves, and roots). The following equations were obtained for the stem: Ws = 0.0721 (D2H) 0.8297 R2 = 0.998. The following equations were obtained for the branches: Wb = 0.0772 (D2H) 0.7027 R2 = 0.977. The following equations were obtained for the leaves, Wl = 0.2085 (D2H) 0.4313 R2 = 0.990. The following equations were obtained for the roots: Wr = 0.3337 (D2H) 0.4886 R2 = 0.957. The results of a laboratory elemental analysis of the carbon sequestration in the biomass, using a CHN elemental analyzer, showed that the mean percentage of carbon content in the stems, branches, leaves, and roots was 45.805. Applying the developed allometric equation for evaluating carbon sequestration, using the survey data from the sample sites of Silky Oak, it was found that the amount of carbon sequestration for the aboveground biomass in three sites was 130.63 tCO2eq. When the amount was converted into carbon dioxide, which was absorbed in the three sites, we obtained a value of 478.99 tCO2eq. The results of the application of the allometric equation showed that there was substantial carbon sequestration potential in the surveyed sites, emphasizing the role of Silky Oak plantations for climate change mitigation and sustainable land management. This study advances our understanding of Silky Oak growth and carbon storage dynamics, offering valuable tools for biomass estimation and promoting environmentally beneficial land use practices. Full article
(This article belongs to the Special Issue Impact of Climate Change on Tree Growth)
Show Figures

Figure 1

22 pages, 3416 KiB  
Article
Phenotypic, Geological, and Climatic Spatio-Temporal Analyses of an Exotic Grevillea robusta in the Northwestern Himalayas
by Aman Dabral, Rajeev Shankhwar, Marco Antonio Caçador Martins-Ferreira, Shailesh Pandey, Rama Kant, Rajendra K. Meena, Girish Chandra, Harish S. Ginwal, Pawan Kumar Thakur, Maneesh S. Bhandari, Netrananda Sahu and Sridhara Nayak
Sustainability 2023, 15(16), 12292; https://doi.org/10.3390/su151612292 - 11 Aug 2023
Cited by 3 | Viewed by 1982
Abstract
The last five decades (since 1980) have witnessed the introduction of exotic trees as a popular practice in India to fulfill the demand of forest-based products for utilization in afforestation programmes. This study examines the distribution and habitat suitability of exotic Grevillea robusta [...] Read more.
The last five decades (since 1980) have witnessed the introduction of exotic trees as a popular practice in India to fulfill the demand of forest-based products for utilization in afforestation programmes. This study examines the distribution and habitat suitability of exotic Grevillea robusta trees in the northwestern Himalayas (state: Uttarakhand), focusing on the interaction between G. robusta and abiotic factors, such as climate, soil, and habitat suitability. This multipurpose agroforestry species is mainly grown by farmers as a boundary tree, windbreak, or shelterbelt and among intercrops on small farms in agroforestry systems worldwide. The results indicate that phenotypic plasticity is determined by tree height and diameter, indicating a higher frequency of young and adult trees. The study also highlights spatio-temporal modeling coupled with geological analysis to address the current distribution pattern and future habitat suitability range through MaxEnt modeling. The AUC ranged from 0.793 ± 3.6 (RCP 6.0_70) to 0.836 ± 0.008 (current) with statistical measures, such as K (0.216), NMI (0.240), and TSS (0.686), revealing the high accuracy of the model output. The variables, which include the minimum temperature of the coldest month (Bio 6), the slope (Slo), the mean temperature of the driest quarter (Bio 9), and the precipitation of the driest quarter (Bio 17), contribute significantly to the prediction of the distribution of the species in the Himalayan state. The model predicts a significant habitat suitability range for G. robusta based on bio-climatic variables, covering an area of approximately ~1641 km2 with maximal occurrence in Pauri (~321 km2) and Almora (~317 km2). Notably, the future prediction scenario corroborates with the regions of Tons (Upper Yamuna, Uttarkashi), Kalsi (Mussoorie, Dehradun), the Kedarnath Wildlife Sanctuary, and the Badrinath Forest Division for the potentially suitable areas. The climate was found to have a strong influence on the species’ distribution, as evidenced by its correlation with the Köppen–Geiger climate classification (KGCC) map. While the species demonstrated adaptability, its occurrence showed a high correlation with bedrocks containing an elevated iron content. Furthermore, the study also provides the first trees outside forests (TOF) map of G. robusta in the region, as well as insight into its future habitat suitability. Full article
(This article belongs to the Special Issue Urban Sprawl and Sustainable Land Use Planning)
Show Figures

Figure 1

20 pages, 3403 KiB  
Article
Contribution of Tree Size and Species on Aboveground Biomass across Land Cover Types in the Taita Hills, Southern Kenya
by Edward Amara, Hari Adhikari, James M. Mwamodenyi, Petri K. E. Pellikka and Janne Heiskanen
Forests 2023, 14(3), 642; https://doi.org/10.3390/f14030642 - 21 Mar 2023
Cited by 5 | Viewed by 3418
Abstract
Tropical landscapes comprise a variety of land cover (LC) types with characteristic canopy structure and tree species. Depending on the LC type, large-diameter trees and certain tree species can contribute disproportionately to aboveground biomass (AGB), and these patterns are not described at landscape-level [...] Read more.
Tropical landscapes comprise a variety of land cover (LC) types with characteristic canopy structure and tree species. Depending on the LC type, large-diameter trees and certain tree species can contribute disproportionately to aboveground biomass (AGB), and these patterns are not described at landscape-level in LC type specific studies. Therefore, we investigated the impact of large trees and tree species on AGB across a range of LC types in Taita Hills, Kenya. Data included 239 field plots from seven LC types: Montane forest, Plantation forest, Mixed forest, Riverine forest, Bushland, Grassland, and Cropland and homestead. Our results show that the contribution of large trees (DBH > 60 cm) on AGB was greatest in Riverine forest, Montane forest and Mixed forest (34–87%). Large trees were also common in Plantation forests and Cropland and homestead. Small trees (DBH < 20 cm) covered less than 10% of the total AGB in all forest types. In Grassland, and Cropland and homestead, smaller DBH classes made a greater contribution. Bushland differed from other classes as large trees were rare. Furthermore, the results show that each LC type had characteristic species with high AGB. In the Montane and Mixed forest, Albizia gummifera contributed 21.1% and 18.3% to AGB, respectively. Eucalyptus spp., exotic species planted in the area, were important in Mixed and Plantation forests. Newtonia hildebrandtii was the most important species in Riverine forests. In Bushland, Acacia mearnsii, species with invasive character, was abundant among trees with DBH < 30 cm. Vachellia tortillis, a common species in savannahs of East Africa, made the largest contribution in Grassland. Finally, in Cropland and homestead, Grevillea robusta was the most important species (>25% of AGB). Our results highlight the importance of conserving large trees and certain species to retain AGB stocks in the landscape. Furthermore, the results demonstrate that exotic tree species, even though invasive, can have large contribution to AGB. Full article
(This article belongs to the Special Issue Biomass Estimation and Carbon Stocks in Forest Ecosystems)
Show Figures

Figure 1

24 pages, 5688 KiB  
Article
Growth, Productivity, Biomass and Carbon Stock in Eucalyptus saligna and Grevillea robusta Plantations in North Kivu, Democratic Republic of the Congo
by Désiré Katembo Kasekete, Gauthier Ligot, Jean-Pierre Mate Mweru, Thomas Drouet, Mélissa Rousseau, Adrien Moango and Nils Bourland
Forests 2022, 13(9), 1508; https://doi.org/10.3390/f13091508 - 16 Sep 2022
Cited by 9 | Viewed by 3815
Abstract
Initiated by the World Wildlife Fund (WWF) more than a decade ago in North Kivu, single-species plantations of Eucalyptus saligna and Grevillea robusta constitute, with other village plantations, the current legal source of wood-energy for the communities bordering the Virunga National Park (PNVi). [...] Read more.
Initiated by the World Wildlife Fund (WWF) more than a decade ago in North Kivu, single-species plantations of Eucalyptus saligna and Grevillea robusta constitute, with other village plantations, the current legal source of wood-energy for the communities bordering the Virunga National Park (PNVi). This study assesses the growth and productivity of these plantations in two sites with different soil and climatic conditions to predict their production over time. The study also assesses the carbon stock and long-term CO2 fixation in the biomass of the studied plantations to deduce their contribution to climate change mitigation. Non-destructive inventories were carried out during three consecutive years in 20 E. saligna and 12 G. robusta plantations in Sake and Kirumba. Analysis of the data revealed that both species have similar diametric growth while height growth and productivity were significantly higher in the E. saligna plantations. The productivity of E. saligna was also higher in Kirumba than in Sake, while that of G. robusta was higher in Sake than in Kirumba. The differences observed were mainly related to species, silviculture, altitude and concentration of bioavailable elements in the soils. The analysis of productivity evolution over time allowed us to determine optimal rotations at 8 and 12 years, respectively, for E. saligna and G. robusta plantations. The relationships between biomass or carbon stock and tree diameter were not different between the studied species but were significantly different at the stand level. If silviculture was standardized and plantations carefully monitored, carbon stock and long-term CO2 fixation would be higher in G. robusta plantations than in E. saligna plantations. These results indicate that while for productivity reasons E. saligna is the favoured species in wood-energy plantations to quickly meet the demand of the growing and disadvantaged population living in the vicinity of PNVi, carefully monitored G. robusta plantations could be more interesting in terms of carbon credits. To simultaneously optimise wood-energy production and carbon storage in the plantations initiated in North Kivu, E. saligna and G. robusta should be planted in mixture. In addition, species and site characteristics adapted silvicultural management practices must be applied to these plantations, which are very important for the region, its population and its park. Finally, the economic profitability as well as the sustainability of the plantations should be assessed in the longer term in North Kivu. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

19 pages, 2781 KiB  
Article
Coffee, Farmers, and Trees—Shifting Rights Accelerates Changing Landscapes
by Claude A. Garcia, Jérémy Vendé, Nanaya Konerira, Jenu Kalla, Michelle Nay, Anne Dray, Maëlle Delay, Patrick O. Waeber, Natasha Stoudmann, Arshiya Bose, Christophe Le Page, Yenugula Raghuram, Robert Bagchi, Jaboury Ghazoul, Cheppudira G. Kushalappa and Philippe Vaast
Forests 2020, 11(4), 480; https://doi.org/10.3390/f11040480 - 24 Apr 2020
Cited by 10 | Viewed by 6442
Abstract
Deforestation and biodiversity loss in agroecosystems are generally the result of rational choices, not of a lack of awareness or knowledge. Despite both scientific evidence and traditional knowledge that supports the value of diverse production systems for ecosystem services and resilience, a trend [...] Read more.
Deforestation and biodiversity loss in agroecosystems are generally the result of rational choices, not of a lack of awareness or knowledge. Despite both scientific evidence and traditional knowledge that supports the value of diverse production systems for ecosystem services and resilience, a trend of agroecosystem intensification is apparent across tropical regions. These transitions happen in spite of policies that prohibit such transformations. We present a participatory modelling study run to (1) understand the drivers of landscape transition and (2) explore the livelihood and environmental impacts of tenure changes in the coffee agroforestry systems of Kodagu (India). The components of the system, key actors and resources, and their interactions were defined with stakeholders, following the companion modelling (ComMod) approach. The underlying ecological processes driving the system were validated through expert knowledge and scientific literature. The conceptual model was transformed into a role-playing game and validated by eight workshops with a total of 57 participants. Two scenarios were explored, a No Policy Change as baseline, and a Restitution of Rights where rights to cut the native trees are handed over to farmers. Our results suggest that the landscape transition is likely to continue unabated unless there is a change to the current policy framework. However, the Restitution of Rights risks speeding up the process rather than reversing it, as inter alia, the differential growth rate between exotic and native tree species, kick in. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

20 pages, 7863 KiB  
Article
Classification of Tree Species in a Diverse African Agroforestry Landscape Using Imaging Spectroscopy and Laser Scanning
by Rami Piiroinen, Janne Heiskanen, Eduardo Maeda, Arto Viinikka and Petri Pellikka
Remote Sens. 2017, 9(9), 875; https://doi.org/10.3390/rs9090875 - 23 Aug 2017
Cited by 37 | Viewed by 9237
Abstract
Airborne imaging spectroscopy (IS) and laser scanning (ALS) have been explored widely for tree species classification during the past decades. However, African agroforestry areas, where a few exotic tree species are dominant and many native species occur less frequently, have not yet been [...] Read more.
Airborne imaging spectroscopy (IS) and laser scanning (ALS) have been explored widely for tree species classification during the past decades. However, African agroforestry areas, where a few exotic tree species are dominant and many native species occur less frequently, have not yet been studied. Obtaining maps of tree species would provide useful information for the characterization of agroforestry systems and detecting invasive species. Our objective was to study tree species classification in a diverse tropical landscape using IS and ALS data at the tree crown level, with primary interest in the exotic tree species. We performed multiple analyses based on different IS and ALS feature sets, identified important features using feature selection, and evaluated the impact of combining the two data sources. Given that a high number of tree species with limited sample size (499 samples for 31 species) was expected to limit the classification accuracy, we tested different approaches to group the species based on the frequency of their occurrence and Jeffries–Matusita (JM) distance. Surface reflectance at wavelengths between 400–450 nm and 750–800 nm, and height to crown width ratio, were identified as important features. Nonetheless, a selection of minimum noise fraction (MNF) transformed reflectance bands showed superior performance. Support vector machine classifier performed slightly better than the random forest classifier, but the improvement was not statistically significant for the best performing feature set. The highest F1-scores were achieved when each of the species was classified separately against a mixed group of all other species, which makes this approach suitable for invasive species detection. Our results are valuable for organizations working on biodiversity conservation and improving agroforestry practices, as we showed how the non-native Eucalyptus spp., Acacia mearnsii and Grevillea robusta (mean F1-scores 76%, 79% and 89%, respectively) trees can be mapped with good accuracy. We also found a group of six fruit bearing trees using JM distance, which was classified with mean F1-score of 65%. This was a useful finding, as these species could not be classified with acceptable accuracy individually, while they all share common economic and ecological importance. Full article
(This article belongs to the Special Issue Hyperspectral Imaging and Applications)
Show Figures

Graphical abstract

9 pages, 218 KiB  
Article
Chemical Constituents and Biological Studies of the Leaves of Grevillea robusta
by Ta-Hsien Chuang, Hsiu-Hui Chan, Tian-Shung Wu and Chien-Fu Li
Molecules 2011, 16(11), 9331-9339; https://doi.org/10.3390/molecules16119331 - 7 Nov 2011
Cited by 16 | Viewed by 6073
Abstract
Three new compounds: Graviquinone (1), cis-3-hydroxy-5-pentadecylcyclohexanone (2), and methyl 5-ethoxy-2-hydroxycinnamate (3), and thirty-eight known compounds were isolated and identified from the leaves of Grevillea robusta. The structures of these compounds were determined by spectroscopic and chemical transformation methods. Graviquinone (1) showed [...] Read more.
Three new compounds: Graviquinone (1), cis-3-hydroxy-5-pentadecylcyclohexanone (2), and methyl 5-ethoxy-2-hydroxycinnamate (3), and thirty-eight known compounds were isolated and identified from the leaves of Grevillea robusta. The structures of these compounds were determined by spectroscopic and chemical transformation methods. Graviquinone (1) showed the strongest cytotoxicity against MCF-7, NCI-H460, and SF-268 cell lines. Methyl 2,5-dihydroxycinnamate (4), graviphane (13), and dehydrograviphane (14) exhibited very potent DPPH scavenging activity compared with α-tocopherol. Methyl 2,5-dihydroxycinnamate (4) and bis-norstriatol (17) demonstrated strong inhibition of L-DOPA oxidation by mushroom tyrosinase compared with kojic acid. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

Back to TopTop