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Abstract: The last five decades (since 1980) have witnessed the introduction of exotic trees as a pop-
ular practice in India to fulfill the demand of forest-based products for utilization in afforestation
programmes. This study examines the distribution and habitat suitability of exotic Grevillea robusta
trees in the northwestern Himalayas (state: Uttarakhand), focusing on the interaction between
G. robusta and abiotic factors, such as climate, soil, and habitat suitability. This multipurpose agro-
forestry species is mainly grown by farmers as a boundary tree, windbreak, or shelterbelt and among
intercrops on small farms in agroforestry systems worldwide. The results indicate that phenotypic
plasticity is determined by tree height and diameter, indicating a higher frequency of young and adult
trees. The study also highlights spatio-temporal modeling coupled with geological analysis to address
the current distribution pattern and future habitat suitability range through MaxEnt modeling. The
AUC ranged from 0.793 ± 3.6 (RCP 6.0_70) to 0.836 ± 0.008 (current) with statistical measures, such
as K (0.216), NMI (0.240), and TSS (0.686), revealing the high accuracy of the model output. The
variables, which include the minimum temperature of the coldest month (Bio 6), the slope (Slo), the
mean temperature of the driest quarter (Bio 9), and the precipitation of the driest quarter (Bio 17),
contribute significantly to the prediction of the distribution of the species in the Himalayan state. The
model predicts a significant habitat suitability range for G. robusta based on bio-climatic variables,
covering an area of approximately ~1641 km2 with maximal occurrence in Pauri (~321 km2) and
Almora (~317 km2). Notably, the future prediction scenario corroborates with the regions of Tons
(Upper Yamuna, Uttarkashi), Kalsi (Mussoorie, Dehradun), the Kedarnath Wildlife Sanctuary, and the
Badrinath Forest Division for the potentially suitable areas. The climate was found to have a strong
influence on the species’ distribution, as evidenced by its correlation with the Köppen–Geiger climate
classification (KGCC) map. While the species demonstrated adaptability, its occurrence showed
a high correlation with bedrocks containing an elevated iron content. Furthermore, the study also
provides the first trees outside forests (TOF) map of G. robusta in the region, as well as insight into its
future habitat suitability.

Keywords: trees outside forests; species distribution modeling; adaptability: MaxEnt model
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1. Introduction

Worldwide, forests and agroforestry areas are undergoing consistent plantation of
exotic species to fulfill various economic and environmental demands [1,2]. Grevillea robusta
A. Cunn. Ex R. Br. (silver oak; family: Proteaceae), for example, is a species whose wood
has economic and ecological potential [3–5]. Economically, it is grown as a shade tree for tea
and coffee plantations, timber, firewood, and poles, with the leaves being used for mulch.
Ecologically, the species also stabilizes soils and enhances water and nutrient uptake. The
roots help it to grow in low-fertility soils [6] and recycle nutrients from the deep soil surface
to the upper soil surface through the decomposition of leaf litter [7].

The species is endemic to Queensland, i.e., eastern Australia, and is widely distributed
in southeast Asia, Africa, and the southern part of North America and South America [8].
In the last three decades, G. robusta was introduced from Australia to all regions of the
world, viz., China, Eritrea, Ethiopia, India, Indonesia, Jamaica, Kenya, Laos, Malawi,
Malaysia, Mauritius, Nepal, Pakistan, the Philippines, South Africa, Sri Lanka, Tanzania,
Uganda, the United States of America, Vietnam, Zambia, and Zimbabwe [9–16]. In India,
the species is distributed in approx. more than 20 states of India, such as Andhra Pradesh,
Arunachal Pradesh, Assam, Delhi, Haryana, Himachal Pradesh, Kerala, Karnataka, Madhya
Pradesh, Maharashtra, Nagaland, Orissa, Punjab, Tamil Nadu, Telangana, Uttarakhand,
Uttar Pradesh, and West Bengal (World Agroforestry Centre 2002), showing its reproductive
fitness across the varied agroclimatic zones of the country.

In an uneven landscape like the Himalayas, basic information on the pattern of species
distribution and a genetic resource assessment for trees outside forests (TOFs) map is
lacking and needs sound statistical assessment. In 2000, the United Nations Economic
Commission for Europe (UNECE) and the Food and Agriculture Organization (FAO) TOFs
were defined as “trees on land that meets the definitions of forest and of other wooded
lands except that the area is less than 0.5 ha and the width is less than 20 m”. Importantly,
there is a need to understand and predict the relative habitat suitability range for any
exotic species before their introduction [17,18]. A large number of statistical models are
co-currently in use to simulate the spatial distribution of plant species [19,20], the habitat
suitability of the species [21,22], and the spatial pattern of species diversity [23], as well as
to predict the impact of climate change [24,25]. Grevillea robusta has a fast-growing nature
and an acclimatization ability across the varied environmental conditions, which reveals
the species’ adaptability and suitability to the vast distributional range [3,5]. Importantly,
life-history traits (such as fast growth, high propagule production, hybridization, etc.) and
favorable environmental conditions (such as low and intermediate shade tolerance, site and
biotic factors, canopy disturbances, etc.) are the main factors controlling the distribution
range of exotic plants [1].

In recent years, policymakers have become more conscious of the importance of TOFs
in terms of the possible economic roles and contributions to human wellbeing through
ecosystem services. As a result, tree-based resources are frequently evaluated in forest
monitoring using a remote sensing and geographic information system (RS&GIS) [26].
For instance, the TOFs’ biomass was demonstrated to play a substantial role in regional
and national bio-economies when analyzing TOFs data across a 13-county area of Michigan
(USA) [27]. As the world’s population grows, TOFs are destined to become a major
component of natural resources, require mapping to determine the expanse and extent of
the distribution and monitoring to improve green cover [28–30].

Importantly, the assessment and monitoring of various TOFs resources necessitate
the accuracy of data and variables [FCM, forest type map (FTM), non-forest areas, etc.].
High-resolution data were used in conjunction with an object-based image analysis (OBIA)
technique to meet the changing demands of resource assessment and monitoring. Satellite
imaging, such as the LANDSAT series, SENTINEL, QuickBird, RapidEye, IKONOS, and
Google Earth, ranges in resolution from low to high by the European Space Agency, the
German Aerospace Center, and the National Aeronautics and Space Administration. Satel-
lites such as CARTOSAT-I, Indian Remote Sensing (IRS-P6), linear imaging self-scanning
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sensor (LISS-III), LISS-IV, and others, demonstrate simulated data at various spatial resolu-
tions with more consistent and reliable information on TOFs by the Indian Space Research
Organization [31–35]. For the classification of linear patches of TOFs along roadside and
field bunds, the IKONOS fused image (MSS and PAN) showed itself to be superior [36].
These effectively provide credible information on urban greens and forest cover in en-
vironments that have been heavily influenced by humans [37–41]. The RS&GIS detects
changes in forest cover and TOFs concerning land use/land cover (LULC) primarily using
historical and recent satellite photos (LANDSAT and RapidEye), which are supplemented
by ground verification [42]. As a result, this method appears to be practical for identifying
and stratifying TOFs.

Woodlands are usually exposed to heterogeneity in the environment due to various
factors (climate change, edaphic, topographical and land use changes), and differences
are observed in terms of the phenotypic response, as shown by the morphological traits,
viz. height, diameter, branching pattern, abiotic and biotic interference, which reflect the
varied adaptive response. In silviculture and forestry practice, it is necessary to predict the
variation in morphological traits [43] as the size class distribution reveals information about
the stand structures (SS) and its dynamics. This type of study reveals the demographic
stability and phenotypic plasticity of a species in an area. Phenotypic plasticity is considered
one of the major means by which exotics, such as Eucalyptus sp., Populus sp., and Grevillea
sp., cope with the variation of factors specific to each locality. Individuals of a species
often experience different environmental conditions, which often require adaptation in
a particular habitat to maximize fitness [44]. Notably, a genetic resources assessment
includes the relative abundance, richness, size variation, and spatial variation, which might
facilitate reliable, precise, and verifiable evidence on the expected size class of trees within
its ecological niche [45,46], commonly described by frequency distribution and expressed
on a unit area basis [47]. According to Pastorino et al. (2021) [48], “Genetic resources from
any biological organism-complete genomes, genes, or even portions of genes that have
actual or potential relevance to humans”. Thus, in tree species, it becomes necessary to
categorize and characterize the morphological traits in which phenotypic plasticity may
play a significant role to predict global climate change and the ecological consequences.
For instance, land use change and invasiveness at an ecosystem level can be assessed. As
individual genotypes have the potential for adaptive variance, plasticity in plants possibly
broadens ecological ranges and reduces the impact of selection [49,50].

As per the insufficient literature available in the Indian context, G. robusta has not
yet been studied for habitat suitability, phenotypic plasticity, and quantification of genetic
resources, particularly in the Himalayas. It is hypothesized that the generation of baseline
data and information through species distribution modeling (SDM) is an important tool to
assess the potential habitat suitability range and key factors determining the phenotypic
plasticity of this species; therefore, this work represents the characterization of G. robusta
in the northwestern Himalayas by targeting the following objectives: (i) quantification of
genetic resources through size class distribution and assessment of the phenotypic plasticity
on the basis of morphological parameters; (ii) exploration and mapping of the current extent
of the distribution range using a MaxEnt modeling approach and plotting on the Köppen–
Geiger climate classification (KGCC) and geological maps; and (iii) prediction of the spatio-
temporal habitat suitability range of G. robusta in accordance with future climate change
scenarios. Holistically, the study provides an opportunity for the suitable implication to
map a heterogenous formation of TOFs, and direction for exotic tree management in the
landscape ecosystem of the Himalayas.

2. Materials and Methods
2.1. Field Survey and Sampling Strategies

Grevillea robusta was planted in an inhabited site, most likely by forest officials and
human interventions; therefore, the field surveys were conducted throughout the road
networks (rural, state, and national highways), government institutions, schools, hospitals,
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industrial areas, etc. (planted as avenue trees), in the 13 districts representing the state of
Uttarakhand of the northwestern Himalayas during 2018–2022 (Figure 1).
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Figure 1. Tree form of Grevillea robusta. (a) roadside plantation, (b) trunk representing bark, (c) leaves,
(d) flowering trees, (e) inflorescences showing florets, (f) immature pods, and (g) mature seeds.

The study area lies between N 28◦43′31.288′′ to 31◦27′07.908′′ latitude and E 77◦34′26.805′′

to 81◦02′23.228′′ longitude with an elevation ranging from 150 to 1934 m msl (Figure 2).
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Figure 2. The SENTINEL showing the current distribution of G. robusta in northwestern Himalayas.

A multiphase random sampling methodology was applied. Initially, extensive surveys
were conducted to determine the species occurrence areas. The sampling followed linear
transects (quadrats) of 100 m laid out, where at least one tree was present, and a width
of 10 m was considered for each transect forest survey of India (FSI 2010). In the second
phase, geospatial data (latitude, longitude, altitude) was recorded with a GARMIN Etrex
10 handheld global positioning system (GPS) device in the degree–minute–decimal format
with a positional accuracy of 5–8 m for each sampling plot. The trees were counted all
along the roadsides, institutional lands, and parks. This unbiased sampling approach in
different stages was adopted to reduce the cost, but it also allowed us to focus on the in-field
operations around the selected points for precise estimates. The methodology also provides
the potentially accurate estimate of species distributions with minimum errors [51]. A total
of ~1557 quadrats were recorded from all thirteen districts of Uttarakhand.

2.2. Size Class Distribution

The data on ~13,000 trees representing ~1557 quadrats were recorded by assuming that
all the trees were present in the same plot with same size characteristics (as the observed
trees were planted ones). The morphological parameters, such as tree height (TH, m) and
clear bole height (CBH, m) measured by a Bluemish altimeter, the girth at breast height
(GBH, m) and crown width (CW, m) measured by meter tape, and branch angle [BA, (◦)]
measured by a visual superimposition of a protractor were also recorded. Furthermore, the
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diameter at breast height (DBH, m) was calculated from GBH by dividing by 3.14 (G = πD,
where G = girth, D = diameter, π = 3.14).

During recording of the field data, biotic factors, such as the incidence and severity of
diseases (DI) or insect or pest (IPI) attacks on the trees were also taken into consideration.
These symptoms were analyzed by ocular observation and noted down by a given scalar
method to determine the actual severity (Table 1).

Table 1. Scoring pattern of individual tree of G. robusta for in-field observation.

Sl. No.
Category

Score
Disease Severity Insect/Pests Incidences

1. No infection No incidence 1
2. 1–15% 1–15% 2
3. 15–30% 15–30% 3
4. 30–45% 30–45% 4
5. >45% >45% 5

Each tree was given a score according to the extent of DI and IPI, and the final severity
was evaluated as per the standard formula [52,53] (Koyshibayev and Muminjanov 2016).
The overall size class distribution of G. robusta for variables TH and DBH were classified by
dividing the samples into four size classes in accordance with their altitudinal gradient,
i.e., <601 m, 601–1050 m, 1051–1500 m, and >1500 m msl, and were then classified into
four frequency classes representing juvenile, young, adult, and mature trees on the basis of
DBH [54]. Similar classes were determined for the other morphological parameters, such
as CBH, CW, BA, DI, and IPI.

2.3. Climatic and Geological Mapping for Current Distribution and Future Prediction

The prediction mapping scheme for G. robusta is shown in Supplementary Figure S1.
The forest cover map of the study area was generated by using SENTINEL datasets of
Uttarakhand. The output was generated into two major classes (forest and non-forest),
but we used the sample data of the non-forest classes map for exotic G. robusta. For this,
Google Earth™ imagery was used to vectorize the road network, and the vector product
was saved in a Keyhole Markup Language (KML) file format. Furthermore, the KML file
was converted into a shapefile using ArcGIS Ver. 9.3 software.

Additionally, the bioclimatic variables were used in SDM with an average monthly
climate data for the minimum, maximum, and mean temperature and precipitation over
1970–2000, with a 30 s (~1 km2) resolution of WorldClim Ver. 2 [55]. To create the layers of
elevation, slope, and aspect, a scene from the Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) sensor and a global digital elevation model (GDEM) were
used [56]. Direct normal irradiance (DNI) provides the monthly average, annual average,
and daily total solar resource averaged over the surface cells of 0.038 degrees in both latitude
and longitude, or nominally 4 km in size. Further, the direct normal irradiance (DNI)
was downloaded from the Solar Energy Centre, Ministry of New and Renewable Energy
(MNRE), Government of India (GoI), New Delhi (https://maps.nrel.gov/nsrdb-viewer/;
25 October 2022).

Finally, maximum entropy (MaxEnt) modeling was used to estimate the current distri-
bution and identify the potential future habitat suitability areas in the Uttarakhand using
the MaxEnt Ver. 3.1 program [57]. The geospatial parameters and environmental variables,
i.e., iso-thermality (Bio 3), min temperature of the coldest month (Bio 6), mean temperature
of driest quarter (Bio 9), precipitation of driest month (Bio 14), precipitation seasonality
(Bio 15), precipitation of driest quarter (Bio 17), slope, and aspect, have maximum permuta-
tional contribution in prediction and were used in 100 replicates. Important model features,
such as linear (0.050), quadratic (0.050), hinge (0.500), categorical (0.250), and threshold
(1.000), were used with 10,000 background points. To decrease model over-prediction or

https://maps.nrel.gov/nsrdb-viewer/


Sustainability 2023, 15, 12292 7 of 22

overfitting, the regularization multiplier (RM) value was set to 0.1 with 5000 iterations and
the rest of the settings were kept as default [58–61].

The outcome of the model depends on the area under receiver operating characteristic
(ROC) curve (AUC) and the jackknife test. The AUC determines how the model runs
and its prediction significance, whereas the jackknife test determines the influence and
contribution of each variable used in prediction modeling [57,62,63]. The current prediction
distribution had a probability range from 0 to 1, which were regrouped, and those with
a value >0.7 were used in the present study. The distribution map area was overlaid on
the KGCC (1976–2000) derived from Kottek et al. (2006), [64] and the geological map
(geological survey of India; http://bhukosh.gsi.gov.in; 15 November 2022). The objective
of comparing the current distribution to the geological map of Uttarakhand is to investigate
the possible influence and correlation of bedrock types in the habitat suitability range of
G. robusta. With respect to the scale of this study, a map of the current (Figure 2) and future
maximum possible habitat suitability occurrence prediction of RCP 8.5_2050 (1000 m buffer)
was overlaid on a simplified geological map (1:2M scale, geological survey of India) to
avoid the geological complexity that is typical of orogenic regions like the Himalayas.

Effectively, the MaxEnt was further used for future prediction, where the data of
two time periods, i.e., 2041–2060 (2050s) and 2061–2080 (2070s), signify four representative
concentration pathways (RCPs), i.e., 2.5, 4.5, 6.0, and 8.5 were downloaded from WorldClim
(http://www.worldclim.org; 18 February 2022). The RCPs data were used with the same
set of eight bioclimatic variables, and the output > 0.7 was masked by a 500 m and 1000 m
buffer to generate the probable habitat suitability prediction map in accordance with
the climate change scenarios. Additionally, the accuracy of the habitat suitability map
(generated through the MaxEnt model output) was evaluated by estimating the kappa
coefficient (K), normalized mutual information (NMI) n(s), true skill statistics (TSS), etc.,
using the derivatives of the confusion matrix [65,66].

3. Results
3.1. Geographical Distribution and Stand Structure (SS)

The field data revealed that G. robusta distribution ranges from 165 to 1957 m amsl,
and occurs mainly in roadside plantations, community park land, schools, and official
premises. A widespread distributional range with respect to altitude and latitude was also
observed at the landslide-prone areas of national and state highways (district Uttarkashi
and Chamoli), where the species has reclaimed and stabilized the slope. The tree is majorly
found in the planted strips and is associated with other roadside planted species, such as
Alstonia scholaris, Cassia fistula, Holoptelia integrefolia, Saraca asoka, and in some places with
Pinus roxburghii.

In total, ~13,000 trees were counted for morphological parameters, and each tree was
distributed into one of four categories (juvenile, young, adult, and mature trees) along the
altitudinal gradient (<601–>1500 m msl). For the stand structure (SS) size class distribution
analysis, parameters, viz., TH and DBH (derived from GBH; Figure 3b), were used. For
all the altitudinal classes, the frequency distribution of the height class (ranging from
9.1–27.0 m) and the diameter class (ranged from 0.24–0.44 m) revealed that young trees
and adult trees were the most frequent (Figure 3a–c). Other parameters, such as CBH,
CW, and BA, were also measured to determine the characteristic superiority and potential
to adapt in varied localities. The CBH class revealed that up to 5 m in tree height, the
maximum number of trees had a good, clear, cylindrical bole (Figure 3d). A large number
of trees occupies the maximum range (>3.0 m) of CW, which shows G. robusta dominance
for height superiority (Figure 3e). The branch angle class indicates that a maximum number
of individuals are near to a right angle, i.e., >70.0◦ (Figure 3f). Notably, the DI and IPI for
each tree revealed that there was a low to very low level of biotic severity in the studied
stand (Figure 3g–h).

http://bhukosh.gsi.gov.in
http://www.worldclim.org
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along the altitudinal gradient. (a) Tree height (TH), (b) girth at breast height (GBH), (c) diameter
at breast height (DBH), (d) clear bole height (CBH), (e) branch angle (BA), (f) crown width (CW),
(g) disease incidences (DI), and (h) insect/pest incidences (IPI). Red = juvenile seedlings/trees,
blue = young trees, green = adult trees, and yellow = mature trees.

3.2. Current Habitat Suitability Mapping through MaxEnt Modeling

A total of 1167 geo-coordinates were recorded from 13 districts of Uttarakhand to map
the geographical distribution (Figure 2). In total, ~821 (70.35%) GPS points were used to
test the MaxEnt model, and the remaining were utilized for validation. The performance
was evaluated by AUC, and the model with the best performance was used for prediction
mapping (Table 2). The average replicate runs were 0.836 ± 0.008, which revealed the best
fitting ability of the model with the bioclimatic variables used for the test data. In addition,
the habitat suitability range generated using a MaxEnt approach showed a moderate to
very good correspondence for a predictive map of G. robusta, as revealed by the statistical
measures, such as K (0.216), NMI (0.240), TSS (0.686), and others that are shown in Table 3.
The model revealed that the minimum temperature of coldest month (Bio 6), slope (Slo),
mean temperature of driest quarter (Bio 9), and precipitation of driest quarter (Bio 17),
contribute significantly and all the variables have associated permutational importance.
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Table 2. The AUC, permutation importance, and the percentage contribution of the different variables.

Time Period, Climate
Change Scenario/

AUC Value
(Percentage)

Labels Bio 3 Bio 6 Bio 9 Bio 14 Bio 15 Bio 17 Slop Asp

Variables
Iso-Thermality

[(Bio 2/
Bio 7) × 100]

Min.
Temperature of
Coldest Month
(Std. Deviation
× 100)

Mean
Temperature of
Driest Quarter

Precipitation of
Driest Month

Precipitation
Seasonality

(Coefficient of
Variation)

Precipitation of
Driest Quarter Slope Aspect

Scaling Factor 100 100 10 1 1 1

Units ◦C C of V ◦C mm mm mm 0 0

Current/
83.6 ± 0.8

Percent contribution 2.8 32.3 13.9 2.5 4.5 13.0 15.1 4.8
Permutation importance 1.8 33.9 14.1 3.9 6.7 18.4 12.7 2.7

RCP 2.6–50/
82.9 ± 2.8

Percent contribution 6.7 49.4 11.7 3.9 6.6 10.0 9.5 2.2
Permutation importance 6.0 17.2 48.8 2.8 8.1 10.0 6.4 0.6

RCP 4.5–50/
82.6 ± 2.6

Percent contribution 5.3 47.6 6.5 1.5 6.1 18.5 12.0 2.4
Permutation importance 2.2 57.0 16.1 0.9 3.7 14.0 5.6 0.5

RCP 6.0–50/
82.8 ± 2.5

Percent contribution 8.0 51.5 3.0 2.5 4.4 16.1 11.8 2.7
Permutation importance 6.3 49.7 5.0 5.1 5.5 19.2 8.2 5.1

RCP 8.5–50/
82.1 ± 2.7

Percent contribution 5.1 52.8 8.0 1.1 4.1 15.1 10.8 2.9
Permutation importance 1.4 51.6 18.0 2.0 4.6 14.8 6.9 0.6

RCP 2.6–70/
83.3 ± 2.5

Percent contribution 6.8 52.5 11.4 5.2 6.9 5.5 9.6 2.1
Permutation importance 4.8 35.2 30.8 6.9 8.9 6.6 6.1 0.7

RCP 4.5–70/
80.8 ± 2.9

Percent contribution 10.3 28.9 4.3 32.2 5.7 3.8 11.9 2.8
Permutation importance 2.4 39.5 9.7 26.0 4.6 12.5 4.8 0.6

RCP 6.0–70/
79.3 ± 3.6

Percent contribution 9.8 31.9 31.9 34.9 2.5 1.3 12.6 3.3
Permutation importance 5.4 57.4 57.4 3.9 4.0 4.9 9.4 1.0

RCP 8.5–70/
81.0 ± 3.7

Percent contribution 11.2 51.2 4.1 14.3 1.8 3.3 11.6 2.5
Permutation importance 2.0 36.3 9.4 31.8 1.1 14.6 4.4 0.4
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Table 3. Confusion matrix-derived measures of classification accuracy.

Measures Calculated Value

Overall accuracy 0.822
Error rate 0.177

Prevalence (P) 0.037
Overall diagnostic power 0.963
Correct classification rate 0.822

Sensitivity (Sn) 0.865
Specificity (Sp) 0.821

False positive rate 0.217
False negative rate 0.135

Positive predictive power (PPP or TPR) 0.157
Negative predictive power (NPP or TNR) 0.994

Misclassification rate 0.178
Odds ratio 29.301
Kappa (K) 0.216

Normalized mutual information (NMI) n (s) 0.240
True skill statistic (TSS) 0.686

Geospatial test (used for validation) data were then overlaid on MaxEnt, which fell in
the actual area of species occurrence, revealing a high level of accuracy in the prediction and
estimation of distribution. The current habitat suitability map indicates that the maximum
percentage of geo-coordinates that occur in the actual area of validation of the model mostly
fell in the districts of Champawat and Tehri (100%), followed by Haridwar (80.0%) and
Uttarkashi (78.04%) (Figure 2).

The MaxEnt modeling revealed the current habitat suitability area of ~1641 km2 for
G. robusta, which represents 3.07% of the total geographical area and 5.62% of the non-forest
areas in the state of Uttarakhand (Table 4). The highest distribution area (~321 km2) was
recorded for Pauri district, followed by Almora (~317 km2), Dehradun (~258 km2), and
Uttarkashi (~164 km2), while the lowest distribution area was estimated for Champawat
(~22 km2) and Bageshwar (~56 km2).

Table 4. Estimated area under G. robusta in different districts of Uttarakhand Himalayas through
MaxEnt modeling.

Sl. No. Districts Geographical
Area (km2)

Non-Forest
Cover (km2)

Estimated Area
(km2)

Estimated Area (%)
in Respect to Total
Geographical Area

Estimated Area (%)
in Respect to

Non-Forest Cover

1. Almora 3139 1426 317.4 5.87 1.09
2. Bageshwar 2246 980 56.26 4.20 0.19
3. Chamoli 8030 5321 113.97 15.01 0.39
4. Champawat 1766 542 21.78 3.30 0.07
5. Dehradun 3088 1483 257.56 5.77 0.88
6. Haridwar 2360 1772 84.53 4.41 0.29
7. Nainital 4251 1203 53.12 7.95 0.18
8. Pauri 5230 1935 320.86 9.78 1.10
9. Pithoragarh 7090 5012 52.38 13.26 0.18
10. Rudraprayag 1984 843 87.51 3.71 0.30
11. Tehri 3642 1577 50.55 6.81 0.17
12. Udham

Singh Nagar 2641 2106 61.83 4.94 0.21
13. Uttarkashi 8016 4988 163.69 14.99 0.56

Total 53,483 29,188 1641.44 3.07 5.62

Source: Geographical area and non-forest cover, forest survey of India report (FSI 2019).

Furthermore, in order to investigate the possible relationships between species habitat
suitability and climatic conditions, the current map was overlaid on the KGCC map. The
KGCC map for the current distribution of G. robusta classified the Uttarakhand Himalayas
into 5 subtypes (Figure 4). According to the generated output, the species occurs in
four climate regions. Remarkably, the maximum occurrence of species was found in the
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humid subtropical climate (Cwa; C = warm temperate, w = winter dry, and a = hot summer)
of the lower stretches of the Shivalik range, followed by the subtropical highland oceanic
climate (Cwb; C = warm temperate, w = winter dry, and b = warm summer) of the middle
Himalayas; however, a very low occurrence was observed in the monsoon-influenced
warm, humid summer continental climate (Dwb; D = Snow, w = winter dry, and b = warm
summer) and subarctic climate (Dwc; D = Snow, w = winter dry, and c = cool summer).
This type of climatic condition prevails in the high-altitude ranges of the middle Himalayas
of the districts Chamoli, Pithoragarh, and Rudraprayag.
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Figure 4. Plot of current MaxEnt results over Köppen–Geiger climate classification (KGCC) map.
Cwa—warm, temperate winter and dry, hot summer; Cwb—warm, temperate winter and dry, warm
summer; Dfc—snowy winter and humid, cool summer; Dwb—snowy winter and dry, warm summer;
Dwc—snowy winter and dry, cool summer; and ET—polar tundra.

3.3. Predicted Future (2050s and 2070s) Climatic Habitat Suitability Range

The future habitat suitability range of G. robusta is depicted in Supplementary Figures
S2a–h and S3a–h. The environmental variable minimum temperature of the coldest month
(Bio 6) contributes an overall maximum (52.8%; 51.6) during RCP 8.5–50, whereas the
minimal (1.5%; 0.9) was attained by the precipitation of the driest month (Bio 14) during
RCP 4.5–50. Compared with the area of the most optimal habitat, the predictions for 2050
and 2070 using the RCP 2.6, 4.5, 6.0, and 8.5 climatic models show almost or slightly more
habitat suitability than the current prediction. The aerial enhancements of ~85 km2 and
~226 km2 were shown by RCP 2.6–2070 in 500 m buffer and RCP 6.0–2070 in 1000 m buffer,
respectively, when compared with the current scenario.

Notably, under the future scenarios, in the 500 m buffer zone, the RCP 8.5 shows
a maximum potential occurrence of ~109 km2 and ~97 km2 for the years 2050 and 2070,
respectively, with predicted species distribution in the non-forest agricultural areas and
wastelands in the hills (Figure 5a–d). The non-forest regions of Tons (Upper Yamuna,
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Barkot, Uttarkashi), Kalsi (Mussoorie, Dehradun), the Kedarnath Wildlife Sanctuary, and
the Badrinath Forest Division are the potential areas for habitat suitability. For a 1000 m
buffer, RCP 6.0 shows the maximum potential occurrence area (~309 km2) for 2050 and
RCP 8.5 (~247 km2) for 2070. The species occurrence in non-forest, pasture, and other
adjacent land areas is similar to the 500 m buffer zone with the inclusion of the Almora
Forest Division during 2050.
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Figure 5. Representation of future habitat suitability range of G. robusta in northwestern Himalayas.
Note: (a) RCP 8.5–2050 and (b) RCP 8.5–2070, for 500 m buffer; (c) RCP 6.0–2050 and (d) RCP 8.5–2070,
for 1000 m buffer. (1) Netwar near Tons River, (2) Kalsi & Mussoorie, (3) Kuthnaur near Barkot,
(4) Karn prayag, Kedarnath Wildlife Sanctuary & Badrinath Forest Division, and (5) Dhanya in
Almora Forest Division.

3.4. Geological Correlation to Predict Current Distribution and Future Habitat Suitability Range
for G. robusta

Remarkably, the map (Figure 6) shows that the Uttarakhand region is marked by
a prominent NW–SE trend of geological variation, whereas the distribution of G. robusta
rather follows a preferential NE–SW trend. The trend followed by the species coincides
with the main orientation of the valleys carved by rivers that drain the more elevated areas.
Importantly, the occurrence of G. robusta significantly coincides with soils formed over rock
types with high iron content. Notably, the five main locations of the habitat suitability range
could be identified. Location 1 consists of rocks from the Jaunsar Group (Mandhali, Chand-
pur, and Nagthat formations), which is composed of quartzite, slate, phyllite, dolomite, and
meta-basic volcanics (high iron content). These are also influenced by rocks from the Central
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Crystallines, located upstream, which are composed of quartz–mica–chlorite–hornblende
schist (high iron content) and gneiss. Location 2 comprises the Dum gravels and Kapkot
alluvium, in which gravel, pebbles, and boulders are included in an oxidized matrix (the
iron oxide-rich matrix makes iron promptly available). Location 3 consists of rocks from
the Garhwal Group, limestone, slate, and quartzite associated with metabatic volcanics
(purple color in the map, with very high iron content). Location 4 presents a similar context
to location 3; it is in the Garhwal Group and has high iron meta volcanics. Lastly, location 5
is the weakest habitat suitability range, as it comprises rocks from the Almora Group and
the Gorakhnath Formation, which includes garnet–mica–chlorite schist (high iron content,
but not as high as the rocks at the other sites), quartzite, and phyllite.
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Figure 6. Plot of MaxEnt results for current distribution and future habitat suitability prediction (RCP
8.5 in 2050, 1000 m buffer) of G. robusta over the geological map of northwestern Himalayas (1:2M
scale, geological survey of India). See text in Section 3.4 for description of habitat suitability prediction
sites. (1) Netwar near Tons River, (2) Kalsi & Mussoorie, (3) Kuthnaur near Barkot, (4) Karn prayag,
Kedarnath Wildlife Sanctuary & Badrinath Forest Division, and (5) Dhanya in Almora Forest Division.

4. Discussion
4.1. Geographical Distribution, Stand Structure, and Phenotypic Plasticity

The ecological niche of a species exhibits different environmental conditions within
the distribution area; thus, it is not possible that only a single phenotype reveals the
highest fitness levels (survival and adaptation) in all the conditions [67]. Species with
wide geographical range have the potential to exhibit large intraspecific variations in
morphology, which might be a good model to study the local and regional adaptations [68].
In India, the genus Eucalyptus, Populus, and Casuarina have been studied in greater detail
with respect to their morphological traits and molecular variations, besides analyzing their
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adaptability to a particular climate, soil type, and region. No attempt has been conducted
on the basic distribution and morphological attributes in G. robusta to reveal the species’
phenotypic plasticity.

Therefore, the present work on this species was carried out in Uttarakhand Himalayas,
which consist of five climatic zones, i.e., tropical, montane subtropical, montane temperate,
sub-alpine, and alpine, with an altitude range from 150 m to above 7800 m msl. Different
morphological parameters, such as TH, GBH, CBH, CW, BA, DI, and IPI, were differenti-
ated into four classes by assuming that the size class (DBH) is directly related to the age
class distribution [69]. Under this assumption, the lower limit of the class interval was
defined for juvenile individuals followed by young, adult, and mature trees. This approach
might allow for more accurate classification, in addition to providing the health status of
the stand, thus revealing the morphological trait plasticity of the sampled trees used in
the study. The height and diameter class revealed that the young and adult trees were
found at the maximum number in the mid-altitudinal range, i.e., 601–>1500 m msl (the
maximum number of individuals falls within TH ranged between 9.1 and 27 m and DBH
class from 0.24 to 0.44 m) with both parameters, i.e., TH and DBH, falling in the middle
range class, showing the demographic stability of the species in the Himalayan terrain.
Corroborating our findings, changes in the stand structure for TH and DBH were obtained
for the vegetation present in the temperate forests of Mount Norikura, Japan [70].

Similarly, the effect of the DBH class distribution was observed in different altitudinal
gradients in the western Himalayas [71]. Based on the number of individuals in different
altitudinal classes, the study on the altitudinal behavior of the tree species (365 species) in
the Subansiri district, the eastern Himalayas revealed that the highest frequency of species
were restricted to 400–600 m and 800–1000 m msl [72]. In addition, the parameters, i.e., CBH,
CW, CA, IPI, and DI, were also studied for G. robusta; however, limited studies have been
carried out for variation in CBH, CW, and CA with respect to the altitudinal gradient, which
also reveals that the maximum number of individuals found in the mid-class range and
parameters falls mostly in the mid-altitudinal range (601–1500 m). Importantly, research
has been conducted for DI and IPI in relation to the altitudinal gradient, where some species
are resistant to a particular pathogen or insect at a lower altitude, while others are resistant
at a higher altitude. For instance, infestation by Antestiopsis thunbergii in Coffea arabica was
assessed in 24 coffee farms located at an elevation gradient of 1000–1700 m, where the bug
prefers the host species at higher elevations [73].

4.2. Habitat Suitability Range through MaxEnt Modeling

Predicting the extent of the spread of an exotic plant in its introduced range is diffi-
cult due to a lack of detailed knowledge of the species’ biology and ecology, and the key
environmental predictors in its new ranges; thus, an assessment of the habitat’s suitabil-
ity is a valuable modeling approach used to predict the appropriate conditions for the
introduction of any exotic tree species [74]. As G. robusta is mainly a plantation crop, pre-
diction modeling and habitat suitability mapping for an appropriate cultivational/planted
region through modeling-based approaches are now becoming an effective and applica-
ble technique to assess the concurrence/relationship between environmental factors and
the species [75].

The biomes are mainly controlled by a climate that strongly determines plant and
animal distribution on the planet [76]; thus, climatic classifications provide a convenient
tool for the validation of models for species distribution with a simulated analysis of future
climate changes [77]. Notably, out of the total area (53,483 km2) of Uttarakhand, an area
of ~1641 km2 was estimated with a significant AUC value (0.836 ± 0.8) determined by
the performance and parameters, such as K (0.216), NMI (0.240), and TSS (0.686), which
revealed the accuracy of the MaxEnt model. In the present study, all the models had AUC
values higher than 0.8, except RCP 6.0–70. Similar AUC values were reported for Vincetoxi-
cum arnottianum [78], Hyptis suaveolens [79], Scutellaria baicalensis [80], and Oxytenanthera
abyssinica [81]. Notably, the K value is the most widely used measure and shows fair agree-
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ment for the performance of models generating presence–absence predictions in G. robusta,
whose statistical value ranges from −1 to +1, where +1 indicates perfect agreement and
values of zero or less indicate a performance no better than random [82]. Despite its wide
use, several studies have criticized it for being inherently dependent on prevalence, and
researchers have argued that this dependency introduces statistical artefacts to estimates
of predictive accuracy. Therefore, the NMI and TSS are better measures of the perfor-
mance of presence–absence distribution models, which corrects for this dependency on
prevalence while keeping all the advantages of K [66]. However, in a critique to Allouche,
Somodi et al. (2017) [83] discussed that TSS is prevalence-independent, but only under
strict assumptions and large sample sizes. A TSS value closer to one is considered excellent.

Determining the method by which the correct number of environmental factors is cho-
sen is important for using MaxEnt to predict the distributions of exotic species. According
to the contribution rate of environmental factors and the permutational importance in the
jackknife test, this study found that the minimum temperature of the coldest month (Bio 6),
the slope (Slo), the mean temperature of the driest quarter (Bio 9), and the precipitation
of the driest quarter (Bio 17) predict the occurrence G. robusta in the Uttarakhand. In the
case of Xanthium italicum, factors such as the annual mean temperature, the monthly mean
diurnal temperature range, the standard deviation of the seasonal temperature change,
and the annual average precipitation contributed most to the prediction of the exotic range
of distribution in China [84]. Similarly, endemic Pomatosace filicula under climate change
scenarios revealed that the altitude, annual precipitation (Bio 12), and annual temperature
range (Bio 7) contributed most in determining the range of species in the Qinghai–Tibet
Plateau [85]. Furthermore, the variables of temperature seasonality and isothermality con-
tributed significantly in predicting the current and future distribution scenarios of Acacia
reficiens and Opuntia spp. in Laikipia–Samburu, Kenya [86]. All these studies suggest that
temperature variables contribute remarkably to the prediction of a species’ exotic range.

Though the G. robusta has a wider distribution range and, in our case, lies between
165 and 1957 m msl, the maximum probability of presence was limited to a range between
700 and 1600 m msl. Moreover, the species shows better adaptability across the altitudinal
gradient (<601–>1500 m msl), which represents climatic conditions ranging from hot
summers to cold winters. The resulting map effectively shows the current distribution
in humid subtropical climate areas, particularly in the lower stretches and foothills of
the Shivalik, followed by the subtropical highland oceanic climate areas of the middle
Himalayas (Figure 4). In these elevation ranges, the precipitation varies from 200 to
250 cm per annum and the lower average temperature ranges between 19 and 21 ◦C. The
lower montane zone has an average annual temperature of 14–18 ◦C with precipitation of
250–300 cm per annum [87]. These ideal climatic conditions were also revealed to match
the widespread distribution of G. robusta in Rwanda [88]. The same classification system
has been used to determine the global potential of exotics in different regions of the world,
i.e., Jatropha curcas’ distribution, a plant that can be used to help replace fossil fuels [89];
and the system has also been applied when seeking potential distributions of native and
alien Australian Acacias, i.e., A. cyclops and A. pycnantha in Australia and South Africa,
respectively [90].

4.3. Future Habitat Suitability Range

Since the species is well adapted, as evidenced by its vast distribution and broad
geographical range in the study area (Figure 2), it might be possible that the species shows
the sign of potential suitability and adaptation in an extensive range of Uttarakhand and
other regions of the northwestern Himalayas. Exotic tree plantations offer the potential
to respond to increasing pressure for deforestation, besides delivering social, economic,
and environmental advantages [91]. However, to understand the possible extent of the
introduced species, it is necessary to ensure their broad range of establishment that may
restore the wedged habitat. For such a study, habitat suitability modeling provides a tool for
researchers and land managers to understand the possible ranges of introduction and make
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decisions about the future prospects of the species’ introduction [40]. The exotic species
could be able to contribute to increased economic returns in addition to being capable of
having a strong impact on the ecosystem processes, particularly when it differs from the
native flora in many key morpho-functional features [92]. However, the adaptive behavior
of a non-native species in a new ecological niche [93] realizes the lagging of natural pests
or predators. The prevention of problems, such as species invasion, aggressive behavior,
threat to native species, etc., can be achieved through the implementation of SDM, which
are now increasingly used to predict the habitat suitability ranges of exotics [94]. Only
a few model-based studies have been conducted for exotic tree species [95–98], but none of
these were conducted in India.

Additionally, to overcome these challenges, the distinction between the predictions
of current and future distributions is critical [94]. In the prediction modeling, the key
environmental variables of habitat suitability included the climate (mostly represented by
temperature seasonality; annual standard deviation in temperature), altitude, distance to
the nearest urban and built-up area, etc. [99]. In order to map the suitability pattern, it is
necessary to understand the factors controlling the species distribution [100]. This will help
in managing exotics with less negative impact on the ecosystem. These facts suggest that
the effective use of models in a risk assessment framework will greatly increase the utility
of SDMs for managing exotic species in a judicious manner. Prominently, the predictive
accuracy of SDMs was slight, but improved significantly when the models were calibrated
with the habitat suitability data only, not considering the native species [100] (Barbet-Massin
et al., 2018). The MaxEnt binary output provides evidence that a model is robust when it is
fit with a limited dataset. It is an appropriate tool to use when land management objectives
are supported by limited resources; thus, it requires a conservative but highly accurate
estimate of habitat suitability for exotic species in the landscape [101,102].

Accurate monitoring of the distribution of any exotic species is of the utmost impor-
tance and is urgent and essential for developing cost-effective control strategies before the
large-scale introduction of a species. Earlier research has also suggested the effective use
of SDM and RS&GIS technology for depicting the potential habitat suitability pattern of
different species around the globe. Many studies have been carried out for predicting the
habitat suitability of natural forest tree species, such as Juniperus sp. in the southern Zagros
Mountains of Iran [103], Perilla frutescens in Uttarakhand, India [104], and Carthamus tincto-
rius in China [75]; as well as for exotic tree species, such as Ligustrum lucidum in Córdoba,
Argentina [105] and Robinia pseudoacacia in northeast Slovenia [106]; and the mapping
of urban tree species, such as Acer platanoides, Thuja plicata, Prunus serrulata, Pseudotsuga
menziesii, Gleditsia triacanthos, and A. rubrum in Columbia [107], and Spartina alterniflora in
the central coast of Jiangsu in east China [107].

4.4. Geological Correlation to Current and Future Habitat Suitability Prediction

Finally, in addition to climate control, bedrock geology is also an important and signif-
icant factor that determines the soil composition, thus exerting control over the distribution
and potential adaptability of any plant species [108]. As presented in Section 3.4, the
results of the geological analysis reveal an intriguing geological correlation of the habitat
suitability pattern of G. robusta with the occurrence of rocks presenting an elevated iron
content. During the field surveys, fewer young seedlings were found, which might be due
to the fact that the species mainly occurs adjacent to the major roads that are usually cov-
ered with concrete material. In some places, particularly in landslide-prone areas and soil
dumping zones, some seedlings have been able to thrive. These observations demonstrate
the species’ great potential to thrive in varied soil conditions; hence, the geological pattern
of the bedrock in the region presents very low control over the distribution of G. robusta.
The statement is also supported by the ability of G. robusta to grow in some of the poorest
soils in the world, especially where phosphorus is limited [109]. Despite being able to grow
in any soil type, G. robusta favors growing in fertile, deep, and light soils; however, the
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species shows poor growth in shallow, stony, and sandy soils, where the soil fertility is
low [88].

Moreover, the species does not possess regeneration problems [110]. It has been known
since the last century that some tree species of the Grevillea genus present intolerance to
high phosphate availability, known as phosphate toxicity [111,112]. Increased calcium
levels (in soils formed near limestone and dolomite rocks) can exacerbate toxicity, but
sensitivity to high phosphate levels can be reduced by improving the iron supply, even
when exacerbated by calcium [112–114]. According to these studies, an abundant iron
supply can help the susceptible plants overcome some of the physiological problems
associated with toxicity. This seems to be the case in our study area, as indicated by
the potential adaptation prediction results. Figure 6 shows that the potential is more
likely to occur in areas where the soil provides the means (iron) for the G. robusta to
overcome phosphate toxicity, improving its growth, reproduction, and consequent success
in adaptation. Calcium-rich rocks interlayered in most of the sedimentary sequences in the
study area could be the cause of toxicity issues in this species. Another possibility is that
G. robusta can use iron to acquire phosphate when the phosphate availability is extremely
low; this is achieve by the mobilization of iron phosphates around its roots, a process that
was demonstrated experimentally [115].

5. Conclusions

This study provides novel information on the size-class distribution of G. robusta
plants, which were found to vary over time depending on the biological and environmental
conditions. Importantly, the frequency distribution of the diameter class ranged from
0.24 to 0.44 m, indicating that young and adult trees were more recurrent. This shows
the demographic stability of the species in the northwestern Himalayas. This study on
G. robusta also provides novel information on the current distribution pattern, a genetic
resource assessment, future prediction scenario, and potential habitat suitability range
in the Himalayas through MaxEnt modeling approach. Under this scenario, the KGCC
suggests humid subtropical climate (Cwa) conditions prevail for the maximum occurrence
of the species; however, the natural forest areas of Tons (Upper Yamuna Barkot, Uttarkashi),
Kalsi (Mussoorie, Dehradun), the Kedarnath Wildlife Sanctuary, Almora, and the Badrinath
Forest Division show the potential habitat of G. robusta in different RCPs for the years 2050
and 2070. This distribution pattern of the species was overlaid and bestows low correlation
to the geological pattern of the bedrock in the region, revealing the ability of G. robusta to
grow in any soil type. The habitat suitability ranges are mostly confined to the regions
with the occurrence of rocks (and soils) with an elevated iron content. Iron is possibly
used by G. robusta as a condition to overcome sensitivity to toxicity, a common issue in
the Grevillea genus that might be amplified by the presence of calcium-rich soils that are
also present in the region. Iron can also be used by this species for the mobilization of iron
phosphates in extremely low P soils. Irrefutably, the present and future habitat suitability
maps, along with influential bioclimatic variables could be of paramount importance to
the forest department and land managers, policy makers, and research and development
organizations in India and around the world, who may use the results from this study for
planning long-term sustainable forest management policies for exotic tree species.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/su151612292/s1, Figure S1: Methodology flow chart; Figure S2: Predicted
distribution of G. robusta in the future scenario for different RCPs in the northwestern Himalayas
(500 m buffer). Note: RCPs from the period of 2041–2060: (a) RCP 2.6; (b) RCP 4.5; (c) RCP 6.0; and
(d) RCP 8.5; and from 2061–2080: (e) RCP 2.6; (f) RCP 4.5; (g) RCP 6.0; and (h) RCP 8.5; Figure S3:
Predicted distribution of G. robusta in the future scenarios for different RCPs in the northwestern
Himalayas (1000 m buffer). Note: RCPs from the period of 2041–2060: (a) RCP 2.6; (b) RCP 4.5; (c) RCP
6.0; and (d) RCP 8.5; and from 2061–2080: (e) RCP 2.6; (f) RCP 4.5; (g) RCP 6.0; and (h) RCP 8.5.
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Habitat Bağlantıları Üzerindeki Etkisi. Turk. J. For.|Türkiye Orman. Derg. 2016, 17, 62. [CrossRef]
40. Salam, M.A.; Pramanik, A.T.M. Mapping Trees Outside of Forests Using Remote Sensing. Int. J. Sci. Res. Publ. 2017, 2, 27–35.
41. Tuemay, T. Assessing and Mapping Ecosystem Services of Trees Outside Forest. J. Ecol. Nat. Environ. 2017, 9, 151–164. [CrossRef]
42. Rahman, M.; Islam, M.; Pramanik, M. Monitoring of Changes in Woodlots Outside Forests by Multi-Temporal Landsat Imagery.

iForest—Biogeosci. For. 2018, 11, 162–170. [CrossRef]
43. Mønness, E. The Power-Normal Distribution: Application to Forest Stands. Can. J. For. Res. 2011, 41, 707–714. [CrossRef]
44. Morris, D.W. Adaptation and Habitat Selection in the Eco-Evolutionary Process. Proc. R. Soc. B Biol. Sci. 2011, 278, 2401–2411.

[CrossRef]
45. McElhinny, C.; Gibbons, P.; Brack, C.; Bauhus, J. Forest and Woodland Stand Structural Complexity: Its Definition and Measure-

ment. For. Ecol. Manag. 2005, 218, 1–24. [CrossRef]
46. Moss, I. Stand Structure Classification, Succession, and Mapping Using Lidar; University of British Columbia: Vancouver, BC, Canada,

2012; p. 170.
47. Pond, N.C.; Froese, R.E. Interpreting Stand Structure through Diameter Distributions. For. Sci. 2015, 61, 429–437. [CrossRef]

https://doi.org/10.1111/1365-2664.12362
https://doi.org/10.1016/j.gecco.2017.11.002
https://doi.org/10.1007/s10530-019-02163-x
https://doi.org/10.1016/j.ecoleng.2011.12.004
https://doi.org/10.1614/P2002-081
https://doi.org/10.1111/j.1365-2486.2005.001018.x
https://doi.org/10.1073/pnas.0505754103
https://doi.org/10.1038/nature02121
https://doi.org/10.1007/s12524-010-0038-2
https://doi.org/10.1111/1755-0998.12402
https://www.ncbi.nlm.nih.gov/pubmed/25740652
https://doi.org/10.1016/j.biombioe.2008.10.004
https://doi.org/10.1505/ifor.10.2.165
https://doi.org/10.1007/s12040-012-0237-z
https://doi.org/10.1007/s12524-013-0310-3
https://doi.org/10.5194/isprsarchives-XL-8-623-2014
https://webapps.itc.utwente.nl/librarywww/papers_2004/msc/gfm/chhabra.pdf
https://webapps.itc.utwente.nl/librarywww/papers_2004/msc/gfm/chhabra.pdf
https://doi.org/10.1016/j.rse.2006.09.034
https://doi.org/10.1590/S0034-737X2013000400006
https://doi.org/10.18182/tjf.28744
https://doi.org/10.5897/JENE2017.0654
https://doi.org/10.3832/ifor2021-010
https://doi.org/10.1139/x10-246
https://doi.org/10.1098/rspb.2011.0604
https://doi.org/10.1016/j.foreco.2005.08.034
https://doi.org/10.5849/forsci.14-056


Sustainability 2023, 15, 12292 20 of 22

48. Marchelli, P.; Pastorino, M.J.; Gallo, L.A. Temperate Subantarctic Forests: A Huge Natural Laboratory. In Low Intensity Breeding of
Native Forest Trees in Argentina; Springer International Publishing: Cham, Switzerland, 2021; pp. 27–54.

49. Mazer, S.J.; Schick, C.T. Constancy of Population Parameters for Life History and Floral Traits in Raphanus sativus l. I. Norms of
Reaction and the Nature of Genotype by Environment Interactions. Heredity 1991, 67, 143–156. [CrossRef]

50. Sultan, S.E. Phenotypic Plasticity and Plant Adaptation. Acta Bot. Neerl. 1995, 44, 363–383. [CrossRef]
51. Rocchini, D.; Hortal, J.; Lengyel, S.; Lobo, J.M.; Jiménez-Valverde, A.; Ricotta, C.; Bacaro, G.; Chiarucci, A. Accounting for

Uncertainty When Mapping Species Distributions: The Need for Maps of Ignorance. Prog. Phys. Geogr. Earth Environ. 2011, 35,
211–226. [CrossRef]

52. Akinyemi, O.M. Pests and Diseases. In Agriculture Production; CRC Press: Boca Raton, FL, USA, 2020; pp. 105–128. [CrossRef]
53. Koyshibayev, M.; Muminjanov, H. Guidelines for Monitoring Diseases, Pests and Weeds in Cereal Crops. Available online:

https://mel.cgiar.org/reporting/download/hash/442ac425f94f898ee83ca09502c72b58 (accessed on 15 February 2020).
54. Curtis, J.T.; McIntosh, R.P. The Interrelations of Certain Analytic and Synthetic Phytosociological Characters. Ecology 1950, 31,

434–455. [CrossRef]
55. Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-Km Spatial Resolution Climate Surfaces for Global Land Areas. Int. J. Climatol. 2017,

37, 4302–4315. [CrossRef]
56. Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very High -Resolution Interpolated Climate Surfaces for Global

Land Areas. Int. J. Climatol. 2005, 25, 1965–1978. [CrossRef]
57. Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum Entropy Modeling of Species Geographic Distributions. Ecol. Modell. 2006,

190, 231–259. [CrossRef]
58. Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A Statistical Explanation of MaxEnt for Ecologists. Divers.

Distrib. 2011, 17, 43–57. [CrossRef]
59. Young, N.; Carter, L.; Evangelista, P.A. MaxEnt Model v3.3.3e Tutorial (ArcGIS V10); Colorado State University: Fort Collins, CO,

USA, 2011; pp. 1–30.
60. Flory, A.R.; Kumar, S.; Stohlgren, T.J.; Cryan, P.M. Environmental Conditions Associated with Bat White-Nose Syndrome Mortality

in the North-Eastern United States. J. Appl. Ecol. 2012, 42, 680–689. [CrossRef]
61. Yang, X.-Q.; Kushwaha, S.P.S.; Saran, S.; Xu, J.; Roy, P.S. Maxent Modeling for Predicting the Potential Distribution of Medicinal

Plant, Justicia adhatoda L. in Lesser Himalayan Foothills. Ecol. Eng. 2013, 51, 83–87. [CrossRef]
62. Stohlgren, T.J.; Ma, P.; Kumar, S.; Rocca, M.; Morisette, J.T.; Jarnevich, C.S.; Benson, N. Ensemble Habitat Mapping of Invasive

Plant Species. Risk Anal. 2010, 30, 224–235. [CrossRef] [PubMed]
63. Babar, S.; Amarnath, G.; Reddy, C.S.; Jentsch, A.; Sudhakar, S. Species Distribution Models: Ecological Explanation and Prediction

of an Endemic and Endangered Plant Species (Pterocarpus santalinus L.F.). Curr. Sci. 2012, 102, 1157.
64. Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. Meteorol.

Z. 2006, 15, 259–263. [CrossRef]
65. Fielding, A.H.; Bell, J.F. A Review of Methods for the Assessment of Prediction Errors in Conservation Presence/Absence Models.

Environ. Conserv. 1997, 24, 38–49. [CrossRef]
66. Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the Accuracy of Species Distribution Models: Prevalence, Kappa and the True Skill

Statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [CrossRef]
67. Nahum, S.; Inbar, M.; Ne’eman, G.; Ben-Shlomo, R. Phenotypic Plasticity and Gene Diversity in Pistacia lentiscus L. along

Environmental Gradients in Israel. Tree Genet. Genomes 2008, 4, 777–785. [CrossRef]
68. Soolanayakanahally, R.Y.; Guy, R.D.; Silim, S.N.; Drewes, E.C.; Schroeder, W.R. Enhanced Assimilation Rate and Water Use

Efficiency with Latitude through Increased Photosynthetic Capacity and Internal Conductance in Balsam Poplar (Populus
balsamifera L.). Plant Cell Environ. 2009, 32, 1821–1832. [CrossRef]

69. Kerr, G. The Potential for Sustainable Management of Semi-Natural Woodlands in Southern England Using Uneven-Aged
Silviculture. Forestry 2002, 75, 227–243. [CrossRef]

70. Miyajima, Y.; Takahashi, K. Changes with Altitude of the Stand Structure of Temperate Forests on Mount Norikura, Central Japan.
J. For. Res. 2007, 12, 187–192. [CrossRef]

71. Sharma, C.M.; Mishra, A.K.; Tiwari, O.P.; Krishan, R.; Rana, Y.S. Effect of Altitudinal Gradients on Forest Structure and
Composition on Ridge Tops in Garhwal Himalaya. Energy Ecol. Environ. 2017, 2, 404–417. [CrossRef]

72. Behera, M.D.; Kushwaha, S.P.S. An Analysis of Altitudinal Behavior of Tree Species in Subansiri District, Eastern Himalaya.
Biodivers. Conserv. 2007, 16, 1851–1865. [CrossRef]

73. Azrag, A.G.A.; Pirk, C.W.W.; Yusuf, A.A.; Pinard, F.; Niassy, S.; Mosomtai, G.; Babin, R. Prediction of Insect Pest Distribution as
Influenced by Elevation: Combining Field Observations and Temperature-Dependent Development Models for the Coffee Stink
Bug, Antestiopsis thunbergii (Gmelin). PLoS ONE 2018, 13, e0199569. [CrossRef] [PubMed]

74. Duflot, R.; Avon, C.; Roche, P.; Bergès, L. Combining Habitat Suitability Models and Spatial Graphs for More Effective Landscape
Conservation Planning: An Applied Methodological Framework and a Species Case Study. J. Nat. Conserv. 2018, 46, 38–47.
[CrossRef]

75. Wei, B.; Wang, R.; Hou, K.; Wang, X.; Wu, W. Predicting the Current and Future Cultivation Regions of Carthamus tinctorius L.
Using MaxEnt Model under Climate Change in China. Glob. Ecol. Conserv. 2018, 16, e00477. [CrossRef]

76. Stotsky, J.G.; Phelps, P.; Mu, Y. Bond Markets in Africa. Sabinet Afr. J. 2013, 3, 121–135.

https://doi.org/10.1038/hdy.1991.74
https://doi.org/10.1111/j.1438-8677.1995.tb00793.x
https://doi.org/10.1177/0309133311399491
https://doi.org/10.1201/9781482294514-8
https://mel.cgiar.org/reporting/download/hash/442ac425f94f898ee83ca09502c72b58
https://doi.org/10.2307/1931497
https://doi.org/10.1002/joc.5086
https://doi.org/10.1002/joc.1276
https://doi.org/10.1016/j.ecolmodel.2005.03.026
https://doi.org/10.1111/j.1472-4642.2010.00725.x
https://doi.org/10.1111/j.1365-2664.2012.02129.x
https://doi.org/10.1016/j.ecoleng.2012.12.004
https://doi.org/10.1111/j.1539-6924.2009.01343.x
https://www.ncbi.nlm.nih.gov/pubmed/20136746
https://doi.org/10.1127/0941-2948/2006/0130
https://doi.org/10.1017/S0376892997000088
https://doi.org/10.1111/j.1365-2664.2006.01214.x
https://doi.org/10.1007/s11295-008-0150-4
https://doi.org/10.1111/j.1365-3040.2009.02042.x
https://doi.org/10.1093/forestry/75.3.227
https://doi.org/10.1007/s10310-007-0002-3
https://doi.org/10.1007/s40974-017-0067-6
https://doi.org/10.1007/s10531-006-9083-0
https://doi.org/10.1371/journal.pone.0199569
https://www.ncbi.nlm.nih.gov/pubmed/29933391
https://doi.org/10.1016/j.jnc.2018.08.005
https://doi.org/10.1016/j.gecco.2018.e00477


Sustainability 2023, 15, 12292 21 of 22

77. Belda, M.; Holtanová, E.; Halenka, T.; Kalvová, J. Climate Classification Revisited: From Köppen to Trewartha. Clim. Res. 2014,
59, 1–13. [CrossRef]

78. Khanum, R.; Mumtaz, A.S.; Kumar, S. Predicting Impacts of Climate Change on Medicinal Asclepiads of Pakistan Using Maxent
Modeling. Acta Oecologica 2013, 49, 23–31. [CrossRef]

79. Padalia, H.; Srivastava, V.; Kushwaha, S.P.S. Modeling Potential Invasion Range of Alien Invasive Species, Hyptis suaveolens (L.)
Poit. in India: Comparison of MaxEnt and GARP. Ecol. Inform. 2014, 22, 36–43. [CrossRef]

80. Zhang, L.; Cao, B.; Bai, C.; Li, G.; Mao, M. Predicting Suitable Cultivation Regions of Medicinal Plants with Maxent Modeling and
Fuzzy Logics: A Case Study of Scutellaria baicalensis in China. Environ. Earth Sci. 2016, 75, 361. [CrossRef]

81. Gebrewahid, Y.; Abrehe, S.; Meresa, E.; Eyasu, G.; Abay, K.; Gebreab, G.; Kidanemariam, K.; Adissu, G.; Abreha, G.; Darcha,
G. Current and Future Predicting Potential Areas of Oxytenanthera abyssinica (A. Richard) Using MaxEnt Model under Climate
Change in Northern Ethiopia. Ecol. Process. 2020, 9, 6. [CrossRef]

82. Landis, J.R.; Koch, G.G. The Measurement of Observer Agreement for Categorical Data. Biometrics 1977, 33, 159. [CrossRef]
[PubMed]

83. Somodi, I.; Lepesi, N.; Botta-Dukát, Z. Prevalence Dependence in Model Goodness Measures with Special Emphasis on True Skill
Statistics. Ecol. Evol. 2017, 7, 863–872. [CrossRef] [PubMed]

84. Zhang, Y.; Tang, J.; Ren, G.; Zhao, K.; Wang, X. Global Potential Distribution Prediction of Xanthium Italicum Based on Maxent
Model. Sci. Rep. 2021, 11, 16545. [CrossRef]

85. Chen, K.; Wang, B.; Chen, C.; Zhou, G. MaxEnt Modeling to Predict the Current and Future Distribution of Pomatosace filicula
under Climate Change Scenarios on the Qinghai–Tibet Plateau. Plants 2022, 11, 670. [CrossRef]

86. Ouko, E.; Omondi, S.; Mugo, R.; Wahome, A.; Kasera, K.; Nkurunziza, E.; Kiema, J.; Flores, A.; Adams, E.C.; Kuraru, S.; et al.
Modeling Invasive Plant Species in Kenya’s Northern Rangelands. Front. Environ. Sci. 2020, 8, 69. [CrossRef]

87. Nautiyal, H.; Thapliyal, M. Impact of Micro-Climatic Variation on Floral Diversity of Garhwal Himalaya along Altitu-Dinal
Gradients. Int. J. Res. Sci. Technol. 2011, 1, 1–10.

88. Kalinganire, A. Performance of Grevillea robusta in Plantations and on Farms under Varying Environmental Conditions in Rwanda.
For. Ecol. Manag. 1996, 80, 279–285. [CrossRef]

89. Trabucco, A.; Achten, W.M.J.; Bowe, C.; Aerts, R.; van Orshoven, J.; Norgrove, L.; Muys, B. Global Mapping of Jatropha curcas
Yield Based on Response of Fitness to Present and Future Climate. GCB Bioenergy 2010, 2, 139–151. [CrossRef]

90. Webber, B.L.; Yates, C.J.; Le Maitre, D.C.; Scott, J.K.; Kriticos, D.J.; Ota, N.; McNeill, A.; Le Roux, J.J.; Midgley, G.F. Modelling
Horses for Novel Climate Courses: Insights from Projecting Potential Distributions of Native and Alien Australian Acacias with
Correlative and Mechanistic Models. Divers. Distrib. 2011, 17, 978–1000. [CrossRef]

91. Salmón Rivera, B.; Barrette, M.; Thiffault, N. Issues and Perspectives on the Use of Exotic Species in the Sustainable Management
of Canadian Forests. Reforesta 2016, 1, 261–280. [CrossRef]

92. Furey, C.; Tecco, P.A.; Perez-Harguindeguy, N.; Giorgis, M.A.; Grossi, M. The Importance of Native and Exotic Plant Identity and
Dominance on Decomposition Patterns in Mountain Woodlands of Central Argentina. Acta Oecologica 2014, 54, 13–20. [CrossRef]

93. Negi, G.C.S.; Sharma, S.; Vishvakarma, S.C.R.; Samant, S.S.; Maikhuri, R.K.; Prasad, R.C.; Palni, L.M.S. Ecology and Use of
Lantana Camara in India. Bot. Rev. 2019, 85, 109–130. [CrossRef]

94. Jones, C.C. Challenges in Predicting the Future Distributions of Invasive Plant Species. For. Ecol. Manag. 2012, 284, 69–77.
[CrossRef]

95. Bradley, B.A.; Mustard, J.F. Characterizing the Landscape Dynamics of an Invasive Plant and Risk of Invasion Using Remote
Sensing. Ecol. Appl. 2006, 16, 1132–1147. [CrossRef] [PubMed]

96. Jarnevich, C.S.; Reynolds, L.V. Challenges of Predicting the Potential Distribution of a Slow-Spreading Invader: A Habitat
Suitability Map for an Invasive Riparian Tree. Biol. Invasions 2011, 13, 153–163. [CrossRef]

97. He, K.S.; Rocchini, D.; Neteler, M.; Nagendra, H. Benefits of Hyperspectral Remote Sensing for Tracking Plant Invasions. Divers.
Distrib. 2011, 17, 381–392. [CrossRef]

98. Dash, J.P.; Watt, M.S.; Paul, T.S.H.; Morgenroth, J.; Pearse, G.D. Early Detection of Invasive Exotic Trees Using UAV and Manned
Aircraft Multispectral and LiDAR Data. Remote Sens. 2019, 11, 1812. [CrossRef]

99. Kim, D.I.; Park, I.K.; Bae, S.Y.; Fong, J.J.; Zhang, Y.P.; Li, S.R.; Ota, H.; Kim, J.S.; Park, D. Prediction of Present and Future
Distribution of the Schlegel’s Japanese gecko (Gekko japonicus) Using MaxEnt Modeling. J. Ecol. Environ. 2020, 44, 5. [CrossRef]

100. Barbet-Massin, M.; Rome, Q.; Villemant, C.; Courchamp, F. Can Species Distribution Models Really Predict the Expansion of
Invasive Species? PLoS ONE 2018, 13, e0193085. [CrossRef] [PubMed]

101. West, A.M.; Kumar, S.; Brown, C.S.; Stohlgren, T.J.; Bromberg, J. Field Validation of an Invasive Species Maxent Model. Ecol.
Inform. 2016, 36, 126–134. [CrossRef]

102. Briscoe Runquist, R.D.; Lake, T.; Tiffin, P.; Moeller, D.A. Species Distribution Models throughout the Invasion History of Palmer
Amaranth Predict Regions at Risk of Future Invasion and Reveal Challenges with Modeling Rapidly Shifting Geographic Ranges.
Sci. Rep. 2019, 9, 2426. [CrossRef] [PubMed]

103. Rahimian Boogar, A.; Salehi, H.; Pourghasemi, H.R.; Blaschke, T. Predicting Habitat Suitability and Conserving juniperus Spp.
Habitat Using SVM and Maximum Entropy Machine Learning Techniques. Water 2019, 11, 2049. [CrossRef]

104. Sharma, S.; Arunachalam, K.; Bhavsar, D.; Kala, R. Modeling Habitat Suitability of Perilla Frutescens with MaxEnt in
Uttarakhand—A Conservation Approach. J. Appl. Res. Med. Aromat. Plants 2018, 10, 99–105. [CrossRef]

https://doi.org/10.3354/cr01204
https://doi.org/10.1016/j.actao.2013.02.007
https://doi.org/10.1016/j.ecoinf.2014.04.002
https://doi.org/10.1007/s12665-015-5133-9
https://doi.org/10.1186/s13717-019-0210-8
https://doi.org/10.2307/2529310
https://www.ncbi.nlm.nih.gov/pubmed/843571
https://doi.org/10.1002/ece3.2654
https://www.ncbi.nlm.nih.gov/pubmed/28168023
https://doi.org/10.1038/s41598-021-96041-z
https://doi.org/10.3390/plants11050670
https://doi.org/10.3389/fenvs.2020.00069
https://doi.org/10.1016/0378-1127(95)03613-X
https://doi.org/10.1111/j.1757-1707.2010.01049.x
https://doi.org/10.1111/j.1472-4642.2011.00811.x
https://doi.org/10.21750/REFOR.1.13.13
https://doi.org/10.1016/j.actao.2012.12.005
https://doi.org/10.1007/s12229-019-09209-8
https://doi.org/10.1016/j.foreco.2012.07.024
https://doi.org/10.1890/1051-0761(2006)016[1132:CTLDOA]2.0.CO;2
https://www.ncbi.nlm.nih.gov/pubmed/16827008
https://doi.org/10.1007/s10530-010-9798-4
https://doi.org/10.1111/j.1472-4642.2011.00761.x
https://doi.org/10.3390/rs11151812
https://doi.org/10.1186/s41610-020-0147-y
https://doi.org/10.1371/journal.pone.0193085
https://www.ncbi.nlm.nih.gov/pubmed/29509789
https://doi.org/10.1016/j.ecoinf.2016.11.001
https://doi.org/10.1038/s41598-018-38054-9
https://www.ncbi.nlm.nih.gov/pubmed/30787301
https://doi.org/10.3390/w11102049
https://doi.org/10.1016/j.jarmap.2018.02.003


Sustainability 2023, 15, 12292 22 of 22

105. Gavier-Pizarro, G.I.; Kuemmerle, T.; Hoyos, L.E.; Stewart, S.I.; Huebner, C.D.; Keuler, N.S.; Radeloff, V.C. Monitoring the Invasion
of an Exotic Tree (Ligustrum lucidum) from 1983 to 2006 with Landsat TM/ETM+ Satellite Data and Support Vector Machines in
Córdoba, Argentina. Remote Sens. Environ. 2012, 122, 134–145. [CrossRef]
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