Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = Gigabit-Ethernet

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 5087 KiB  
Article
Optimal Implementations of 8b/10b Encoders and Decoders for AMD FPGAs
by Stefan Popa, Mihai Ivanovici and Radu-Mihai Coliban
Electronics 2024, 13(6), 1062; https://doi.org/10.3390/electronics13061062 - 13 Mar 2024
Cited by 1 | Viewed by 2991
Abstract
The 8b/10b IBM encoding scheme is used in a plethora of communication technologies, including USB, Gigabit Ethernet, and Serial ATA. We propose two primitive-based structural designs of an 8b/10b encoder and two of an 8b/10b decoder, all targeted at modern AMD FPGA architectures. [...] Read more.
The 8b/10b IBM encoding scheme is used in a plethora of communication technologies, including USB, Gigabit Ethernet, and Serial ATA. We propose two primitive-based structural designs of an 8b/10b encoder and two of an 8b/10b decoder, all targeted at modern AMD FPGA architectures. Our aim is to reduce the amount of resources used for the implementations. We compare our designs with implementations resulting from behavioral models as well as with state-of-the-art solutions from the literature. The implementation results show that our solutions provide the lowest resource utilization with comparable maximum operating frequency and power consumption. The proposed structural designs are suitable for resource-constrained data communication protocol implementations that employ the IBM 8b/10b encoding scheme. This paper is an extended version of our paper published at the 2022 International Symposium on Electronics and Telecommunications (ISETC), Timisoara, Romania, 10–11 November 2022. Full article
Show Figures

Figure 1

18 pages, 1583 KiB  
Article
Weigh-in-Motion: Lightweight Real-Time Identification of Gbps Wireless Traffic
by Sungsoo Kim, Joon Yoo and Jaehyuk Choi
Sensors 2022, 22(2), 437; https://doi.org/10.3390/s22020437 - 7 Jan 2022
Viewed by 2086
Abstract
Distinguishing between wireless and wired traffic in a network middlebox is an essential ingredient for numerous applications including security monitoring and quality-of-service (QoS) provisioning. The majority of existing approaches have exploited the greater delay statistics, such as round-trip-time and inter-packet arrival time, observed [...] Read more.
Distinguishing between wireless and wired traffic in a network middlebox is an essential ingredient for numerous applications including security monitoring and quality-of-service (QoS) provisioning. The majority of existing approaches have exploited the greater delay statistics, such as round-trip-time and inter-packet arrival time, observed in wireless traffic to infer whether the traffic is originated from Ethernet (i.e., wired) or Wi-Fi (i.e., wireless) based on the assumption that the capacity of the wireless link is much slower than that of the wired link. However, this underlying assumption is no longer valid due to increases in wireless data rates over Gbps enabled by recent Wi-Fi technologies such as 802.11ac/ax. In this paper, we revisit the problem of identifying Wi-Fi traffic in network middleboxes as the wireless link capacity approaches the capacity of the wired. We present Weigh-in-Motion, a lightweight online detection scheme, that analyzes the traffic patterns observed at the middleboxes and infers whether the traffic is originated from high-speed Wi-Fi devices. To this end, we introduce the concept of ACKBunch that captures the unique characteristics of high-speed Wi-Fi, which is further utilized to distinguish whether the observed traffic is originated from a wired or wireless device. The effectiveness of the proposed scheme is evaluated via extensive real experiments, demonstrating its capability of accurately identifying wireless traffic from/to Gigabit 802.11 devices. Full article
Show Figures

Graphical abstract

10 pages, 4222 KiB  
Communication
The Fiber Optic Reel System: A Compact Deployment Solution for Tethered Live-Telemetry Deep-Sea Robots and Sensors
by Brennan T. Phillips, Nicholas Chaloux, Russell Shomberg, Adriana Muñoz-Soto and Jim Owens
Sensors 2021, 21(7), 2526; https://doi.org/10.3390/s21072526 - 4 Apr 2021
Cited by 6 | Viewed by 7510
Abstract
Tethered deep-sea robots and instrument platforms, such as Remotely Operated Vehicles (ROVs) and vertical-profiling or towed instrument arrays, commonly rely on fiber optics for real-time data transmission. Fiber optic tethers used for these applications are either heavily reinforced load-bearing cables used to support [...] Read more.
Tethered deep-sea robots and instrument platforms, such as Remotely Operated Vehicles (ROVs) and vertical-profiling or towed instrument arrays, commonly rely on fiber optics for real-time data transmission. Fiber optic tethers used for these applications are either heavily reinforced load-bearing cables used to support lifting and pulling, or bare optical fibers used in non-load bearing applications. Load-bearing tethers directly scale operations for deep-sea robots as the cable diameter, mass, and length typically require heavy winches and large surface support vessels to operate, and also guide the design of the deep-sea robot itself. In an effort to dramatically reduce the physical scale and operational overhead of tethered live-telemetry deep-sea robots and sensors, we have developed the Fiber Optic Reel System (FOReelS). FOReelS utilizes a customized electric fishing reel outfitted with a proprietary hollow-core braided fiber optic fishing line and mechanical termination assembly (FOFL), which offers an extremely small diameter (750 μm) load-bearing (90 lb/400 N breaking strength) tether to support live high-bandwidth data transmission as well as fiber optic sensing applications. The system incorporates a novel epoxy potted data payload system (DPS) that includes high-definition video, integrated lighting, rechargeable battery power, and gigabit ethernet fiber optic telemetry. In this paper we present the complete FOReelS design and field demonstrations to depths exceeding 780 m using small coastal support vessels of opportunity. FOReelS is likely the smallest form factor live-telemetry deep-sea exploration tool currently in existence, with a broad range of future applications envisioned for oceanographic sensing and communication. Full article
(This article belongs to the Special Issue Advances in Ocean Sensors)
Show Figures

Figure 1

23 pages, 6971 KiB  
Article
Design and Implementation of a Real-Time Multi-Beam Sonar System Based on FPGA and DSP
by Haowen Tian, Shixu Guo, Peng Zhao, Minyu Gong and Chao Shen
Sensors 2021, 21(4), 1425; https://doi.org/10.3390/s21041425 - 18 Feb 2021
Cited by 26 | Viewed by 7219
Abstract
Aiming at addressing the contradiction between the high-speed real-time positioning and multi-channel signal processing in multi-beam sonar systems, in this work we present a real-time multi-beam sonar system based on a Field Programmable Gate Array (FPGA) and Digital Signal Processing (DSP) from two [...] Read more.
Aiming at addressing the contradiction between the high-speed real-time positioning and multi-channel signal processing in multi-beam sonar systems, in this work we present a real-time multi-beam sonar system based on a Field Programmable Gate Array (FPGA) and Digital Signal Processing (DSP) from two perspectives, i.e., hardware implementation and software optimization. In terms of hardware, an efficient high-voltage pulse transmitting module and a multi-channel data acquisition module with time versus gain (TVG) compensation with characteristics such as low noise and high phase amplitude consistency, are proposed. In terms of algorithms, we study three beamforming methods, namely delay-and-sum (D&S), direct-method (DM) and Chirp Zeta Transform (CZT). We compare the computational efficiency of DM and CZT in the digital domain. In terms of software, according to the transmission bandwidth of the Gigabit Ethernet and a serial rapid IO (SRIO) interface, the data transmission paths of the acquired data and the beam pattern between the FPGA, the DSP, and a personal computer (PC) are planned. A master-slave multi-core pipelined signal processing architecture is designed based on DSP, which enhances the data throughput of the signal processor by seven times as compared with that of the single-core operation. The experimental results reveal that the sound source level of the transmitting module is around 190.25 dB, the transmitting beam width is 64° × 64°, the background noise of the acquisition module is less than 4 μVrms, the amplitude consistency error of each channel is less than −6.55 dB, and the phase consistency error is less than 0.2°. It is noteworthy that the beam number of the sonar system is 90 × 90, the scanning angle interval is 0.33°, the working distance ranges from 5 m to 40 m, and the maximum distance resolution is 0.384 m. In the positioning experiment performed in this work; the 3-D real-time position of the baffle placed in the detection sector is realized. Please note that the maximum deviation of azimuth is 2°, the maximum deviation of elevation is 2.3°, and the maximum distance deviation is 0.379 m. Full article
(This article belongs to the Collection Instrument and Measurement)
Show Figures

Figure 1

17 pages, 1386 KiB  
Article
Monolitic Hybrid Transmitter-Receiver Lens for Rotary On-Axis Communications
by René Kirrbach, Michael Faulwaßer, Tobias Schneider, Philipp Meißner, Alexander Noack and Frank Deicke
Appl. Sci. 2020, 10(4), 1540; https://doi.org/10.3390/app10041540 - 24 Feb 2020
Cited by 6 | Viewed by 3975
Abstract
High-speed rotary communication links exhibit high complexity and require challenging assembly tolerances. This article investigates the use of optical wireless communications (OWC) for on-axis rotary communication scenarios. First, OWC is compared with other state-of-the-art technologies. Different realization approaches for bidirectional, full-duplex links are [...] Read more.
High-speed rotary communication links exhibit high complexity and require challenging assembly tolerances. This article investigates the use of optical wireless communications (OWC) for on-axis rotary communication scenarios. First, OWC is compared with other state-of-the-art technologies. Different realization approaches for bidirectional, full-duplex links are discussed. For the most promising approach, a monolithic hybrid transmitter-receiver lens is designed by ray mapping methodology. Ray tracing simulations are used to study the alignment-depended receiver power level and to determine the effect of optical crosstalk. Over a distance of 12.5 m m , the lens achieves an optical power level at the receiver of 16.2 dBm to 8.7 dBm even for misalignments up to 3 m m . Full article
Show Figures

Graphical abstract

11 pages, 2144 KiB  
Article
Application for GPON Frame Analysis
by Martin Holik, Tomas Horvath and Vaclav Oujezsky
Electronics 2019, 8(6), 700; https://doi.org/10.3390/electronics8060700 - 21 Jun 2019
Cited by 7 | Viewed by 7424
Abstract
This article presents a design of a database model used to gather and analyze data frames transmitted over gigabit passive optical network (GPON) in the downstream direction. An issue with this kind of system is the difficulty in analyzing a transmission on the [...] Read more.
This article presents a design of a database model used to gather and analyze data frames transmitted over gigabit passive optical network (GPON) in the downstream direction. An issue with this kind of system is the difficulty in analyzing a transmission on the optical part which is caused by the difference among devices using Ethernet frames technology and passive optical network technology with usage gigabit encapsulation method. In this article, a principle of the downstream direction is described. Next, the design of the database model for the analysis of transmitted data is discussed. Based on the design and implementation of the database, a script capable of processing data gathered by a programmable network card is proposed. The script for physical layer operation, admission, and maintenance (PLOAM) messages analysis is written in the Python programming language. Full article
(This article belongs to the Special Issue Optical Communications and Networks)
Show Figures

Figure 1

9 pages, 1726 KiB  
Article
Experimental Investigation of 400 Gb/s Data Center Interconnect Using Unamplified High-Baud-Rate and High-Order QAM Single-Carrier Signal
by Yang Yue, Qiang Wang and Jon Anderson
Appl. Sci. 2019, 9(12), 2455; https://doi.org/10.3390/app9122455 - 15 Jun 2019
Cited by 25 | Viewed by 6889
Abstract
In this article, we review the latest progress on data center interconnect (DCI). We then discuss different perspectives on the 400G pluggable module, including form factor, architecture, digital signal processing (DSP), and module power consumption, following 400G pluggable optics in DCI applications. Next, [...] Read more.
In this article, we review the latest progress on data center interconnect (DCI). We then discuss different perspectives on the 400G pluggable module, including form factor, architecture, digital signal processing (DSP), and module power consumption, following 400G pluggable optics in DCI applications. Next, we experimentally investigate the capacity-reach matrix for high-baud-rate and high-order quadrature amplitude modulation (QAM) single-carrier signals in the unamplified single-mode optical fiber (SMF) link. We show that the 64 GBd 16-QAM, and 64-QAM signals can potentially enable 400 Gb/s and 600 Gb/s DCI application for 40 km and beyond of unamplified fiber link. Full article
Show Figures

Figure 1

20 pages, 7423 KiB  
Article
Embedded Processing and Compression of 3D Sensor Data for Large Scale Industrial Environments
by Joacim Dybedal, Atle Aalerud and Geir Hovland
Sensors 2019, 19(3), 636; https://doi.org/10.3390/s19030636 - 2 Feb 2019
Cited by 12 | Viewed by 5082
Abstract
This paper presents a scalable embedded solution for processing and transferring 3D point cloud data. Sensors based on the time-of-flight principle generate data which are processed on a local embedded computer and compressed using an octree-based scheme. The compressed data is transferred to [...] Read more.
This paper presents a scalable embedded solution for processing and transferring 3D point cloud data. Sensors based on the time-of-flight principle generate data which are processed on a local embedded computer and compressed using an octree-based scheme. The compressed data is transferred to a central node where the individual point clouds from several nodes are decompressed and filtered based on a novel method for generating intensity values for sensors which do not natively produce such a value. The paper presents experimental results from a relatively large industrial robot cell with an approximate size of 10 m × 10 m × 4 m. The main advantage of processing point cloud data locally on the nodes is scalability. The proposed solution could, with a dedicated Gigabit Ethernet local network, be scaled up to approximately 440 sensor nodes, only limited by the processing power of the central node that is receiving the compressed data from the local nodes. A compression ratio of 40.5 was obtained when compressing a point cloud stream from a single Microsoft Kinect V2 sensor using an octree resolution of 4 cm. Full article
(This article belongs to the Special Issue Depth Sensors and 3D Vision)
Show Figures

Figure 1

28 pages, 1620 KiB  
Article
Specification and Performance Indicators of AeroRing—A Multiple-Ring Ethernet Network for Avionics Embedded Systems
by Ahmed Amari and Ahlem Mifdaoui
Sensors 2018, 18(11), 3871; https://doi.org/10.3390/s18113871 - 10 Nov 2018
Cited by 7 | Viewed by 4581
Abstract
The complexity and costs of the avionics communication architecture are increasing exponentially with the increasing number of embedded computers over the last few decades. To limit the cabling complexity and the deployment costs of such a communication architecture, we specify a new Gigabit [...] Read more.
The complexity and costs of the avionics communication architecture are increasing exponentially with the increasing number of embedded computers over the last few decades. To limit the cabling complexity and the deployment costs of such a communication architecture, we specify a new Gigabit multiple-ring Ethernet network, called AeroRing, while meeting the avionics requirements. First, we describe the current Aircraft Data Communication Network (ADCN) to highlight the main characteristics and requirements that have to be fulfilled by our solution. Then, we give an overview of the most relevant solutions to improve ADCN performance and relate them to AeroRing. Afterwards, we detail the specifications and the main Performance Indicators (PIs) of AeroRing. Finally, sensitivity and validation analyses of AeroRing are conducted through a realistic avionics application, regarding the various PIs, in comparison to the backbone network of the ADCN, the Avionics Full DupleX Switched Ethernet (AFDX). The computed AeroRing performance metrics show its ability to guarantee the avionics requirements. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

18 pages, 2914 KiB  
Article
Activation Process of ONU in EPON/GPON/XG-PON/NG-PON2 Networks
by Tomas Horvath, Petr Munster, Vaclav Oujezsky and Josef Vojtech
Appl. Sci. 2018, 8(10), 1934; https://doi.org/10.3390/app8101934 - 16 Oct 2018
Cited by 18 | Viewed by 17827
Abstract
This article presents a numerical implementation of the activation process for gigabit and 10 gigabit next generation and Ethernet passive optical networks. The specifications are completely different because GPON, XG-PON and NG-PON2 were developed by the International Telecommunication Union, whereas Ethernet PON was [...] Read more.
This article presents a numerical implementation of the activation process for gigabit and 10 gigabit next generation and Ethernet passive optical networks. The specifications are completely different because GPON, XG-PON and NG-PON2 were developed by the International Telecommunication Union, whereas Ethernet PON was developed by the Institute of Electrical and Electronics Engineers. The speed of an activation process is the most important in a blackout scenario because end optical units have a timer after expiration transmission parameters are discarded. Proper implementation of an activation process is crucial for eliminating inadvisable delay. An OLT chassis is dedicated to several GPON (or other standard) cards. Each card has up to eight or 16 GPON ports. Furthermore, one GPON port can operate with up to 64/128 ONUs. Our results indicate a shorter duration activation process (due to a shorter frame duration) in Ethernet-based PON, but the maximum split ratio is only 1:32 instead of up to 1:64/128 for gigabit PON and newer standards. An optimization improves the reduction time for the GPON activation process with current PLOAM messages and with no changes in the transmission convergence layer. We reduced the activation time from 215 ms to 145 ms for 64 ONUs. Full article
Show Figures

Figure 1

13 pages, 5580 KiB  
Article
Application of a MEMS-Based TRNG in a Chaotic Stream Cipher
by Miguel Garcia-Bosque, Adrián Pérez, Carlos Sánchez-Azqueta and Santiago Celma
Sensors 2017, 17(3), 646; https://doi.org/10.3390/s17030646 - 21 Mar 2017
Cited by 25 | Viewed by 6540
Abstract
In this work, we used a sensor-based True Random Number Generator in order to generate keys for a stream cipher based on a recently published hybrid algorithm mixing Skew Tent Map and a Linear Feedback Shift Register. The stream cipher was implemented and [...] Read more.
In this work, we used a sensor-based True Random Number Generator in order to generate keys for a stream cipher based on a recently published hybrid algorithm mixing Skew Tent Map and a Linear Feedback Shift Register. The stream cipher was implemented and tested in a Field Programmable Gate Array (FPGA) and was able to generate 8-bit width data streams at a clock frequency of 134 MHz, which is fast enough for Gigabit Ethernet applications. An exhaustive cryptanalysis was completed, allowing us to conclude that the system is secure. The stream cipher was compared with other chaotic stream ciphers implemented on similar platforms in terms of area, power consumption, and throughput. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

14 pages, 3310 KiB  
Article
Communication Network Architectures Based on Ethernet Passive Optical Network for Offshore Wind Power Farms
by Mohamed A. Ahmed, Jae-Kyung Pan, Minho Song and Young-Chon Kim
Appl. Sci. 2016, 6(3), 81; https://doi.org/10.3390/app6030081 - 15 Mar 2016
Cited by 5 | Viewed by 8137
Abstract
Nowadays, with large-scale offshore wind power farms (WPFs) becoming a reality, more efforts are needed to maintain a reliable communication network for WPF monitoring. Deployment topologies, redundancy, and network availability are the main items to enhance the communication reliability between wind turbines (WTs) [...] Read more.
Nowadays, with large-scale offshore wind power farms (WPFs) becoming a reality, more efforts are needed to maintain a reliable communication network for WPF monitoring. Deployment topologies, redundancy, and network availability are the main items to enhance the communication reliability between wind turbines (WTs) and control centers. Traditional communication networks for monitoring and control (i.e., supervisory control and data acquisition (SCADA) systems) using switched gigabit Ethernet will not be sufficient for the huge amount of data passing through the network. In this paper, the optical power budget, optical path loss, reliability, and network cost of the proposed Ethernet Passive Optical Network (EPON)-based communication network for small-size offshore WPFs have been evaluated for five different network architectures. The proposed network model consists of an optical network unit device (ONU) deployed on the WT side for collecting data from different internal networks. All ONUs from different WTs are connected to a central optical line terminal (OLT), placed in the control center. There are no active electronic elements used between the ONUs and the OLT, which reduces the costs and complexity of maintenance and deployment. As fiber access networks without any protection are characterized by poor reliability, three different protection schemes have been configured, explained, and discussed. Considering the cost of network components, the total implementation expense of different architectures with, or without, protection have been calculated and compared. The proposed network model can significantly contribute to the communication network architecture for next generation WPFs. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

Back to TopTop