Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = Gelidium sesquipedale

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3458 KiB  
Article
Extraction of Mycosporine-like Amino Acids and Proteins from the Agarophyte Gelidium corneum Using Pulsed Power Techniques
by Colin McReynolds, Amandine Adrien, Antoine Silvestre de Ferron, Nadia Boussetta, Nabil Grimi, Laurent Pecastaing and Susana C. M. Fernandes
Foods 2023, 12(7), 1473; https://doi.org/10.3390/foods12071473 - 30 Mar 2023
Cited by 5 | Viewed by 2484
Abstract
Gelidium corneum (syn. sesquipedale) is an industrially and ecologically important species of red alga used for the production of high-quality agar. However, the species is also of growing interest for the production of other valuable compounds, such as mycosporine-like amino acids (MAAs), [...] Read more.
Gelidium corneum (syn. sesquipedale) is an industrially and ecologically important species of red alga used for the production of high-quality agar. However, the species is also of growing interest for the production of other valuable compounds, such as mycosporine-like amino acids (MAAs), with potential cosmeceutical and biomedical applications. Novel methods using two pulsed power techniques, high-voltage electrical discharges (HVED) and pulsed electrical fields (PEF), were evaluated for efficacy of MAA extraction. Algal suspensions were prepared at two ratios (1:20 and 1:40 w:v). Four different extraction protocols were compared: (i) high-voltage electrical discharges, (ii) pulsed electric fields, (iii) maceration at room temperature, and (iv) maceration at 50 °C. The algae were treated in three states: freshly harvested, dried, and powdered. HVED and PEF treatments were effective when performed on fresh algae, and in particular the HVED treatment resulted in yields of MAAs twenty times higher than the control: 0.81 ± 0.05 mg/gDry Weight (DW) vs. 0.037 ± 0.002 mg/gDW. This effect was not observed to the same extent when the algae were dried or powdered, although HVED remained the most selective method overall. Full article
Show Figures

Figure 1

13 pages, 960 KiB  
Article
Assessment of the Red Seaweed Gelidium sesquipedale By-Products as an Organic Fertilizer and Soil Amendment
by Hajare Errati, Sanae Krimi Bencheqroun, Rachid Aboutayeb, Zhor Abail, Salim Lebbar, Khadija Dari and Lahoucine Hilali
Sustainability 2022, 14(21), 14217; https://doi.org/10.3390/su142114217 - 31 Oct 2022
Cited by 8 | Viewed by 3109
Abstract
The agar extraction process of the red algae Gelidium sesquipedale generates a solid residue as the main by-product. However, this residue remains non-valorized, despite its potential as a fertilizer. This study aims to determine the value of G. sesquipedale residue as organic fertilizer [...] Read more.
The agar extraction process of the red algae Gelidium sesquipedale generates a solid residue as the main by-product. However, this residue remains non-valorized, despite its potential as a fertilizer. This study aims to determine the value of G. sesquipedale residue as organic fertilizer and for soil amendments. An incubation test of G. sesquipedale residue in soils was performed to measure the nitrogen (N), phosphorus (P), and calcium (Ca) release. The potential fertilization effect of the residue was evaluated in a greenhouse on two crops: strawberry and corn. The amount of available P was high at the beginning of the incubation experiment. The amounts of nitrate–nitrogen (NO-N) and available Ca increased over the incubation time. A high efficiency of fertilization using the residue at different concentrations was observed in both crops. Application of the residue enhanced crop growth. The fertilization effect was associated with increased macro- and micro-elements in the strawberry fruit’s N, Ca, iron (Fe), manganese (Mn), and zinc (Zn) and in the corn leaves’ N, P, magnesium (Mg), and Fe. Moreover, the residue was a good soil organic amendment as it enhanced the amount of organic matter (OM) and some macro- and micro-elements in the soil after plant harvest. Full article
(This article belongs to the Special Issue Organic Fertilizers: Applications and Research)
Show Figures

Figure 1

15 pages, 2101 KiB  
Article
A New Promising Plant Defense Stimulator Derived from a By-Product of Agar Extraction from Gelidium sesquipedale
by Rromir Koçi, Fabrice Dupuy, Salim Lebbar, Vincent Gloaguen and Céline Faugeron Girard
Horticulturae 2022, 8(10), 958; https://doi.org/10.3390/horticulturae8100958 - 16 Oct 2022
Cited by 5 | Viewed by 2636
Abstract
Stimulation of plant defenses by elicitors is an alternative strategy to reduce pesticide use. In this study, we examined the elicitor properties of a by-product of the industrial extraction of agar from the red alga Gelidium sesquipedale. Agar extraction process leads to [...] Read more.
Stimulation of plant defenses by elicitors is an alternative strategy to reduce pesticide use. In this study, we examined the elicitor properties of a by-product of the industrial extraction of agar from the red alga Gelidium sesquipedale. Agar extraction process leads to the formation of an alkaline residue which is poorly valorized. This by-product has been analyzed for its chemical composition. It contains 44% minerals and, among the organic compounds, sugars are the most represented and encompass 12.5% of the dry matter. When sprayed on tomato plants, this by-product enhanced the levels of defense markers such as peroxidase or phenylalanine ammonia lyase activities. Furthermore, this treatment increased the expression levels of the pathogenesis-related gene, PR9 encoding peroxidase. A field trial conducted on grapevine revealed that spraying treatment with this by-product resulted in a reduction of the macroscopic disease symptoms induced by Plasmospora viticola, with 40 to 60% efficacy. These results indicate that this agar extraction by-product could be used as a plant defense stimulator. Full article
(This article belongs to the Special Issue Sustainable Control Strategies of Plant Pathogens in Horticulture)
Show Figures

Graphical abstract

22 pages, 4853 KiB  
Article
Adjustable Gel Texture of Recovered Crude Agar Induced by Pressurized Hot Water Treatment of Gelidium sesquipedale Industry Waste Stream: An RSM Analysis
by Cherif Ibrahima Khalil Diop, Sagrario Beltran, Isabel Jaime and Maria-Teresa Sanz
Foods 2022, 11(14), 2081; https://doi.org/10.3390/foods11142081 - 13 Jul 2022
Cited by 4 | Viewed by 2984
Abstract
A significant amount of bioactive compound-rich solid waste is released during the industrial phycocolloid-centric extraction of Gelidium sesquipedale. The impact of mild pressurized hot water extraction on repurposing this waste for the recovery of agar with an adjustable gel texture is investigated. [...] Read more.
A significant amount of bioactive compound-rich solid waste is released during the industrial phycocolloid-centric extraction of Gelidium sesquipedale. The impact of mild pressurized hot water extraction on repurposing this waste for the recovery of agar with an adjustable gel texture is investigated. A two-factor interaction response surface model assessed the influences of the operating temperatures (80 to 130 °C), times (45 and 150 min), pressures (1 to 70 bar), and algae concentrations (3 to 10% (w:v)). At a temperature of 100 °C, a pressure of 10.13 bar, a recovery time of 45 min, and a 10% algae concentration, the working parameters were considered ideal (w:v). Agar with a hardness of 431.6 g, an adhesiveness of −13.14 g.s−1, a springiness of 0.94, a cohesiveness of 0.63, and a gumminess of 274.46 g was produced under these conditions. A combined desirability of 0.78 was obtained for the exposed technology that retrieved gels with a minimum agar yield of 10% and thermal hysteresis between 39 ± 1 and 52 ± 0.5 °C. The fitted design can provide a high techno-commercial value to the agri-food industrial waste stream. Full article
Show Figures

Figure 1

16 pages, 4090 KiB  
Article
Comparison Study of an Optimized Ultrasound-Based Method versus an Optimized Conventional Method for Agar Extraction, and Protein Co-Extraction, from Gelidium sesquipedale
by Laura Pilar Gómez Barrio, Eduarda Melo Cabral, Ming Zhao, Carlos Álvarez García, Ramsankar Senthamaraikannan, Ramesh Babu Padamati, Uma Tiwari, James Francis Curtin and Brijesh Kumar Tiwari
Foods 2022, 11(6), 805; https://doi.org/10.3390/foods11060805 - 11 Mar 2022
Cited by 16 | Viewed by 4288
Abstract
Agar is a hydrocolloid found in red seaweeds, which has been of industrial interest over the last century due to its multiple applications in the food, cosmetic, and medical fields. This polysaccharide, extracted by boiling for several hours, is released from the cell [...] Read more.
Agar is a hydrocolloid found in red seaweeds, which has been of industrial interest over the last century due to its multiple applications in the food, cosmetic, and medical fields. This polysaccharide, extracted by boiling for several hours, is released from the cell wall of red seaweeds. However, the environmental impact coming from the long processing time and the energy required to reach the targeted processing temperature needs to be reduced. In this study, a response surface methodology was employed to optimize both conventional extraction and ultrasound-assisted extractions. Two different models were successfully obtained (R2 = 0.8773 and R2 = 0.7436, respectively). Additionally, a further re-extraction confirmed that more agar could be extracted. Protein was also successfully co-extracted in the seaweed residues. Optimized conditions were obtained for both the extractions and the re-extraction of the two methods (CE: 6 h, 100 °C; and UAE: 1 h, 100% power). Finally, FT-IR characterization demonstrated that the extracts had a similar spectrum to the commercial agar. Compared to commercial samples, the low gel strength of the agar extracts shows that these extracts might have novel and different potential applications. Full article
(This article belongs to the Special Issue Cavitation Technologies in Food Processing)
Show Figures

Figure 1

20 pages, 1439 KiB  
Article
Valorization of the Red Algae Gelidium sesquipedale by Extracting a Broad Spectrum of Minor Compounds Using Green Approaches
by Natalia Castejón, Maroussia Parailloux, Aleksandra Izdebska, Ryszard Lobinski and Susana C. M. Fernandes
Mar. Drugs 2021, 19(10), 574; https://doi.org/10.3390/md19100574 - 14 Oct 2021
Cited by 22 | Viewed by 6159
Abstract
Until now, the red algae Gelidium sesquipedale has been primarily exploited for agar production, leaving an undervalued biomass. In this work, the use of eco-friendly approaches employing ultrasound-assisted extraction (UAE) and green solvents was investigated to valorize the algal minor compounds. The green [...] Read more.
Until now, the red algae Gelidium sesquipedale has been primarily exploited for agar production, leaving an undervalued biomass. In this work, the use of eco-friendly approaches employing ultrasound-assisted extraction (UAE) and green solvents was investigated to valorize the algal minor compounds. The green methods used herein showed an attractive alternative to efficiently extract a broad spectrum of bioactive compounds in short extraction times (15 to 30 min vs. 8 h of the conventional method). Using the best UAE conditions, red seaweed extracts were characterized in terms of total phenolics (189.3 ± 11.7 mg GAE/100 g dw), flavonoids (310.7 ± 9.7 mg QE/100 g dw), mycosporine-like amino acids (MAAs) (Σ MAAs = 1271 mg/100 g dw), and phycobiliproteins (72.4 ± 0.5 mg/100 g dw). Additionally, produced algal extracts exhibited interesting antioxidant and anti-enzymatic activities for potential applications in medical and/or cosmetic products. Thus, this study provides the basis to reach a superior valorization of algal biomass by using alternative methods to extract biologically active compounds following eco-friendly approaches. Moreover, the strategies developed not only open new possibilities for the commercial use of Gelidium sesquipedale, but also for the valorization of different algae species since the techniques established can be easily adapted. Full article
Show Figures

Graphical abstract

26 pages, 5584 KiB  
Article
Untargeted Analysis for Mycosporines and Mycosporine-Like Amino Acids by Hydrophilic Interaction Liquid Chromatography (HILIC)—Electrospray Orbitrap MS2/MS3
by Maroussia Parailloux, Simon Godin, Susana C. M. Fernandes and Ryszard Lobinski
Antioxidants 2020, 9(12), 1185; https://doi.org/10.3390/antiox9121185 - 26 Nov 2020
Cited by 16 | Viewed by 4371
Abstract
Mycosporines and mycosporine-like amino acids have been described as natural sunscreens and antioxidant compounds presenting a great potential for health and cosmetic applications. Herein, an untargeted screening approach for mycosporines and mycosporine-like amino acids (MAAs) was developed by the coupling of zwitterionic hydrophilic [...] Read more.
Mycosporines and mycosporine-like amino acids have been described as natural sunscreens and antioxidant compounds presenting a great potential for health and cosmetic applications. Herein, an untargeted screening approach for mycosporines and mycosporine-like amino acids (MAAs) was developed by the coupling of zwitterionic hydrophilic interaction liquid chromatography (HILIC) with multistage electrospray mass spectrometry MS2/MS3 using an Orbitrap analyzer and fragment ion search (FISh). This method was applied to study the mycosporine and MAA contents of five algae extracted using a 50% methanol solution and sonication. Candidate-MAAs were detected by mining eight characteristic fragment ions in their HILIC data-dependent MS2 mass spectrum. Their exact masses were measured with 3 ppm mass accuracy and their structures were elucidated on the basis of the MS3/MS4 mass spectra. The method developed was validated with a targeted analysis using an extract of Gymnogongrus devoniensis which confirmed the detection of 14 MAAs reported in the literature. In addition, 23 previously unreported MAAs were detected and the structures could be assigned for seven of them. The developed method was applied to the analysis of four algae: Gelidium sesquipedale, Halopithys incurva, Porphyra rosengurtii and Cystoseira tamariscifolia allowing the detection of MAAs, including some reported here for the first time. Full article
(This article belongs to the Special Issue Bioactive Extract Derived Marine Algae in Antioxidants)
Show Figures

Figure 1

8 pages, 1836 KiB  
Article
Agar Extraction By-Products from Gelidium sesquipedale as a Source of Glycerol-Galactosides
by Salim Lebbar, Mathieu Fanuel, Sophie Le Gall, Xavier Falourd, David Ropartz, Philippe Bressollier, Vincent Gloaguen and Céline Faugeron-Girard
Molecules 2018, 23(12), 3364; https://doi.org/10.3390/molecules23123364 - 19 Dec 2018
Cited by 27 | Viewed by 8364
Abstract
Alkaline treatment is a common step largely used in the industrial extraction of agar, a phycocolloid obtained from red algae such as Gelidium sesquipedale. The subsequent residue constitutes a poorly valorized by-product. The present study aimed to identify low-molecular-weight compounds in this [...] Read more.
Alkaline treatment is a common step largely used in the industrial extraction of agar, a phycocolloid obtained from red algae such as Gelidium sesquipedale. The subsequent residue constitutes a poorly valorized by-product. The present study aimed to identify low-molecular-weight compounds in this alkaline waste. A fractionation process was designed in order to obtain the oligosaccharidic fraction from which several glycerol-galactosides were isolated. A combination of electrospray ion (ESI)-mass spectrometry, 1H-NMR spectroscopy, and glycosidic linkage analyses by GC-MS allowed the identification of floridoside, corresponding to Gal-glycerol, along with oligogalactosides, i.e., (Gal)2–4-glycerol, among which α-d-galactopyranosyl-(1→3)-β-d-galactopyranosylα1-2–glycerol and α-d-galactopyranosyl-(1→4)-β-d-galactopyranosylα1-2–glycerol were described for the first time in red algae. Full article
Show Figures

Graphical abstract

Back to TopTop