Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (77)

Search Parameters:
Keywords = GSH carriers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 7448 KB  
Article
Pterostilbene Promotes Spinal Cord Injury Recovery by Inhibiting Ferroptosis via Keap1/Nrf2/SLC7A11/GPX4 Axis Activation
by Yadan Dong, Yichen Liu, Yixuan Ji, Wen Meng, Xiaoxin Cheng and Xu Zheng
Antioxidants 2026, 15(2), 188; https://doi.org/10.3390/antiox15020188 - 2 Feb 2026
Viewed by 214
Abstract
Background: Spinal cord injury (SCI) represents a form of traumatic damage to the central nervous system, and oligodendrocytes play a central role in SCI recovery. Ferroptosis is a major factor in the pathophysiological development of SCI symptoms. Pterostilbene (Pte) has antioxidant, anti-inflammatory, and [...] Read more.
Background: Spinal cord injury (SCI) represents a form of traumatic damage to the central nervous system, and oligodendrocytes play a central role in SCI recovery. Ferroptosis is a major factor in the pathophysiological development of SCI symptoms. Pterostilbene (Pte) has antioxidant, anti-inflammatory, and neuroprotective effects. This study aims to investigate the potential role of Pte in SCI. Methods: A SCI model of rats was constructed. The BBB score assessment, the footprint test, EC staining, immunofluorescence (IF), and Western blot (WB) were conducted to observe the neuroprotective effects of Pte. The factors of ferroptosis, such as Glutathione (GSH), Malondialdehyde (MDA), Fe2+, solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4), were assessed. Then, transcriptomic data, network pharmacology, molecular docking analysis, and the erastin-induced ferroptosis model of OLN-93 cell lines were used to investigate the mechanism of inhibiting ferroptosis by Pte. Results: Pte treatment restored motor function and spinal cord tissue in SCI rats. Furthermore, Pte dramatically decreased oligodendrocyte ferroptosis. Finally, we discovered that Pte can repair SCI by blocking ferroptosis via the Keap1/Nrf2/SLC7A11/GPX4 axis. Conclusions: Pte reduces lipid peroxidation via the Keap1/Nrf2/SLC7A11/GPX4 axis, which reduces the development of ferroptosis in oligodendrocytes and improves locomotor function in rats with SCI. Full article
Show Figures

Figure 1

14 pages, 3329 KB  
Article
Simultaneous Down-Regulation of Intracellular hTERT and GPX4 mRNA Using MnO2-Nanosheet Probes to Induce Cancer Cell Death
by Yixin Miao, Tao Zhou, Qinghong Ji and Min Hong
Sensors 2026, 26(3), 836; https://doi.org/10.3390/s26030836 - 27 Jan 2026
Viewed by 272
Abstract
Cancer remains a leading global cause of death, with conventional treatments often limited by toxicity and recurrence. Recent advances in gene therapy and nanodrug delivery offer new avenues for precision oncology. Human telomerase reverse transcriptase (hTERT) and glutathione peroxidase 4 (GPX4) are overexpressed [...] Read more.
Cancer remains a leading global cause of death, with conventional treatments often limited by toxicity and recurrence. Recent advances in gene therapy and nanodrug delivery offer new avenues for precision oncology. Human telomerase reverse transcriptase (hTERT) and glutathione peroxidase 4 (GPX4) are overexpressed in many cancers and linked to apoptosis and ferroptosis, respectively. Here, we developed a manganese dioxide nanosheet (MnO2-NS) probe co-loaded with antisense oligonucleotides targeting hTERT and GPX4 mRNA to synergistically down-regulate both genes and induce dual cell death pathways. The probe, assembled via adsorption of fluorescently labeled antisense strands, showed controllable release in the presence of glutathione (GSH). Cellular uptake and antisense release were confirmed in multiple cancer cell lines. The MnO2-NS probe significantly suppressed cell proliferation, outperforming single-target or carrier-only controls. Molecular analyses confirmed reduced hTERT and GPX4 expression, along with GSH depletion, ROS accumulation, and elevated lipid peroxidation—collectively promoting enhanced cancer cell death. In summary, this MnO2-NS-based co-delivery system enables synergistic gene silencing and GSH depletion, enhancing antitumor efficacy and providing a promising strategy for multifunctional nanotherapy. Full article
Show Figures

Figure 1

16 pages, 9986 KB  
Article
Echinacoside as a Novel Ferroptosis Inducer in Hepatocellular Carcinoma: Mechanistic Insights from TP53/SLC7A11/GPX4 Pathway Modulation
by Pei Wang, Jianhao Lin and Deqi Su
Int. J. Mol. Sci. 2026, 27(1), 411; https://doi.org/10.3390/ijms27010411 - 30 Dec 2025
Viewed by 375
Abstract
Despite the known antitumor properties of echinacoside (ECH), its specific role and mechanism in hepatocellular carcinoma (HCC) require in-depth exploration. Our study aimed to decipher the mechanism of ECH against HCC through a multi-disciplinary strategy. We first identified tumor protein p53 (TP53) as [...] Read more.
Despite the known antitumor properties of echinacoside (ECH), its specific role and mechanism in hepatocellular carcinoma (HCC) require in-depth exploration. Our study aimed to decipher the mechanism of ECH against HCC through a multi-disciplinary strategy. We first identified tumor protein p53 (TP53) as a key mediator and ferroptosis as a critical process, through network pharmacology and enrichment analyses. The direct interaction between ECH and TP53 was validated by molecular docking and dynamics simulations. In vitro assessments demonstrated that ECH suppresses HCC proliferation by activating ferroptosis, marked by increased intracellular Fe2+, lipid peroxidation (LPO), and malondialdehyde (MDA), alongside reduced glutathione (GSH). The ferroptosis inhibitor ferrostatin-1 notably attenuated ECH’s effects, confirming ferroptosis as the primary mode of cell death. Further mechanistic investigation revealed that ECH acts through the TP53/solute carrier family 7 member 11(SLC7A11)/glutathione peroxidase 4(GPX4) pathway. These results collectively identify ECH as a promising ferroptosis-inducing agent for HCC therapy via TP53 activation. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Graphical abstract

14 pages, 3927 KB  
Article
Polysorbate-Based Carriers Encapsulating Oxygen-Deficient Nanoparticles for Targeted and Effective Chemo-Sonodynamic Therapy of Glioblastoma
by Hyeon Ju Kang, Quan Truong Hoang, Nguyen Cao Nguyen, Binh Thi Thanh Pham, Thuy Giang Nguyen Cao, Vasanthan Ravichandran and Min Suk Shim
Int. J. Mol. Sci. 2025, 26(20), 10235; https://doi.org/10.3390/ijms262010235 - 21 Oct 2025
Viewed by 902
Abstract
Glioblastoma multiforme (GBM) is the most aggressive brain tumor with a high recurrence rate and mortality. A major obstacle to the effective treatment of GBM is the blood–brain barrier (BBB), which hinders the transfer of therapeutic cargo to the tumor lesion. Polysorbate-coated drug [...] Read more.
Glioblastoma multiforme (GBM) is the most aggressive brain tumor with a high recurrence rate and mortality. A major obstacle to the effective treatment of GBM is the blood–brain barrier (BBB), which hinders the transfer of therapeutic cargo to the tumor lesion. Polysorbate-coated drug carriers are known to efficiently cross the BBB via apolipoprotein E (ApoE)-mediated transcytosis. In this study, we developed cancer-targeted nanocarriers using folic acid (FA)-conjugated polysorbate (Tween 80, T80) for safe and efficient chemo-sonodynamic combination therapy against GBM. T80-based nanocarriers effectively co-encapsulated doxorubicin (DOX, chemotherapeutic agent) and oxygen-deficient MnWOx nanoparticles (sonosensitizer). FA-conjugated T80 nanocarriers encapsulating DOX and MnWOx (FA-T-DOX@MnWOx) boosted the cellular uptake of DOX in human glioblastoma U87MG cells. The efficient ability of the T80-based drug carriers to cross the BBB was demonstrated using an in vitro transwell BBB model. In addition, sonosensitizer MnWOx nanoparticles in the T80-based carriers triggered GSH depletion, synergistically enhancing intracellular reactive oxygen species (ROS) generation in U87MG cells upon US irradiation. As a result, FA-T-DOX@MnWOx combined with US triggered significant apoptosis in U87MG cells. This study demonstrated that FA-conjugated, MnWOx-loaded, T80-based nanocarriers capable of crossing the BBB hold significant potential for treating GBM through a combined chemo-sonodynamic therapy. Full article
Show Figures

Figure 1

18 pages, 899 KB  
Article
Impaired Oxidative Stress Markers and Activities of Matrix Metalloproteinases in Plasma of Patients with Alzheimer’s Disease, Emphasizing Sex and APOE ε4 Allele Possession
by Dominika Radošinská, Marta Kollárová, Ivana Shawkatová, Vladimíra Ďurmanová, Zuzana Párnická, Juraj Javor, Petra Brandoburová, Štefan Harsányi and Jana Radošinská
Int. J. Mol. Sci. 2025, 26(18), 8790; https://doi.org/10.3390/ijms26188790 - 9 Sep 2025
Viewed by 1025
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by Aβ accumulation, tau pathology, and associated oxidative and inflammatory changes, including matrix metalloproteinase (MMP) involvement. This study investigated plasma markers of oxidative damage, carbonyl stress, antioxidant status, and activities of MMP-9 and MMP-2 [...] Read more.
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by Aβ accumulation, tau pathology, and associated oxidative and inflammatory changes, including matrix metalloproteinase (MMP) involvement. This study investigated plasma markers of oxidative damage, carbonyl stress, antioxidant status, and activities of MMP-9 and MMP-2 in AD patients and controls. Spectrophotometric and fluorescent assays were used to assess oxidative and carbonyl stress markers, while MMP activities were measured by gelatin zymography. AD patients exhibited significantly increased protein oxidation, carbonyl stress, and GSH/GSSG ratio, along with reduced total antioxidant capacity and superoxide dismutase activity. Plasma MMP-2 activity was elevated in AD patients, whereas MMP-9 activity showed no significant difference. Notable sex-specific patterns were observed: MMP-2 activity was higher in women with AD than in control women, while MMP-9 activity was increased in men with AD compared with control men. Fructosamine levels were elevated in men regardless of AD status and in AD women versus control women. APOE ε4 status had no significant effect on oxidative stress markers or MMP-9 activity, though higher MMP-2 activity in non-carriers with AD suggests its potential protective role. These findings support the relevance of peripheral biomarkers in AD and indicate sex-dependent pathways that may guide personalized therapeutic strategies. Full article
Show Figures

Figure 1

18 pages, 2943 KB  
Article
Cadmium Inhibits Proliferation of Human Bronchial Epithelial BEAS-2B Cells Through Inducing Ferroptosis via Targeted Regulation of the Nrf2/SLC7A11/GPX4 Pathway
by Huan Li, Zixin Qiu, Long Chen, Tianbao Zhang, Diandian Wei, Xue Chen and Yun Wang
Int. J. Mol. Sci. 2025, 26(15), 7204; https://doi.org/10.3390/ijms26157204 - 25 Jul 2025
Cited by 2 | Viewed by 1448
Abstract
Cadmium (Cd)-induced pulmonary toxicity is closely associated with ferroptosis, a regulated form of cell death characterized by iron-dependent lipid peroxidation (LPO). Luteolin (Lut) is a natural flavonoid compound that exists in many plants. In this study, we used human bronchial epithelial BEAS-2B cells [...] Read more.
Cadmium (Cd)-induced pulmonary toxicity is closely associated with ferroptosis, a regulated form of cell death characterized by iron-dependent lipid peroxidation (LPO). Luteolin (Lut) is a natural flavonoid compound that exists in many plants. In this study, we used human bronchial epithelial BEAS-2B cells to explore the impact of ferroptosis in the inhibition of Cd-induced BEAS-2B cells proliferation. BEAS-2B cells were exposed to Cd (5 μM) with/without Lut (10 μM), ferroptosis modulators (Ferrostatin-1 (Fer-1)/Erastin), or nuclear factor erythroid 2-related factor 2 (Nrf2) regulators (tert-butylhydroquinone (TBHQ)/ML385). Viability, iron content, reactive oxygen species (ROS), LPO, mitochondrial membrane potential (MMP), and glutathione peroxidase (GSH-PX) activity were assessed. Exposure to Cd significantly decreased cell viability, increased intracellular iron levels, ROS production, and LPO activity, while simultaneously reducing MMP and GSH-PX activity. Fer-1 mitigated Cd-induced cytotoxicity, but Erastin intensified these effects. Mechanistically, Cd exposure suppressed the Nrf2/Solute Carrier Family 7 Member 11 (SLC7A11)/glutathione peroxidase 4 (GPX4) signaling pathway, which plays a crucial role in maintaining redox homeostasis. Activation of Nrf2 using TBHQ mitigated oxidative stress and upregulated the expression of key proteins within this pathway, while inhibition of Nrf2 with ML385 exacerbated cellular damage. Notably, Lut treatment could significantly alleviate Cd-induced cytotoxicity, oxidative stress, and downregulation of Nrf2/SLC7A11/GPX4 proteins. These findings demonstrate that ferroptosis is a critical mechanism underlying Cd-mediated lung epithelial injury and identify Lut as a promising therapeutic candidate via its activation of Nrf2-driven antioxidant defense mechanisms. This study provides novel insights into molecular targets for the prevention and treatment of Cd-associated pulmonary disorders. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

21 pages, 27301 KB  
Article
Folic Acid Ameliorates Neuronal Ferroptosis in Aging by Up-Regulating SLC7A11-GSH-GPX4 Antioxidant Pathway and Increasing Cystine Levels
by Yue Wang, Jingwen Zhang, Zehao Wang, Qinghan Ren, Zhenshu Li, Guowei Huang and Wen Li
Int. J. Mol. Sci. 2025, 26(14), 6669; https://doi.org/10.3390/ijms26146669 - 11 Jul 2025
Cited by 2 | Viewed by 1778
Abstract
Age-related neurodegeneration is characterized by oxidative stress and iron-dependent cell death, yet the neuroprotective mechanisms of folic acid in modulating ferroptosis remain unclear. This study systematically investigated the role of folic acid in inhibiting ferroptosis and attenuating neuronal damage in aging, with a [...] Read more.
Age-related neurodegeneration is characterized by oxidative stress and iron-dependent cell death, yet the neuroprotective mechanisms of folic acid in modulating ferroptosis remain unclear. This study systematically investigated the role of folic acid in inhibiting ferroptosis and attenuating neuronal damage in aging, with a focus on the solute carrier family 7 member 11 (SLC7A11)-glutathione (GSH)-glutathione peroxidase 4 (GPX4) antioxidant pathway, using aged rats supplemented with folic acid (<0.1, 2.0, and 4.0 mg/kg·diet) for 22 months, with young adult rats as controls. Brain iron accumulation and ferroptosis-related proteins (SLC7A11, GPX4, Ferritin heavy chain 1 (FTH1)) were evaluated. In vitro, HT-22 hippocampal neuronal cells were pre-treated with folic acid (0, 10, 20 μmol/L) for 72 h before combining with Erastin (10 μmol/L)-induced ferroptosis for an additional 24 h. Intracellular Fe2+, lipid peroxidation (LPO), malondialdehyde (MDA), reactive oxygen species (ROS), along with cystine, GSH, and ferroptosis-related protein levels were quantified. Stable sh-SLC7A11 knockdown and control (sh-NC) cell lines were used to validate the dependency of folic acid’s protective effects on SLC7A11 expression. Folic acid supplementation in aged rats dose-dependently reduced aging-related brain iron accumulation and enhanced the expression of SLC7A11, GPX4, and FTH1. In Erastin-induced HT-22 cells, folic acid significantly mitigated ferroptosis hallmarks. Mechanistically, folic acid increased extracellular cystine uptake and intracellular GSH synthesis, thereby activating the SLC7A11-GSH-GPX4 antioxidant pathway. Notably, molecular docking technique suggested that compared to GPX4, folic acid stabilized SLC7A11’s active conformation. sh-SLC7A11 knockdown completely abolished folic acid-mediated protection against ferroptosis, as evidenced by restored loss of cystine, GSH and GPX4 production. This study innovatively emphasized the critical role of folic acid supplementation in inhibiting ferroptosis by up-regulating the SLC7A11-GSH-GPX4 antioxidant pathway, primarily through enhancing cystine availability and SLC7A11 expression. These findings established folic acid as a potential dietary intervention for aging-related neurodegenerative diseases characterized by neuronal ferroptosis, providing preclinical evidence for folic acid based neuroprotection. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

19 pages, 1888 KB  
Article
Ankyloblepharon–Ectodermal Defects–Cleft Lip/Palate Syndrome-Linked p63 Mutations Disrupt Keratinocyte Proliferation and Survival Through Oxidative Stress and Impaired Slc7a11 Expression
by Daniela Di Girolamo, Sara Palumbo, Dario Antonini, Ludovica D’Auria, Vincenza Cerbone, Tommaso Porcelli, Federica Cavallo, Enzo Calautti, Chiara Riganti and Caterina Missero
Int. J. Mol. Sci. 2025, 26(11), 5231; https://doi.org/10.3390/ijms26115231 - 29 May 2025
Cited by 1 | Viewed by 1251
Abstract
Mutations in the TP63 gene cause several syndromic disorders, including ankyloblepharon–ectodermal defects–cleft lip/palate (AEC) syndrome, characterized by severe skin erosions, cleft palate, and ectodermal dysplasia. These mutations often affect the carboxy-terminal sterile-α-motif (SAM) domain of the p63 protein, leading to domain misfolding, protein [...] Read more.
Mutations in the TP63 gene cause several syndromic disorders, including ankyloblepharon–ectodermal defects–cleft lip/palate (AEC) syndrome, characterized by severe skin erosions, cleft palate, and ectodermal dysplasia. These mutations often affect the carboxy-terminal sterile-α-motif (SAM) domain of the p63 protein, leading to domain misfolding, protein aggregation, and impaired transcriptional activity. To dissect the molecular mechanisms underlying AEC pathogenesis, we investigated primary keratinocytes derived from p63L514F mutant mice, which carry a SAM domain mutation associated with AEC syndrome. p63L514F keratinocytes exhibited significantly reduced proliferation compared to wild-type controls, as indicated by decreased 5-ethynyl-2′-deoxyuridine (EdU) incorporation, decreased Cyclin D1 and Cyclin D2 expression, and an increase in the cell-cycle inhibitors p21 and p27. Furthermore, p63L514F keratinocytes showed increased cell death, elevated reactive oxygen species (ROS) levels, and a decreased reduced (GSH) and oxidized (GSSG) glutathione (GSH/GSSG) ratio, indicating oxidative stress. This stress response was accompanied by a marked reduction in Solute Carrier Family 7 Member 11 (Slc7a11), a critical regulator of antioxidant defense. We further identified Slc7a11 as a likely direct transcriptional target of p63: p63 depletion reduced Slc7a11 expression, and chromatin immunoprecipitation uncovered an evolutionary conserved p63-binding enhancer upstream of the Slc7a11 promoter. Together, our findings demonstrate that p63 mutations causative of AEC syndrome impair keratinocyte proliferation, promote cell death via oxidative stress, and compromised antioxidant defenses, revealing a dual role for p63 in sustaining skin homeostasis. Full article
Show Figures

Figure 1

12 pages, 1832 KB  
Article
Increased Brain Glutathione Levels by Intranasal Insulin Administration
by Taisuke Kawashima, Wattanaporn Bhadhprasit, Nobuko Matsumura, Chisato Kinoshita and Koji Aoyama
Curr. Issues Mol. Biol. 2025, 47(4), 284; https://doi.org/10.3390/cimb47040284 - 17 Apr 2025
Viewed by 1501
Abstract
Background: This paper investigates the effect of intranasal insulin administration on brain glutathione (GSH) levels and elucidates the potential mechanism by which insulin enhances antioxidant defenses in the brain. Methods: C57BL/6J mice were intranasally administered insulin (2 IU/day) or saline for 7 days. [...] Read more.
Background: This paper investigates the effect of intranasal insulin administration on brain glutathione (GSH) levels and elucidates the potential mechanism by which insulin enhances antioxidant defenses in the brain. Methods: C57BL/6J mice were intranasally administered insulin (2 IU/day) or saline for 7 days. GSH levels were measured in the brain and liver. Blood glucose concentrations and daily food intake were also monitored. Protein levels of excitatory amino acid carrier-1 (EAAC1), its interaction with glutamate transport-associated protein 3-18(GTRAP3-18), and activated AMP-activated protein kinase (AMPK) were assessed. Results: Insulin-treated mice exhibited significantly higher GSH levels in the hippocampus and midbrain compared to saline-treated controls, while no significant differences were found in liver GSH levels, blood glucose concentrations, or food intake. EAAC1 expression increased in both the cytosolic and plasma membrane fractions of insulin-treated mouse brains. Furthermore, the interaction between EAAC1 and its negative regulator, GTRAP3-18, along with activated AMPK levels, was reduced in insulin-treated mice. Conclusions: Intranasal insulin administration enhances brain GSH levels through a mechanism involving EAAC1 upregulation and reduced AMPK activation. These findings suggest that intranasal insulin could be a promising strategy for enhancing antioxidant defenses against neurodegeneration in the brain. Full article
Show Figures

Figure 1

14 pages, 2970 KB  
Article
Disorders of Iron Metabolism: A “Sharp Edge” of Deoxynivalenol-Induced Hepatotoxicity
by Haoyue Guan, Yujing Cui, Zixuan Hua, Youtian Deng, Huidan Deng and Junliang Deng
Metabolites 2025, 15(3), 165; https://doi.org/10.3390/metabo15030165 - 1 Mar 2025
Cited by 2 | Viewed by 1336
Abstract
Background/Objectives: Deoxynivalenol (DON), known as vomitoxin, is one of the most common mycotoxins produced by Fusarium graminearum, with high detection rates in feed worldwide. Ferroptosis is a novel mode of cell death characterized by lipid peroxidation and the accumulation of reactive oxygen [...] Read more.
Background/Objectives: Deoxynivalenol (DON), known as vomitoxin, is one of the most common mycotoxins produced by Fusarium graminearum, with high detection rates in feed worldwide. Ferroptosis is a novel mode of cell death characterized by lipid peroxidation and the accumulation of reactive oxygen species. Although it has been demonstrated that DON can induce ferroptosis in the liver, the specific mechanisms and pathways are still unknown. The aim of this experiment was to investigate that DON can induce iron metabolism disorders in the livers of mice, thereby triggering ferroptosis and causing toxic damage to the liver. Methods: Male C57 mice were treated with DON at a 5 mg/kg BW concentration as an in vivo model. After sampling, organ coefficient monitoring, liver function test, histopathological analysis, liver Fe2+ content test, and oxidative stress-related indexes were performed. The mRNA and protein expression of Nrf2 and its downstream genes were also detected using a series of methods including quantitative real-time PCR, immunofluorescence double-labeling, and Western blotting analysis. Results: DON can cause damage to the liver of a mouse. Specifically, we found that mouse livers in the DON group exhibited pathological damage in cell necrosis, inflammatory infiltration, cytoplasmic vacuolization, elevated relative liver weight, and significant changes in liver function indexes. Meanwhile, the substantial reduction in the levels of glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), and total antioxidant capacity (T-AOC) in the DON group indicated that DON also caused oxidative stress in the liver. Notably, DON exposure increased the levels of Fe2+ and Malondialdehyde (MDA) in the liver, which provides strong evidence for the occurrence of iron metabolism and ferroptosis disorders. Most importantly, mRNA and protein expression of Nrf2, an important pathway for iron metabolism and ferroptosis, along with its downstream genes, heme oxygenase (HO-1), quinone oxidoreductase (NQO1), glutathione peroxidase (GPX4), and solute carrier gene (SLC7a11), were significantly inhibited in the DON group. Conclusions: Based on our results, the Nrf2 pathway is closely associated with DON-induced iron metabolism disorders and ferroptosis in mouse livers, suggesting that maintaining hepatic iron homeostasis and activating the Nrf2 pathway may be a potential target for mitigating DON hepatotoxicity in the future. Full article
(This article belongs to the Special Issue Animal Nutritional Metabolism and Toxicosis Disease)
Show Figures

Figure 1

13 pages, 9121 KB  
Article
PTEN Deficiency Induced by Extracellular Vesicle miRNAs from Clonorchis sinensis Potentiates Cholangiocarcinoma Development by Inhibiting Ferroptosis
by Lijia Wen, Meng Li and Jigang Yin
Int. J. Mol. Sci. 2024, 25(19), 10350; https://doi.org/10.3390/ijms251910350 - 26 Sep 2024
Cited by 4 | Viewed by 2225
Abstract
The human phosphatase and tensin homolog (PTEN) is a tumor suppressor. A slight deficiency in PTEN might cause cancer susceptibility and progression. Infection by the liver fluke Clonorchis sinensis could lead to persistent loss of PTEN in cholangiocarcinoma. However, the mechanism of PTEN [...] Read more.
The human phosphatase and tensin homolog (PTEN) is a tumor suppressor. A slight deficiency in PTEN might cause cancer susceptibility and progression. Infection by the liver fluke Clonorchis sinensis could lead to persistent loss of PTEN in cholangiocarcinoma. However, the mechanism of PTEN loss and its malignant effect on cholangiocarcinoma have not yet been elucidated. Extracellular vesicles secreted by Clonorchis sinensis (CS-EVs) are rich in microRNAs (miRNAs) and can mediate communication between hosts and parasites. Herein, we delved into the miRNAs present in CS-EVs, specifically those that potentially target PTEN and modulate the progression of cholangiocarcinoma via ferroptosis mechanisms. CS-EVs were extracted by differential ultra-centrifugation for high-throughput sequencing of miRNA. Lentiviral vectors were used to construct stably transfected cell lines. Erastin was used to construct ferroptosis induction models. Finally, 36 miRNAs were identified from CS-EVs. Among them, csi-miR-96-5p inhibited PTEN expression according to the predictions and dual luciferase assay. The CCK-8 assay, xenograft tumor assays and transwell assay showed that csi-miR-96-5p overexpression and PTEN knockout significantly increased the proliferation and migration of cholangiocarcinoma cells and co-transfection of PTEN significantly reversed the effect. In the presence of erastin, the cell proliferation and migration ability of the negative transfection control group were significantly impaired, although they did not significantly change with transfection of csi-miR-96-5p and PTEN knockout, indicating that they obtained ferroptosis resistance. Mechanistically, csi-miR-96-5p and PTEN knockout significantly inhibited ferroptosis through a decrease in ferrous ion (Fe2+) and malondialdehyde (MDA), and an increase in glutathione reductase (GSH), Solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4). In conclusion, loss of PTEN promoted the progression of cholangiocarcinoma via the ferroptosis pathway and csi-miR-96-5p delivered by CS-EVs may mediate this process. Full article
(This article belongs to the Special Issue The Molecular Basis of Extracellular Vesicles in Health and Diseases)
Show Figures

Graphical abstract

17 pages, 5304 KB  
Article
Carrier-Free Hybrid Nanoparticles for Enhanced Photodynamic Therapy in Oral Carcinoma via Reversal of Hypoxia and Oxidative Resistance
by Xiao Li, Zhiyin Li, Yue Su, Jia Zhou, Yuxiang Li, Qianqian Zhao, Xia Yang, Leilei Shi and Lingyue Shen
Pharmaceutics 2024, 16(9), 1130; https://doi.org/10.3390/pharmaceutics16091130 - 27 Aug 2024
Cited by 2 | Viewed by 1615
Abstract
In the present work, we pioneered a coordinated self-assembly approach aimed at fabricating carrier-free hybrid nanoparticles to address the inherent challenges of the anaerobic microenvironment and the oxidative resistance induced by reductive glutathione (GSH) in photodynamic therapy (PDT). In these nanoparticles, protoporphyrin IX [...] Read more.
In the present work, we pioneered a coordinated self-assembly approach aimed at fabricating carrier-free hybrid nanoparticles to address the inherent challenges of the anaerobic microenvironment and the oxidative resistance induced by reductive glutathione (GSH) in photodynamic therapy (PDT). In these nanoparticles, protoporphyrin IX (PP), HIF-1α inhibitor of N, Nʹ-(2,5-Dichlorosulfonyl) cystamine KC7F2 (KC), and the cofactor Fe3+ present hydrogen bond and coordination interaction. The nanoparticles exhibited efficient cellular uptake by CAL-27 cells, facilitating their accumulation in tumors by enhanced permeability and retention (EPR) effect. Under irradiation at 650 nm, the formation of cytotoxic singlet oxygen (1O2) would be enhanced by the synergy effect on the Fenton reaction of Fe3+ ion and the downregulation of the HIF-1α, leading to the improved PDT efficacy both in vitro and in vivo biological studies. Our work opens a new supramolecular approach to prepare hybrid nanoparticles for effective synergy therapy with PDT against cancer cells. Full article
Show Figures

Figure 1

11 pages, 4222 KB  
Article
Design of pH/Redox Co-Triggered Degradable Diselenide-Containing Polyprodrug via a Facile One-Pot Two-Step Approach for Tumor-Specific Chemotherapy
by Yanru Hu and Peng Liu
Molecules 2024, 29(16), 3837; https://doi.org/10.3390/molecules29163837 - 13 Aug 2024
Viewed by 1604
Abstract
The diselenide bond has attracted intense interest for drug delivery systems (DDSs) for tumor chemotherapy, owing to it possessing higher redox sensitivity than the disulfide one. Various redox-responsive diselenide-containing carriers have been developed for chemotherapeutics delivery. However, the premature drug leakage from these [...] Read more.
The diselenide bond has attracted intense interest for drug delivery systems (DDSs) for tumor chemotherapy, owing to it possessing higher redox sensitivity than the disulfide one. Various redox-responsive diselenide-containing carriers have been developed for chemotherapeutics delivery. However, the premature drug leakage from these DDSs was significant enough to cause toxic side effects on normal cells. Here, a pH/redox co-triggered degradable polyprodrug was designed as a drug self-delivery system (DSDS) by incorporating drug molecules as structural units in the polymer main chains, using a facile one-pot two-step approach. The proposed PDOX could only degrade and release drugs by breaking both the neighboring acid-labile acylhydrazone and the redox-cleavable diselenide conjugations in the drug’s structural units, triggered by the higher acidity and glutathione (GSH) or reactive oxygen species (ROS) levels in the tumor cells. Therefore, a slow solubility-controlled drug release was achieved for tumor-specific chemotherapy, indicating promising potential as a safe and efficient long-acting DSDS for future tumor treatment. Full article
(This article belongs to the Special Issue Exclusive Feature Papers on Molecular Structure)
Show Figures

Graphical abstract

19 pages, 6685 KB  
Article
Hepatic Oxidative Stress and Cell Death Influenced by Dietary Lipid Levels in a Fresh Teleost
by Lingjie He, Yupeng Zhang, Quanquan Cao, Hongying Shan, Jiali Zong, Lin Feng, Weidan Jiang, Pei Wu, Juan Zhao, Haifeng Liu and Jun Jiang
Antioxidants 2024, 13(7), 808; https://doi.org/10.3390/antiox13070808 - 4 Jul 2024
Cited by 12 | Viewed by 2745
Abstract
Ferroptosis is a form of regulated cell death characterized by iron-dependent lipid peroxidation, affecting physiological and pathological processes. Fatty liver disease associated with metabolic dysfunction is a common pathological condition in aquaculture. However, the exact role and mechanism of ferroptosis in its pathogenesis [...] Read more.
Ferroptosis is a form of regulated cell death characterized by iron-dependent lipid peroxidation, affecting physiological and pathological processes. Fatty liver disease associated with metabolic dysfunction is a common pathological condition in aquaculture. However, the exact role and mechanism of ferroptosis in its pathogenesis and progression remains unclear. In this study, an experiment was conducted using different dietary lipid levels in the feeding of largemouth bass (Micropterus salmoides) for 11 weeks. The results revealed that the growth performance and whole-body protein content significantly increased with the elevation of dietary lipid levels up to 12%. The activities of antioxidant enzymes as well as the content of GSH (glutathione) in the liver initially increased but later declined as the lipid levels increased; the contents of MDA (malondialdehyde) and GSSG (oxidized glutathione) demonstrated an opposite trend. Moreover, elevating lipid levels in the diet significantly increased liver Fe2+ content, as well as the expressions of TF (Transferrin), TFR (Transferrin receptor), ACSL4 (acyl-CoA synthetase long-chain family member 4), LPCAT3 (lysophosphatidylcholine acyltransferase 3), and LOX12 (Lipoxygenase-12), while decreasing the expressions of GPX4 (glutathione peroxidase 4) and SLC7A11 (Solute carrier family 7 member 11). In conclusion, the optimal lipid level is 12.2%, determined by WG-based linear regression. Excess lipid-level diets can up-regulate the ACSL4/LPCAT3/LOX12 axis, induce hepatic oxidative stress and cell death through a ferroptotic-like program, and decrease growth performance. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

19 pages, 7578 KB  
Article
Erythroid Differentiation Regulator 1 as a Regulator of Neuronal GSH Synthesis
by Wattanaporn Bhadhprasit, Chisato Kinoshita, Nobuko Matsumura and Koji Aoyama
Antioxidants 2024, 13(7), 771; https://doi.org/10.3390/antiox13070771 - 26 Jun 2024
Cited by 3 | Viewed by 2231
Abstract
Erythroid differentiation regulator 1 (Erdr1) is a cytokine known to play important roles in cell survival under stressful conditions, maintenance of cellular growth homeostasis, and activation of the immune system. However, the impact of Erdr1 on neurons remains undefined. In this study, we [...] Read more.
Erythroid differentiation regulator 1 (Erdr1) is a cytokine known to play important roles in cell survival under stressful conditions, maintenance of cellular growth homeostasis, and activation of the immune system. However, the impact of Erdr1 on neurons remains undefined. In this study, we present novel evidence that Erdr1 plays a role in regulating glutathione (GSH) synthesis via glutamate transporter-associated protein 3-18 (GTRAP3-18), an anchor protein in the endoplasmic reticulum that holds excitatory amino acid carrier 1 (EAAC1) in neurons. Both DNA microarray and quantitative real-time PCR analyses revealed an approximately 2-fold increase in Erdr1 levels in the hippocampus of GTRAP3-18-deficient mice compared to those of wild-type mice. Knockdown of Erdr1 in vitro resulted in a decrease in GTRAP3-18 levels, leading to an increase in EAAC1 expression and intracellular GSH levels, and subsequently, cytoprotective effects against oxidative stress. Our findings shed light on the regulatory mechanisms involving Erdr1, GTRAP3-18, EAAC1, and GSH in the context of neuronal defense against oxidative stress. Understanding the intricate interplay among these molecules may pave the way for the development of promising therapeutic strategies for neurodegenerative disorders. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

Back to TopTop