Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = GNWs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3368 KB  
Article
Vertically Aligned Nanocrystalline Graphite Nanowalls for Flexible Electrodes as Electrochemical Sensors for Anthracene Detection
by Marius C. Stoian, Octavian G. Simionescu, Cosmin Romanitan, Gabriel Craciun, Cristina Pachiu and Antonio Radoi
Sensors 2024, 24(22), 7194; https://doi.org/10.3390/s24227194 - 10 Nov 2024
Cited by 3 | Viewed by 1356
Abstract
Plasma-enhanced chemical vapor deposition (PECVD) was used to obtain several graphite nanowall (GNW)-type films at different deposition times on silicon and copper to achieve various thicknesses of carbonic films for the development of electrochemical sensors for the detection of anthracene. The PECVD growth [...] Read more.
Plasma-enhanced chemical vapor deposition (PECVD) was used to obtain several graphite nanowall (GNW)-type films at different deposition times on silicon and copper to achieve various thicknesses of carbonic films for the development of electrochemical sensors for the detection of anthracene. The PECVD growth time varied from 15 min to 30 min to 45 min, while scanning electron microscopy (SEM) confirmed the changes in the thickness of the GNW films, revealing a continuous increase in the series. X-ray diffraction (XRD) analysis revealed that the crystallinity of the GNW film samples increased with increasing crystallite size and decreasing dislocation density as the deposition time increased. Electrochemical characterization of the GNW-based electrodes indicated that the electroactive area and heterogeneous electron transfer rate constant were greater for the GNW 45 min film in the carbonic material series. We present the transfer of GNW films on flexible polyethylene substrates for achieving flexible electrochemical sensors for further use in anthracene determination. The flexible GNW-based electrodes were investigated using differential pulse voltammetry (DPV) in the presence of anthracene. The results showed that the highest sensitivity in anthracene detection was provided by the sensor with the GNW film obtained after 45 min of PECVD growth. The optimization of the GNW film thickness for the development of flexible electrochemical sensors on polyethylene substrates represents a successful approach for enhancing the electrochemical performance of carbonic materials. Full article
(This article belongs to the Collection Electrochemical Sensors and Platforms: Design and Application)
Show Figures

Figure 1

19 pages, 2137 KB  
Article
Self-Regulation of the Posterior–Frontal Brain Activity with Real-Time fMRI Neurofeedback to Influence Perceptual Discrimination
by Sunjung Kim, Josue Luiz Dalboni da Rocha, Niels Birbaumer and Ranganatha Sitaram
Brain Sci. 2024, 14(7), 713; https://doi.org/10.3390/brainsci14070713 - 16 Jul 2024
Cited by 2 | Viewed by 2544
Abstract
The Global Neuronal Workspace (GNW) hypothesis states that the visual percept is available to conscious awareness only if recurrent long-distance interactions among distributed brain regions activate neural circuitry extending from the posterior areas to prefrontal regions above a certain excitation threshold. To directly [...] Read more.
The Global Neuronal Workspace (GNW) hypothesis states that the visual percept is available to conscious awareness only if recurrent long-distance interactions among distributed brain regions activate neural circuitry extending from the posterior areas to prefrontal regions above a certain excitation threshold. To directly test this hypothesis, we trained 14 human participants to increase blood oxygenation level-dependent (BOLD) signals with real-time functional magnetic resonance imaging (rtfMRI)-based neurofeedback simultaneously in four specific regions of the occipital, temporal, insular and prefrontal parts of the brain. Specifically, we hypothesized that the up-regulation of the mean BOLD activity in the posterior–frontal brain regions lowers the perceptual threshold for visual stimuli, while down-regulation raises the threshold. Our results showed that participants could perform up-regulation (Wilcoxon test, session 1: p = 0.022; session 4: p = 0.041) of the posterior–frontal brain activity, but not down-regulation. Furthermore, the up-regulation training led to a significant reduction in the visual perceptual threshold, but no substantial change in perceptual threshold was observed after the down-regulation training. These findings show that the up-regulation of the posterior–frontal regions improves the perceptual discrimination of the stimuli. However, further questions as to whether the posterior–frontal regions can be down-regulated at all, and whether down-regulation raises the perceptual threshold, remain unanswered. Full article
(This article belongs to the Section Sensory and Motor Neuroscience)
Show Figures

Figure 1

16 pages, 7963 KB  
Article
Field-Effect Transistors Based on Single-Layer Graphene and Graphene-Derived Materials
by Octavian-Gabriel Simionescu, Andrei Avram, Bianca Adiaconiţă, Petruţa Preda, Cătălin Pârvulescu, Florin Năstase, Eugen Chiriac and Marioara Avram
Micromachines 2023, 14(6), 1096; https://doi.org/10.3390/mi14061096 - 23 May 2023
Cited by 11 | Viewed by 3467
Abstract
The progress of advanced materials has invoked great interest in promising novel biosensing applications. Field-effect transistors (FETs) are excellent options for biosensing devices due to the variability of the utilized materials and the self-amplifying role of electrical signals. The focus on nanoelectronics and [...] Read more.
The progress of advanced materials has invoked great interest in promising novel biosensing applications. Field-effect transistors (FETs) are excellent options for biosensing devices due to the variability of the utilized materials and the self-amplifying role of electrical signals. The focus on nanoelectronics and high-performance biosensors has also generated an increasing demand for easy fabrication methods, as well as for economical and revolutionary materials. One of the innovative materials used in biosensing applications is graphene, on account of its remarkable properties, such as high thermal and electrical conductivity, potent mechanical properties, and high surface area to immobilize the receptors in biosensors. Besides graphene, other competing graphene-derived materials (GDMs) have emerged in this field, with comparable properties and improved cost-efficiency and ease of fabrication. In this paper, a comparative experimental study is presented for the first time, for FETs having a channel fabricated from three different graphenic materials: single-layer graphene (SLG), graphene/graphite nanowalls (GNW), and bulk nanocrystalline graphite (bulk-NCG). The devices are investigated by scanning electron microscopy (SEM), Raman spectroscopy, and I-V measurements. An increased electrical conductance is observed for the bulk-NCG-based FET, despite its higher defect density, the channel displaying a transconductance of up to ≊4.9×103 A V1, and a charge carrier mobility of ≊2.86×104 cm2 V1 s1, at a source-drain potential of 3 V. An improvement in sensitivity due to Au nanoparticle functionalization is also acknowledged, with an increase of the ON/OFF current ratio of over four times, from ≊178.95 to ≊746.43, for the bulk-NCG FETs. Full article
(This article belongs to the Special Issue Thin-Film Devices for Healthcare and Environmental Sensing)
Show Figures

Figure 1

15 pages, 4381 KB  
Article
High-Performance Graphene Nanowalls/Si Self-Powered Photodetectors with HfO2 as an Interfacial Layer
by Yuheng Shen, Yulin Li, Wencheng Chen, Sijie Jiang, Cheng Li and Qijin Cheng
Nanomaterials 2023, 13(10), 1681; https://doi.org/10.3390/nano13101681 - 19 May 2023
Cited by 10 | Viewed by 2410
Abstract
Graphene/silicon (Si) heterojunction photodetectors are widely studied in detecting of optical signals from near-infrared to visible light. However, the performance of graphene/Si photodetectors is limited by defects created in the growth process and surface recombination at the interface. Herein, a remote plasma-enhanced chemical [...] Read more.
Graphene/silicon (Si) heterojunction photodetectors are widely studied in detecting of optical signals from near-infrared to visible light. However, the performance of graphene/Si photodetectors is limited by defects created in the growth process and surface recombination at the interface. Herein, a remote plasma-enhanced chemical vapor deposition is introduced to directly grow graphene nanowalls (GNWs) at a low power of 300 W, which can effectively improve the growth rate and reduce defects. Moreover, hafnium oxide (HfO2) with thicknesses ranging from 1 to 5 nm grown by atomic layer deposition has been employed as an interfacial layer for the GNWs/Si heterojunction photodetector. It is shown that the high-k dielectric layer of HfO2 acts as an electron-blocking and hole transport layer, which minimizes the recombination and reduces the dark current. At an optimized thickness of 3 nm HfO2, a low dark current of 3.85 × 10−10, with a responsivity of 0.19 AW−1, a specific detectivity of 1.38 × 1012 as well as an external quantum efficiency of 47.1% at zero bias, can be obtained for the fabricated GNWs/HfO2/Si photodetector. This work demonstrates a universal strategy to fabricate high-performance graphene/Si photodetectors. Full article
(This article belongs to the Special Issue Functional Graphene-Based Nanodevices)
Show Figures

Figure 1

9 pages, 49366 KB  
Communication
Effect of GNWs/NiO-WO3/GNWs Heterostructure for NO2 Gas Sensing at Room Temperature
by Seokhun Kwon, Seokwon Lee, Joouk Kim, Chulmin Park, Hosung Jung, Hyungchul Kim, Chulsoo Kim and Hyunil Kang
Sensors 2022, 22(2), 626; https://doi.org/10.3390/s22020626 - 14 Jan 2022
Cited by 4 | Viewed by 2528
Abstract
Recently, as air pollution and particulate matter worsen, the importance of a platform that can monitor the air environment is emerging. Especially, among air pollutants, nitrogen dioxide (NO2) is a toxic gas that can not only generate secondary particulate matter, but [...] Read more.
Recently, as air pollution and particulate matter worsen, the importance of a platform that can monitor the air environment is emerging. Especially, among air pollutants, nitrogen dioxide (NO2) is a toxic gas that can not only generate secondary particulate matter, but can also derive numerous toxic gases. To detect such NO2 gas at low concentration, we fabricated a GNWs/NiO-WO3/GNWs heterostructure-based gas sensor using microwave plasma-enhanced chemical vapor deposition (MPECVD) and sputter, and we confirmed the NO2 detection characteristics between 10 and 50 ppm at room temperature. The morphology and carbon lattice characteristics of the sensing layer were investigated using field emission scanning electron microscopy (FESEM) and Raman spectroscopy. In the gas detection measurement, the resistance negative change according to the NO2 gas concentration was recorded. Moreover, it reacted even at low concentrations such as 5–7 ppm, and showed excellent recovery characteristics of more than 98%. Furthermore, it also showed a change in which the reactivity decreased with respect to humidity of 33% and 66%. Full article
(This article belongs to the Special Issue Graphene Based Chemical Sensors)
Show Figures

Figure 1

14 pages, 6051 KB  
Article
Research on the Knowledge Association Reasoning of Financial Reports Based on a Graph Network
by Zhuoqian Liang, Ding Pan and Yuan Deng
Sustainability 2020, 12(7), 2795; https://doi.org/10.3390/su12072795 - 1 Apr 2020
Cited by 9 | Viewed by 3177
Abstract
With increasingly strict supervision, the complexity of enterprises’ annual reports has increased significantly, and the size of the text corpus has grown at an enormous rate. Information fusion for financial reporting has become a research hotspot. The difficulty of this problem is in [...] Read more.
With increasingly strict supervision, the complexity of enterprises’ annual reports has increased significantly, and the size of the text corpus has grown at an enormous rate. Information fusion for financial reporting has become a research hotspot. The difficulty of this problem is in filtering the massive amount of heterogeneous data and integrating related information distributed in different locations according to decision topics. This paper proposes a Graph NetWork (GNW) model that establishes the overall connection between decentralized information, as well as a graph network generation algorithm to filter large and complex data sets in financial reports and to mine key information to make it suitable for different decision situations. Finally, this paper uses the Planar Maximally Filtered Graph (PMFG) as a benchmark to show the effect of the generation algorithm. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

15 pages, 3554 KB  
Article
High Voltage Graphene Nanowall Trench MOS Barrier Schottky Diode Characterization for High Temperature Applications
by Rahimah Mohd Saman, Sharaifah Kamariah Wan Sabli, Mohd Rofei Mat Hussin, Muhammad Hilmi Othman, Muhammad Aniq Shazni Mohammad Haniff and Mohd Ismahadi Syono
Appl. Sci. 2019, 9(8), 1587; https://doi.org/10.3390/app9081587 - 17 Apr 2019
Cited by 8 | Viewed by 6736
Abstract
Graphene’s superior electronic and thermal properties have gained extensive attention from research and industrial sectors to study and develop the material for various applications such as in sensors and diodes. In this paper, the characteristics and performance of carbon-based nanostructure applied on a [...] Read more.
Graphene’s superior electronic and thermal properties have gained extensive attention from research and industrial sectors to study and develop the material for various applications such as in sensors and diodes. In this paper, the characteristics and performance of carbon-based nanostructure applied on a Trench Metal Oxide Semiconductor MOS barrier Schottky (TMBS) diode were investigated for high temperature application. The structure used for this study was silicon substrate with a trench and filled trench with gate oxide and polysilicon gate. A graphene nanowall (GNW) or carbon nanowall (CNW), as a barrier layer, was grown using the plasma enhanced chemical vapor deposition (PECVD) method. The TMBS device was then tested to determine the leakage current at 60 V under various temperature settings and compared against a conventional metal-based TMBS device using TiSi2 as a Schottky barrier layer. Current-voltage (I-V) measurement data were analyzed to obtain the Schottky barrier height, ideality factor, and series resistance (Rs) values. From I-V measurement, leakage current measured at 60 V and at 423 K of the GNW-TMBS and TiSi2-TMBS diodes were 0.0685 mA and above 10 mA, respectively, indicating that the GNW-TMBS diode has high operating temperature advantages. The Schottky barrier height, ideality factor, and series resistance based on dV/dln(J) vs. J for the GNW were calculated to be 0.703 eV, 1.64, and 35 ohm respectively. Full article
Show Figures

Figure 1

13 pages, 3604 KB  
Article
Super-Capacitive Performance of Manganese Dioxide/Graphene Nano-Walls Electrodes Deposited on Stainless Steel Current Collectors
by Roger Amade, Arevik Muyshegyan-Avetisyan, Joan Martí González, Angel Pérez del Pino, Eniko György, Esther Pascual, José Luís Andújar and Enric Bertran Serra
Materials 2019, 12(3), 483; https://doi.org/10.3390/ma12030483 - 4 Feb 2019
Cited by 24 | Viewed by 4956
Abstract
Graphene nano-walls (GNWs) are promising materials that can be used as an electrode in electrochemical devices. We have grown GNWs by inductively-coupled plasma-enhanced chemical vapor deposition on stainless steel (AISI304) substrate. In order to enhance the super-capacitive properties of the electrodes, we have [...] Read more.
Graphene nano-walls (GNWs) are promising materials that can be used as an electrode in electrochemical devices. We have grown GNWs by inductively-coupled plasma-enhanced chemical vapor deposition on stainless steel (AISI304) substrate. In order to enhance the super-capacitive properties of the electrodes, we have deposited a thin layer of MnO2 by electrodeposition method. We studied the effect of annealing temperature on the electrochemical properties of the samples between 70 °C and 600 °C. Best performance for supercapacitor applications was obtained after annealing at 70 °C with a specific capacitance of 104 F·g−1 at 150 mV·s−1 and a cycling stability of more than 14k cycles with excellent coulombic efficiency and 73% capacitance retention. Electrochemical impedance spectroscopy, cyclic voltammetry, and galvanostatic charge/discharge measurements reveal fast proton diffusion (1.3 × 10−13 cm2·s−1) and surface redox reaction after annealing at 70 °C. Full article
(This article belongs to the Special Issue Advances in Electrochemical Energy Materials)
Show Figures

Figure 1

13 pages, 5470 KB  
Article
Effect of Graphene Nanowall Size on the Interfacial Strength of Carbon Fiber Reinforced Composites
by Xiao Wang, Chaolong Li, Yao Chi, Mingxing Piao, Jin Chu, Heng Zhang, Zhenghao Li and Wei Wei
Nanomaterials 2018, 8(6), 414; https://doi.org/10.3390/nano8060414 - 8 Jun 2018
Cited by 32 | Viewed by 5164
Abstract
Graphene nanowalls (GNWs) with different sizes (i.e., length and height) were grown directly on the surface of individual carbon fibers (CFs) using a radio frequency plasma-enhanced chemical vapor deposition (RF-PECVD) technique. The size was controlled by varying the deposition time. The GNW-modified CFs [...] Read more.
Graphene nanowalls (GNWs) with different sizes (i.e., length and height) were grown directly on the surface of individual carbon fibers (CFs) using a radio frequency plasma-enhanced chemical vapor deposition (RF-PECVD) technique. The size was controlled by varying the deposition time. The GNW-modified CFs were embedded into epoxy resin matrix to prepare a series of carbon-fiber-reinforced composites (CFRCs). The results indicated that GNWs were remarkably effective in improving the interfacial shear strength (IFSS) and interlaminar shear strength (ILSS) of the carbon-fiber-reinforced composites. The enhancement effect on the strength strongly depended on the size of GNWs. It increased with the increase in the GNWs’ size and reached the maximum upon the incorporation of GNWs that were grown for 45 min. Noticeable increases of 222.8% and 41.1% were observed in IFSS and ILSS, respectively. The enhancement mechanism was revealed by means of scanning electron microscope (SEM) fractography analysis. However, further increase of GNW size led to no more improvement in the shear strength. It could result from the increased defect concentration and wrinkle size in the GNWs, which deteriorated the strength. Full article
Show Figures

Graphical abstract

11 pages, 4110 KB  
Article
Molecular Spectrum Capture by Tuning the Chemical Potential of Graphene
by Yue Cheng, Jingjing Yang, Qiannan Lu, Hao Tang and Ming Huang
Sensors 2016, 16(6), 773; https://doi.org/10.3390/s16060773 - 27 May 2016
Cited by 4 | Viewed by 5679
Abstract
Due to its adjustable electronic properties and effective excitation of surface plasmons in the infrared and terahertz frequency range, research on graphene has attracted a great deal of attention. Here, we demonstrate that plasmon modes in graphene-coated dielectric nanowire (GNW) waveguides can be [...] Read more.
Due to its adjustable electronic properties and effective excitation of surface plasmons in the infrared and terahertz frequency range, research on graphene has attracted a great deal of attention. Here, we demonstrate that plasmon modes in graphene-coated dielectric nanowire (GNW) waveguides can be excited by a monolayer graphene ribbon. What is more the transverse resonant frequency spectrum of the GNW can be flexibly tuned by adjusting the chemical potential of graphene, and amplitude of the resonance peak varies linearly with the imaginary part of the analyte permittivity. As a consequence, the GNW works as a probe for capturing the molecular spectrum. Broadband sensing of toluene, ethanol and sulfurous anhydride thin layers is demonstrated by calculating the changes in spectral intensity of the propagating mode and the results show that the intensity spectra correspond exactly to the infrared spectra of these molecules. This may open an effective avenue to design sensors for detecting nanometric-size molecules in the terahertz and infrared regimes. Full article
(This article belongs to the Special Issue SPR, WGM & Nano-Sensors: Advantages and Prospects)
Show Figures

Graphical abstract

33 pages, 1953 KB  
Review
New Gold Nanostructures for Sensor Applications: A Review
by Yuanchao Zhang, Wendy Chu, Alireza Dibaji Foroushani, Hongbin Wang, Da Li, Jingquan Liu, Colin J. Barrow, Xin Wang and Wenrong Yang
Materials 2014, 7(7), 5169-5201; https://doi.org/10.3390/ma7075169 - 17 Jul 2014
Cited by 190 | Viewed by 16199
Abstract
Gold based structures such as nanoparticles (NPs) and nanowires (NWs) have widely been used as building blocks for sensing devices in chemistry and biochemistry fields because of their unusual optical, electrical and mechanical properties. This article gives a detailed review of the new [...] Read more.
Gold based structures such as nanoparticles (NPs) and nanowires (NWs) have widely been used as building blocks for sensing devices in chemistry and biochemistry fields because of their unusual optical, electrical and mechanical properties. This article gives a detailed review of the new properties and fabrication methods for gold nanostructures, especially gold nanowires (GNWs), and recent developments for their use in optical and electrochemical sensing tools, such as surface enhanced Raman spectroscopy (SERS). Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Biosensors)
Show Figures

Figure 1

Back to TopTop