Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = GM2-gangliosidosis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3921 KiB  
Article
A Case for Automated Segmentation of MRI Data in Neurodegenerative Diseases: Type II GM1 Gangliosidosis
by Connor J. Lewis, Jean M. Johnston, Precilla D’Souza, Josephine Kolstad, Christopher Zoppo, Zeynep Vardar, Anna Luisa Kühn, Ahmet Peker, Zubir S. Rentiya, Muhammad H. Yousef, William A. Gahl, Mohammed Salman Shazeeb, Cynthia J. Tifft and Maria T. Acosta
NeuroSci 2025, 6(2), 31; https://doi.org/10.3390/neurosci6020031 - 3 Apr 2025
Cited by 1 | Viewed by 956
Abstract
Background: Volumetric analysis and segmentation of magnetic resonance imaging (MRI) data is an important tool for evaluating neurological disease progression and neurodevelopment. Fully automated segmentation pipelines offer faster and more reproducible results. However, since these analysis pipelines were trained on or run based [...] Read more.
Background: Volumetric analysis and segmentation of magnetic resonance imaging (MRI) data is an important tool for evaluating neurological disease progression and neurodevelopment. Fully automated segmentation pipelines offer faster and more reproducible results. However, since these analysis pipelines were trained on or run based on atlases consisting of neurotypical controls, it is important to evaluate how accurate these methods are for neurodegenerative diseases. In this study, we compared five fully automated segmentation pipelines, including FSL, Freesurfer, volBrain, SPM12, and SimNIBS, with a manual segmentation process in GM1 gangliosidosis patients and neurotypical controls. Methods: We analyzed 45 MRI scans from 16 juvenile GM1 gangliosidosis patients, 11 MRI scans from 8 late-infantile GM1 gangliosidosis patients, and 19 MRI scans from 11 neurotypical controls. We compared the results for seven brain structures, including volumes of the total brain, bilateral thalamus, ventricles, bilateral caudate nucleus, bilateral lentiform nucleus, corpus callosum, and cerebellum. Results: We found volBrain’s vol2Brain pipeline to have the strongest correlations with the manual segmentation process for the whole brain, ventricles, and thalamus. We also found Freesurfer’s recon-all pipeline to have the strongest correlations with the manual segmentation process for the caudate nucleus. For the cerebellum, we found a combination of volBrain’s vol2Brain and SimNIBS’ headreco to have the strongest correlations, depending on the cohort. For the lentiform nucleus, we found a combination of recon-all and FSL’s FIRST to give the strongest correlations, depending on the cohort. Lastly, we found segmentation of the corpus callosum to be highly variable. Conclusions: Previous studies have considered automated segmentation techniques to be unreliable, particularly in neurodegenerative diseases. However, in our study, we produced results comparable to those obtained with a manual segmentation process. While manual segmentation processes conducted by neuroradiologists remain the gold standard, we present evidence to the capabilities and advantages of using an automated process that includes the ability to segment white matter throughout the brain or analyze large datasets, which pose feasibility issues to fully manual processes. Future investigations should consider the use of artificial intelligence-based segmentation pipelines to determine their accuracy in GM1 gangliosidosis, lysosomal storage disorders, and other neurodegenerative diseases. Full article
Show Figures

Figure 1

18 pages, 3235 KiB  
Article
Dysregulation of the NLRP3 Inflammasome and Promotion of Disease by IL-1β in a Murine Model of Sandhoff Disease
by Nick Platt, Dawn Shepherd, David A. Smith, Claire Smith, Kerri-Lee Wallom, Raashid Luqmani, Grant C. Churchill, Antony Galione and Frances M. Platt
Cells 2025, 14(1), 35; https://doi.org/10.3390/cells14010035 - 1 Jan 2025
Viewed by 1431
Abstract
Sandhoff disease (SD) is a progressive neurodegenerative lysosomal storage disorder characterized by GM2 ganglioside accumulation as a result of mutations in the HEXB gene, which encodes the β-subunit of the enzyme β-hexosaminidase. Lysosomal storage of GM2 triggers inflammation in the CNS and periphery. [...] Read more.
Sandhoff disease (SD) is a progressive neurodegenerative lysosomal storage disorder characterized by GM2 ganglioside accumulation as a result of mutations in the HEXB gene, which encodes the β-subunit of the enzyme β-hexosaminidase. Lysosomal storage of GM2 triggers inflammation in the CNS and periphery. The NLRP3 inflammasome is an important coordinator of pro-inflammatory responses, and we have investigated its regulation in murine SD. The NLRP3 inflammasome requires two signals, lipopolysaccharide (LPS) and ATP, to prime and activate the complex, respectively, leading to IL-1β secretion. Peritoneal, but not bone-marrow-derived, macrophages from symptomatic SD mice, but not those from pre-symptomatic animals, secrete the cytokine following priming with LPS with no requirement for activation with ATP, suggesting that such NLRP3 deregulation is related to the extent of glycosphingolipid storage. Dysregulated production of IL-1β was dependent upon caspase activity but not cathepsin B. We investigated the role of IL-1β in SD pathology using two approaches: the creation of hexb−/−Il1r1−/− double knockout mice or by treating hexb−/− animals with anakinra, a recombinant form of the IL-1 receptor antagonist, IL-1Ra. Both resulted in modest but significant extensions in lifespan and improvement of neurological function. These data demonstrate that IL-1β actively participates in the disease process and provides proof-of-principle that blockade of the pro-inflammatory cytokine IL-1β may provide benefits to patients. Full article
Show Figures

Graphical abstract

19 pages, 8400 KiB  
Article
Insights into the Pathobiology of GM1 Gangliosidosis from Single-Nucleus Transcriptomic Analysis of CNS Cells in a Mouse Model
by Sichi Liu, Ting Xie and Yonglan Huang
Int. J. Mol. Sci. 2024, 25(17), 9712; https://doi.org/10.3390/ijms25179712 - 8 Sep 2024
Cited by 1 | Viewed by 1435
Abstract
GM1 gangliosidosis is a lysosomal storage disorder characterized by the accumulation of GM1 ganglioside, leading to severe neurodegeneration and early mortality. The disease primarily affects the central nervous system, causing progressive neurodegeneration, including widespread neuronal loss and gliosis. To gain a deeper understanding [...] Read more.
GM1 gangliosidosis is a lysosomal storage disorder characterized by the accumulation of GM1 ganglioside, leading to severe neurodegeneration and early mortality. The disease primarily affects the central nervous system, causing progressive neurodegeneration, including widespread neuronal loss and gliosis. To gain a deeper understanding of the neuropathology associated with GM1 gangliosidosis, we employed single-nucleus RNA sequencing to analyze brain tissues from both GM1 gangliosidosis model mice and control mice. No significant changes in cell proportions were detected between the two groups of animals. Differential expression analysis revealed cell type-specific changes in gene expression in neuronal and glial cells. Functional analysis highlighted the neurodegenerative processes, oxidative phosphorylation, and neuroactive ligand–receptor interactions as the significantly affected pathways. The contribution of the impairment of neurotransmitter system disruption and neuronal circuitry disruption was more important than neuroinflammatory responses to GM1 pathology. In 16-week-old GM1 gangliosidosis mice, no microglial or astrocyte activation or increased expression of innate immunity genes was detected. This suggested that nerve degeneration did not induce the inflammatory response but rather promoted glial cell clearance. Our findings provide a crucial foundation for understanding the cellular and molecular mechanisms of GM1 gangliosidosis, potentially guiding future therapeutic strategies. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

9 pages, 250 KiB  
Review
Role of Botulinum Toxin in Treatment of Secondary Dystonia: A Case Series and Overview of Literature
by Diksha Mohanty, Heather R. M. Riordan and Peter Hedera
Toxins 2024, 16(7), 286; https://doi.org/10.3390/toxins16070286 - 24 Jun 2024
Cited by 1 | Viewed by 2021
Abstract
Introduction: Dystonia can present in primary and secondary forms, depending on co-occurring symptoms and syndromic associations. In contrast to primary dystonia, secondary forms of dystonia are often associated with lesions in the putamen or globus pallidus. Such disorders are commonly neurodegenerative or neurometabolic [...] Read more.
Introduction: Dystonia can present in primary and secondary forms, depending on co-occurring symptoms and syndromic associations. In contrast to primary dystonia, secondary forms of dystonia are often associated with lesions in the putamen or globus pallidus. Such disorders are commonly neurodegenerative or neurometabolic conditions which produce varied neurologic as well as systemic manifestations other than dystonia. Chemo-denervation with botulinum toxin has been successfully used for focal or segmental dystonia. However, studies evaluating the effect of BoNT therapy on patients with secondary dystonia are sparse, given the heterogeneity in etiology and presentation. Methods: We present a series of patients with secondary dystonia who were managed with botulinum toxin therapy. Patients included in this series had a confirmed neurometabolic cause of dystonia. Results: A total of 14 patients, with ages ranging from 17 to 36 years, with disorders including Wilson’s disease, pantothenate kinase-associated neurodegeneration (PKAN), Niemann–Pick disease type C (NPC), glutaric aciduria type 1, Sanfilippo syndrome (Mucopolysaccharidosis Type IIIb), and GM2 gangliosidosis (Sandhoff disease) are presented. Most patients experienced a mild to moderate improvement in treated dystonia with benefits ranging from 6 to 12 weeks, with the median length of the benefits lasting approximately eight weeks, without any significant adverse effects. Conclusion: Although the secondary causes of dystonia are complex and diverse, our presented data and the available reports of the use of botulinum toxin support the conclusion that chemo-denervation plays an important role in symptom alleviation. Full article
9 pages, 6617 KiB  
Case Report
Congenital Heart Malformations Masked by Infantile Gangliosidosis—Case Report and Growing Evidence for Metabolic Disease-Associated Aortopathies
by Dana Elena Mîndru, Elena Țarcă, Elena Emanuela Braha, Alexandrina-Ștefania Curpăn, Solange Tamara Roșu, Dana-Teodora Anton-Păduraru, Heidrun Adumitrăchioaiei, Valentin Bernic, Ioana-Alexandra Pădureț and Alina Costina Luca
Diagnostics 2024, 14(5), 491; https://doi.org/10.3390/diagnostics14050491 - 24 Feb 2024
Viewed by 1752
Abstract
Gangliosidosis (ORPHA: 79255) is an autosomal recessive lysosomal storage disease (LSD) with a variable phenotype and an incidence of 1:200000 live births. The underlying genotype is comprised GLB1 mutations that lead to β-galactosidase deficiency and subsequently to the accumulation of monosialotetrahexosylganglioside (GM1) in [...] Read more.
Gangliosidosis (ORPHA: 79255) is an autosomal recessive lysosomal storage disease (LSD) with a variable phenotype and an incidence of 1:200000 live births. The underlying genotype is comprised GLB1 mutations that lead to β-galactosidase deficiency and subsequently to the accumulation of monosialotetrahexosylganglioside (GM1) in the brain and other organs. In total, two diseases have been linked to this gene mutation: Morquio type B and Gangliosidosis. The most frequent clinical manifestations include dysmorphic facial features, nervous and skeletal systems abnormalities, hepatosplenomegaly, and cardiomyopathies. The correct diagnosis of GM1 is a challenge due to the overlapping clinical manifestation between this disease and others, especially in infants. Therefore, in the current study we present the case of a 3-month-old male infant, admitted with signs and symptoms of respiratory distress alongside rapid progressive heart failure, with minimal neurologic and skeletal abnormalities, but with cardiovascular structural malformations. The atypical clinical presentation raised great difficulties for our diagnostic team. Unfortunately, the diagnostic of GM1 was made postmortem based on the DBS test and we were able to correlate the genotype with the unusual phenotypic findings. Full article
(This article belongs to the Special Issue Advances in the Diagnosis of Nervous System Diseases—2nd Edition)
Show Figures

Figure 1

12 pages, 2565 KiB  
Article
Identification of GM1-Ganglioside Secondary Accumulation in Fibroblasts from Neuropathic Gaucher Patients and Effect of a Trivalent Trihydroxypiperidine Iminosugar Compound on Its Storage Reduction
by Costanza Ceni, Francesca Clemente, Francesca Mangiavacchi, Camilla Matassini, Rodolfo Tonin, Anna Caciotti, Federica Feo, Domenico Coviello, Amelia Morrone, Francesca Cardona and Martino Calamai
Molecules 2024, 29(2), 453; https://doi.org/10.3390/molecules29020453 - 17 Jan 2024
Cited by 3 | Viewed by 2240
Abstract
Gaucher disease (GD) is a rare genetic metabolic disorder characterized by a dysfunction of the lysosomal glycoside hydrolase glucocerebrosidase (GCase) due to mutations in the gene GBA1, leading to the cellular accumulation of glucosylceramide (GlcCer). While most of the current research focuses on [...] Read more.
Gaucher disease (GD) is a rare genetic metabolic disorder characterized by a dysfunction of the lysosomal glycoside hydrolase glucocerebrosidase (GCase) due to mutations in the gene GBA1, leading to the cellular accumulation of glucosylceramide (GlcCer). While most of the current research focuses on the primary accumulated material, lesser attention has been paid to secondary storage materials and their reciprocal intertwining. By using a novel approach based on flow cytometry and fluorescent labelling, we monitored changes in storage materials directly in fibroblasts derived from GD patients carrying N370S/RecNcil and homozygous L444P or R131C mutations with respect to wild type. In L444P and R131C fibroblasts, we detected not only the primary accumulation of GlcCer accumulation but also a considerable secondary increase in GM1 storage, comparable with the one observed in infantile patients affected by GM1 gangliosidosis. In addition, the ability of a trivalent trihydroxypiperidine iminosugar compound (CV82), which previously showed good pharmacological chaperone activity on GCase enzyme, to reduce the levels of storage materials in L444P and R131C fibroblasts was tested. Interestingly, treatment with different concentrations of CV82 led to a significant reduction in GM1 accumulation only in L444P fibroblasts, without significantly affecting GlcCer levels. The compound CV82 was selective against the GCase enzyme with respect to the β-Galactosidase enzyme, which was responsible for the catabolism of GM1 ganglioside. The reduction in GM1-ganglioside level cannot be therefore ascribed to a direct action of CV82 on β-Galactosidase enzyme, suggesting that GM1 decrease is rather related to other unknown mechanisms that follow the direct action of CV82 on GCase. In conclusion, this work indicates that the tracking of secondary storages can represent a key step for a better understanding of the pathways involved in the severity of GD, also underlying the importance of developing drugs able to reduce both primary and secondary storage-material accumulations in GD. Full article
Show Figures

Figure 1

7 pages, 680 KiB  
Case Report
Extensive and Persistent Dermal Melanocytosis in a Male Carrier of Mucopolysaccharidosis Type IIIC (Sanfilippo Syndrome): A Case Report
by Maurizio Romagnuolo, Chiara Moltrasio, Serena Gasperini, Angelo Valerio Marzano and Stefano Cambiaghi
Children 2023, 10(12), 1920; https://doi.org/10.3390/children10121920 - 13 Dec 2023
Cited by 3 | Viewed by 2588
Abstract
Congenital dermal melanocytosis (DM) represents a common birthmark mainly found in children of Asian and darker skin phototype descent, clinically characterized by an oval blue-grey macule or macules, commonly located on the lumbosacral area. In rare DM cases, when presenting with diffuse macules [...] Read more.
Congenital dermal melanocytosis (DM) represents a common birthmark mainly found in children of Asian and darker skin phototype descent, clinically characterized by an oval blue-grey macule or macules, commonly located on the lumbosacral area. In rare DM cases, when presenting with diffuse macules persisting during the first years of life, it could represent a cutaneous feature of mucopolysaccharidoses (MPS). Extensive congenital DM is actually associated with Hurler syndrome (MPS type I) and Hunter syndrome (MPS type II), although several reports also described this association with MPS type VI and other lysosomal storage disorders (LySD), including GM1 gangliosidosis, mucolipidosis, Sandhoff disease, and Niemann–Pick disease. Here, we present the case of a two-year-old boy presenting with extensive dermal melanocytosis, generalized hypertrichosis, and chronic itch, harboring a heterozygous variant of uncertain significance, NM_152419.3: c.493C>T (p.Pro165Ser), in the exon 4 of HGSNAT gene, whose mutations are classically associated with MPS IIIC, also known as Sanfilippo syndrome. This is the first report that highlights the association between extensive congenital DM and MPS type IIIC, as well as a pathogenetic link between heterozygous LySD carrier status and congenital DM. We speculate that some cases of extensive congenital DM could be related to heterozygous LySD carriers, as a manifestation of a mild clinical phenotype. Full article
(This article belongs to the Special Issue Reviews in Pediatric Dermatology)
Show Figures

Figure 1

15 pages, 3052 KiB  
Article
Four New Cases of Progressive Ataxia and Palatal Tremor (PAPT) and a Literature Review
by Norbert Silimon, Roland Wiest and Claudio L. A. Bassetti
Clin. Transl. Neurosci. 2023, 7(4), 32; https://doi.org/10.3390/ctn7040032 - 13 Oct 2023
Cited by 2 | Viewed by 4129
Abstract
PAPT syndrome is a rare neurologic disorder characterized by progressive ataxia and palatal tremor (rhythmic movements of the soft palate). The first large study of PAPT patients was published in 2004, included a total of 28 sporadic PAPT cases, and suggested a neurodegenerative [...] Read more.
PAPT syndrome is a rare neurologic disorder characterized by progressive ataxia and palatal tremor (rhythmic movements of the soft palate). The first large study of PAPT patients was published in 2004, included a total of 28 sporadic PAPT cases, and suggested a neurodegenerative origin. In the last several years, case reports and small case series followed, underlining the heterogeneity of the clinical picture and underlying aetiology (including neurodegenerative, vascular, infectious/autoimmune, and genetic). As a contribution to the literature, we report on four new patients with PAPT syndrome from Bern. Our study highlights the diverse clinical presentation (pyramidal, extrapyramidal, bulbar, cognitive, psychiatric symptoms, and autonomic features), summarizes the known literature, and extends it by findings on sleep studies (obstructive/central sleep apnoea, sleep disturbance). Possible aetiologies and management aspects are discussed in light of the current literature. Full article
Show Figures

Figure 1

15 pages, 3350 KiB  
Article
Efficacy of Adeno-Associated Virus Serotype 9-Mediated Gene Therapy for AB-Variant GM2 Gangliosidosis
by Meera Vyas, Natalie M. Deschenes, Karlaina J. L. Osmon, Zhilin Chen, Imtiaz Ahmad, Shalini Kot, Patrick Thompson, Chris Richmond, Steven J. Gray and Jagdeep S. Walia
Int. J. Mol. Sci. 2023, 24(19), 14611; https://doi.org/10.3390/ijms241914611 - 27 Sep 2023
Cited by 3 | Viewed by 2254
Abstract
GM2 gangliosidoses are a group of neurodegenerative lysosomal storage disorders that are characterized by the accumulation of GM2 gangliosides (GM2), leading to rapid neurological decline and death. The hydrolysis of GM2 requires the specific synthesis, processing, and combination of products of three genes— [...] Read more.
GM2 gangliosidoses are a group of neurodegenerative lysosomal storage disorders that are characterized by the accumulation of GM2 gangliosides (GM2), leading to rapid neurological decline and death. The hydrolysis of GM2 requires the specific synthesis, processing, and combination of products of three genes—HEXA, HEXB, and GM2A—within the cell’s lysosomes. Mutations in these genes result in Tay-Sachs disease, Sandhoff disease, or AB-variant GM2 gangliosidosis (ABGM2), respectively. ABGM2, the rarest of the three types, is characterized by a mutation in the GM2A gene, which encodes the GM2 activator (GM2A) protein. Being a monogenic disease, gene therapy is a plausible and likely effective method of treatment for ABGM2. This study aimed at assessing the effects of administering a one-time intravenous treatment of single-stranded Adeno-associated virus serotype 9 (ssAAV9)-GM2A viral vector at a dose of 1 × 1014 vector genomes (vg) per kilogram per mouse in an ABGM2 mouse model (Gm2a−/−). ssAAV9-GM2A was administered at 1-day (neonatal) or 6-weeks of age (adult-stage). The results demonstrated that, in comparison to Gm2a−/− mice that received a vehicle injection, the treated mice had reduced GM2 accumulation within the central nervous system and had long-term persistence of vector genomes in the brain and liver. This proof-of-concept study is a step forward towards the development of a clinically therapeutic approach for the treatment of patients with ABGM2. Full article
(This article belongs to the Special Issue Development of AAV-Based Gene Therapies: Unmet Needs and Solutions)
Show Figures

Figure 1

44 pages, 552 KiB  
Review
Inborn Errors of Metabolism with Ataxia: Current and Future Treatment Options
by Tatiana Bremova-Ertl, Jan Hofmann, Janine Stucki, Anja Vossenkaul and Matthias Gautschi
Cells 2023, 12(18), 2314; https://doi.org/10.3390/cells12182314 - 19 Sep 2023
Cited by 2 | Viewed by 3536
Abstract
A number of hereditary ataxias are caused by inborn errors of metabolism (IEM), most of which are highly heterogeneous in their clinical presentation. Prompt diagnosis is important because disease-specific therapies may be available. In this review, we offer a comprehensive overview of metabolic [...] Read more.
A number of hereditary ataxias are caused by inborn errors of metabolism (IEM), most of which are highly heterogeneous in their clinical presentation. Prompt diagnosis is important because disease-specific therapies may be available. In this review, we offer a comprehensive overview of metabolic ataxias summarized by disease, highlighting novel clinical trials and emerging therapies with a particular emphasis on first-in-human gene therapies. We present disease-specific treatments if they exist and review the current evidence for symptomatic treatments of these highly heterogeneous diseases (where cerebellar ataxia is part of their phenotype) that aim to improve the disease burden and enhance quality of life. In general, a multimodal and holistic approach to the treatment of cerebellar ataxia, irrespective of etiology, is necessary to offer the best medical care. Physical therapy and speech and occupational therapy are obligatory. Genetic counseling is essential for making informed decisions about family planning. Full article
(This article belongs to the Special Issue Emerging Therapies for Hereditary Ataxia)
32 pages, 2544 KiB  
Review
Ganglioside GM1 and the Central Nervous System
by Zhongwu Guo
Int. J. Mol. Sci. 2023, 24(11), 9558; https://doi.org/10.3390/ijms24119558 - 31 May 2023
Cited by 30 | Viewed by 5843
Abstract
GM1 is one of the major glycosphingolipids (GSLs) on the cell surface in the central nervous system (CNS). Its expression level, distribution pattern, and lipid composition are dependent upon cell and tissue type, developmental stage, and disease state, which suggests a potentially broad [...] Read more.
GM1 is one of the major glycosphingolipids (GSLs) on the cell surface in the central nervous system (CNS). Its expression level, distribution pattern, and lipid composition are dependent upon cell and tissue type, developmental stage, and disease state, which suggests a potentially broad spectrum of functions of GM1 in various neurological and neuropathological processes. The major focus of this review is the roles that GM1 plays in the development and activities of brains, such as cell differentiation, neuritogenesis, neuroregeneration, signal transducing, memory, and cognition, as well as the molecular basis and mechanisms for these functions. Overall, GM1 is protective for the CNS. Additionally, this review has also examined the relationships between GM1 and neurological disorders, such as Alzheimer’s disease, Parkinson’s disease, GM1 gangliosidosis, Huntington’s disease, epilepsy and seizure, amyotrophic lateral sclerosis, depression, alcohol dependence, etc., and the functional roles and therapeutic applications of GM1 in these disorders. Finally, current obstacles that hinder more in-depth investigations and understanding of GM1 and the future directions in this field are discussed. Full article
(This article belongs to the Special Issue Glycome and Nervous System 2.0)
Show Figures

Figure 1

17 pages, 3072 KiB  
Article
Biochemical Correction of GM2 Ganglioside Accumulation in AB-Variant GM2 Gangliosidosis
by Natalie M. Deschenes, Camilyn Cheng, Alex E. Ryckman, Brianna M. Quinville, Prem Khanal, Melissa Mitchell, Zhilin Chen, Waheed Sangrar, Steven J. Gray and Jagdeep S. Walia
Int. J. Mol. Sci. 2023, 24(11), 9217; https://doi.org/10.3390/ijms24119217 - 24 May 2023
Cited by 4 | Viewed by 3317
Abstract
GM2 gangliosidosis is a group of genetic disorders that result in the accumulation of GM2 ganglioside (GM2) in brain cells, leading to progressive central nervous system (CNS) atrophy and premature death in patients. AB-variant GM2 gangliosidosis (ABGM2) arises from loss-of-function mutations in the [...] Read more.
GM2 gangliosidosis is a group of genetic disorders that result in the accumulation of GM2 ganglioside (GM2) in brain cells, leading to progressive central nervous system (CNS) atrophy and premature death in patients. AB-variant GM2 gangliosidosis (ABGM2) arises from loss-of-function mutations in the GM2 activator protein (GM2AP), which is essential for the breakdown of GM2 in a key catabolic pathway required for CNS lipid homeostasis. In this study, we show that intrathecal delivery of self-complementary adeno-associated virus serotype-9 (scAAV9) harbouring a functional human GM2A transgene (scAAV9.hGM2A) can prevent GM2 accumulation in in GM2AP-deficient mice (Gm2a−/− mice). Additionally, scAAV9.hGM2A efficiently distributes to all tested regions of the CNS within 14 weeks post-injection and remains detectable for the lifespan of these animals (up to 104 weeks). Remarkably, GM2AP expression from the transgene scales with increasing doses of scAAV9.hGM2A (0.5, 1.0 and 2.0 × 1011 vector genomes (vg) per mouse), and this correlates with dose-dependent correction of GM2 accumulation in the brain. No severe adverse events were observed, and comorbidities in treated mice were comparable to those in disease-free cohorts. Lastly, all doses yielded corrective outcomes. These data indicate that scAAV9.hGM2A treatment is relatively non-toxic and tolerable, and biochemically corrects GM2 accumulation in the CNS—the main cause of morbidity and mortality in patients with ABGM2. Importantly, these results constitute proof-of-principle for treating ABGM2 with scAAV9.hGM2A by means of a single intrathecal administration and establish a foundation for future preclinical research. Full article
(This article belongs to the Special Issue Advances in Gene and Cell Therapy)
Show Figures

Figure 1

15 pages, 1993 KiB  
Article
Ursodeoxycholic Acid Binds PERK and Ameliorates Neurite Atrophy in a Cellular Model of GM2 Gangliosidosis
by Carolina Morales, Macarena Fernandez, Rodrigo Ferrer, Daniel Raimunda, Dolores C. Carrer and Mariana Bollo
Int. J. Mol. Sci. 2023, 24(8), 7209; https://doi.org/10.3390/ijms24087209 - 13 Apr 2023
Cited by 3 | Viewed by 2531
Abstract
The Unfolded protein response (UPR), triggered by stress in the endoplasmic reticulum (ER), is a key driver of neurodegenerative diseases. GM2 gangliosidosis, which includes Tay-Sachs and Sandhoff disease, is caused by an accumulation of GM2, mainly in the brain, that leads to progressive [...] Read more.
The Unfolded protein response (UPR), triggered by stress in the endoplasmic reticulum (ER), is a key driver of neurodegenerative diseases. GM2 gangliosidosis, which includes Tay-Sachs and Sandhoff disease, is caused by an accumulation of GM2, mainly in the brain, that leads to progressive neurodegeneration. Previously, we demonstrated in a cellular model of GM2 gangliosidosis that PERK, a UPR sensor, contributes to neuronal death. There is currently no approved treatment for these disorders. Chemical chaperones, such as ursodeoxycholic acid (UDCA), have been found to alleviate ER stress in cell and animal models. UDCA’s ability to move across the blood-brain barrier makes it interesting as a therapeutic tool. Here, we found that UDCA significantly diminished the neurite atrophy induced by GM2 accumulation in primary neuron cultures. It also decreased the up-regulation of pro-apoptotic CHOP, a downstream PERK-signaling component. To explore its potential mechanisms of action, in vitro kinase assays and crosslinking experiments were performed with different variants of recombinant protein PERK, either in solution or in reconstituted liposomes. The results suggest a direct interaction between UDCA and the cytosolic domain of PERK, which promotes kinase phosphorylation and dimerization. Full article
(This article belongs to the Special Issue Sphingolipids: Signals and Disease 2.0)
Show Figures

Figure 1

24 pages, 755 KiB  
Review
Gene Therapy of Sphingolipid Metabolic Disorders
by Alisa A. Shaimardanova, Valeriya V. Solovyeva, Shaza S. Issa and Albert A. Rizvanov
Int. J. Mol. Sci. 2023, 24(4), 3627; https://doi.org/10.3390/ijms24043627 - 11 Feb 2023
Cited by 20 | Viewed by 6571
Abstract
Sphingolipidoses are defined as a group of rare hereditary diseases resulting from mutations in the genes encoding lysosomal enzymes. This group of lysosomal storage diseases includes more than 10 genetic disorders, including GM1-gangliosidosis, Tay–Sachs disease, Sandhoff disease, the AB variant of GM2-gangliosidosis, Fabry [...] Read more.
Sphingolipidoses are defined as a group of rare hereditary diseases resulting from mutations in the genes encoding lysosomal enzymes. This group of lysosomal storage diseases includes more than 10 genetic disorders, including GM1-gangliosidosis, Tay–Sachs disease, Sandhoff disease, the AB variant of GM2-gangliosidosis, Fabry disease, Gaucher disease, metachromatic leukodystrophy, Krabbe disease, Niemann–Pick disease, Farber disease, etc. Enzyme deficiency results in accumulation of sphingolipids in various cell types, and the nervous system is also usually affected. There are currently no known effective methods for the treatment of sphingolipidoses; however, gene therapy seems to be a promising therapeutic variant for this group of diseases. In this review, we discuss gene therapy approaches for sphingolipidoses that are currently being investigated in clinical trials, among which adeno-associated viral vector-based approaches and transplantation of hematopoietic stem cells genetically modified with lentiviral vectors seem to be the most effective. Full article
(This article belongs to the Special Issue Sphingolipid Metabolism and Signaling in Diseases 3.0)
Show Figures

Figure 1

12 pages, 877 KiB  
Review
The Antifungal Antibiotic Filipin as a Diagnostic Tool of Cholesterol Alterations in Lysosomal Storage Diseases and Neurodegenerative Disorders
by Francesco Bruno, Serena Camuso, Elisabetta Capuozzo and Sonia Canterini
Antibiotics 2023, 12(1), 122; https://doi.org/10.3390/antibiotics12010122 - 9 Jan 2023
Cited by 14 | Viewed by 3428
Abstract
Cholesterol is the most considerable member of a family of polycyclic compounds understood as sterols, and represents an amphipathic molecule, such as phospholipids, with the polar hydroxyl group located in position 3 and the rest of the molecule is completely hydrophobic. In cells, [...] Read more.
Cholesterol is the most considerable member of a family of polycyclic compounds understood as sterols, and represents an amphipathic molecule, such as phospholipids, with the polar hydroxyl group located in position 3 and the rest of the molecule is completely hydrophobic. In cells, it is usually present as free, unesterified cholesterol, or as esterified cholesterol, in which the hydroxyl group binds to a carboxylic acid and thus generates an apolar molecule. Filipin is a naturally fluorescent antibiotic that exerts a primary antifungal effect with low antibacterial activity, interfering with the sterol stabilization of the phospholipid layers and favoring membrane leakage. This polyene macrolide antibiotic does not bind to esterified sterols, but only to non-esterified cholesterol, and it is commonly used as a marker to label and quantify free cholesterol in cells and tissues. Several lines of evidence have indicated that filipin staining could be a good diagnostic tool for the cholesterol alterations present in neurodegenerative (e.g., Alzheimer’s Disease and Huntington Disease) and lysosomal storage diseases (e.g., Niemann Pick type C Disease and GM1 gangliosidosis). Here, we have discussed the uses and applications of this fluorescent molecule in lipid storage diseases and neurodegenerative disorders, exploring not only the diagnostic strength of filipin staining, but also its limitations, which over the years have led to the development of new diagnostic tools to combine with filipin approach. Full article
(This article belongs to the Special Issue Antibiotics as Tool to Investigate Cell Functional State)
Show Figures

Figure 1

Back to TopTop