Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (64)

Search Parameters:
Keywords = G protein-coupled receptor kinases (GRKs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3592 KiB  
Article
The Beneficial Role of the Thyroid Hormone Receptor Beta 2 (thrb2) in Facilitating the First Feeding and Subsequent Growth in Medaka as Fish Larval Model
by Jiaqi Wu, Ke Lu, Ruipeng Xie, Chenyuan Zhu, Qiyao Luo and Xu-Fang Liang
Cells 2025, 14(5), 386; https://doi.org/10.3390/cells14050386 - 6 Mar 2025
Viewed by 892
Abstract
During the early growth stages of fish larvae, there are significant challenges to their viability, so improving their visual environment is essential to promoting their growth and survival. Following the successful knockout of thyroid hormone receptor beta 2 (thrb2) using Clustered [...] Read more.
During the early growth stages of fish larvae, there are significant challenges to their viability, so improving their visual environment is essential to promoting their growth and survival. Following the successful knockout of thyroid hormone receptor beta 2 (thrb2) using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 technology, there was an increase in the expression of UV opsin (short-wave-sensitive 1, sws1), while the expression of other cone opsins was significantly decreased. Further analysis of the retinal structure demonstrated that the thrb2 knockout resulted in an increased lens thickness and a decreased thickness of the ganglion cell layer (GCL), outer plexiform layer (OPL), and outer nuclear layer (ONL) in the retina. The slowing down of swimming speed under light conditions in thrb2−/− may be related to the decreased expression of phototransduction-related genes such as G protein-coupled receptor kinase 7a (grk7a), G protein-coupled receptor kinase 7b (grk7b), and phosphodiesterase 6c (pde6c). Notably, thrb2−/− larvae exhibited a significant increase in the amount and proportion of first feeding, and their growth rate significantly exceeded that of wild-type controls during the week after feeding. This observation suggests that although the development of the retina may be somewhat affected, thrb2−/− larvae show positive changes in feeding behaviour and growth rate, which may be related to their enhanced ability to adapt to their environment. These results provide novel insights into the function of the thrb2 gene in the visual system and behaviour and may have implications in areas such as fish farming and genetic improvement. Full article
Show Figures

Graphical abstract

12 pages, 753 KiB  
Review
GRK2 and Mitochondrial Dynamics in Cardiovascular Health and Disease
by Cristina Gatto, Maria Rosaria Rusciano, Valeria Visco and Michele Ciccarelli
Int. J. Mol. Sci. 2025, 26(5), 2299; https://doi.org/10.3390/ijms26052299 - 5 Mar 2025
Cited by 1 | Viewed by 1056
Abstract
G protein-coupled receptors (GPCRs) represent a family of membrane proteins that regulate several cellular processes. Among the GPCRs, G protein-coupled receptor kinases (GRKs) regulate downstream signaling pathways and receptor desensitization. GRK2 has gained significant interest due to its cardiovascular physiology and pathological involvement. [...] Read more.
G protein-coupled receptors (GPCRs) represent a family of membrane proteins that regulate several cellular processes. Among the GPCRs, G protein-coupled receptor kinases (GRKs) regulate downstream signaling pathways and receptor desensitization. GRK2 has gained significant interest due to its cardiovascular physiology and pathological involvement. GRK2’s presence in cardiac tissue and its influence on cardiac function, β-adrenergic signaling, and myocardial remodeling underlies its involvement in cardiovascular diseases such as heart failure and ischemia. GRK2’s canonical role is receptor desensitization, but emerging evidence suggests its involvement in mitochondrial dynamics and bioenergetics, influencing processes such as oxidative phosphorylation, reactive oxygen species production, and apoptosis. Moreover, GRK2’s localization within mitochondria suggests a direct role in regulating mitochondrial health and function. Notably, while GRK2 inhibition seems to be a therapeutic approach to heart failure, its precise role in mitochondrial dynamics and pathology needs further investigation. This review explores the complex relationship between mitochondrial function and GRK2 and clarifies the implications for cardiovascular health. Cardiovascular medicine might greatly benefit from future studies that focus on understanding the processes behind GRK2–mitochondrial crosstalk to develop personalized therapies Full article
(This article belongs to the Special Issue Heart Failure: From Molecular Basis to Therapeutic Strategies)
Show Figures

Graphical abstract

27 pages, 841 KiB  
Review
Regulation of β-Adrenergic Receptors in the Heart: A Review on Emerging Therapeutic Strategies for Heart Failure
by Warisara Parichatikanond, Ratchanee Duangrat, Hitoshi Kurose and Supachoke Mangmool
Cells 2024, 13(20), 1674; https://doi.org/10.3390/cells13201674 - 10 Oct 2024
Cited by 7 | Viewed by 6417
Abstract
The prolonged overstimulation of β-adrenergic receptors (β-ARs), a member of the G protein-coupled receptor (GPCR) family, causes abnormalities in the density and functionality of the receptor and contributes to cardiac dysfunctions, leading to the development and progression of heart diseases, especially heart failure [...] Read more.
The prolonged overstimulation of β-adrenergic receptors (β-ARs), a member of the G protein-coupled receptor (GPCR) family, causes abnormalities in the density and functionality of the receptor and contributes to cardiac dysfunctions, leading to the development and progression of heart diseases, especially heart failure (HF). Despite recent advancements in HF therapy, mortality and morbidity rates continue to be high. Treatment with β-AR antagonists (β-blockers) has improved clinical outcomes and reduced overall hospitalization and mortality rates. However, several barriers in the management of HF remain, providing opportunities to develop new strategies that focus on the functions and signal transduction of β-ARs involved in the pathogenesis of HF. As β-AR can signal through multiple pathways influenced by different receptor subtypes, expression levels, and signaling components such as G proteins, G protein-coupled receptor kinases (GRKs), β-arrestins, and downstream effectors, it presents a complex mechanism that could be targeted in HF management. In this narrative review, we focus on the regulation of β-ARs at the receptor, G protein, and effector loci, as well as their signal transductions in the physiology and pathophysiology of the heart. The discovery of potential ligands for β-AR that activate cardioprotective pathways while limiting off-target signaling is promising for the treatment of HF. However, applying findings from preclinical animal models to human patients faces several challenges, including species differences, the genetic variability of β-ARs, and the complexity and heterogeneity of humans. In this review, we also summarize recent updates and future research on the regulation of β-ARs in the molecular basis of HF and highlight potential therapeutic strategies for HF. Full article
Show Figures

Graphical abstract

19 pages, 3627 KiB  
Article
Chronic Partial Sleep Deprivation Increased the Incidence of Atrial Fibrillation by Promoting Pulmonary Vein and Atrial Arrhythmogenesis in a Rodent Model
by Shuen-Hsin Liu, Fong-Jhih Lin, Yu-Hsun Kao, Pao-Huan Chen, Yung-Kuo Lin, Yen-Yu Lu, Yao-Chang Chen and Yi-Jen Chen
Int. J. Mol. Sci. 2024, 25(14), 7619; https://doi.org/10.3390/ijms25147619 - 11 Jul 2024
Cited by 2 | Viewed by 1713
Abstract
Sleep deprivation (SD) is a recognized risk factor for atrial fibrillation (AF), yet the precise molecular and electrophysiological mechanisms behind SD-induced AF are unclear. This study explores the electrical and structural changes that contribute to AF in chronic partial SD. We induced chronic [...] Read more.
Sleep deprivation (SD) is a recognized risk factor for atrial fibrillation (AF), yet the precise molecular and electrophysiological mechanisms behind SD-induced AF are unclear. This study explores the electrical and structural changes that contribute to AF in chronic partial SD. We induced chronic partial SD in Wistar rats using a modified multiple-platform method. Echocardiography demonstrated impaired systolic and diastolic function in the left ventricle (LV) of the SD rats. The SD rats exhibited an elevated heart rate and a higher low-frequency to high-frequency ratio in a heart-rate variability analysis. Rapid transesophageal atrial pacing led to a higher incidence of AF and longer mean AF durations in the SD rats. Conventional microelectrode recordings showed accelerated pulmonary vein (PV) spontaneous activity in SD rats, along with a heightened occurrence of delayed after-depolarizations in the PV and left atrium (LA) induced by tachypacing and isoproterenol. A Western blot analysis showed reduced expression of G protein-coupled receptor kinase 2 (GRK2) in the LA of the SD rats. Chronic partial SD impairs LV function, promotes AF genesis, and increases PV and LA arrhythmogenesis, potentially attributed to sympathetic overactivity and reduced GRK2 expression. Targeting GRK2 signaling may offer promising therapeutic avenues for managing chronic partial SD-induced AF. Future investigations are mandatory to investigate the dose–response relationship between SD and AF genesis. Full article
Show Figures

Figure 1

11 pages, 1967 KiB  
Article
Differential Modulation of Catecholamine and Adipokine Secretion by the Short Chain Fatty Acid Receptor FFAR3 and α2-Adrenergic Receptors in PC12 Cells
by Deepika Nagliya, Teresa Baggio Lopez, Giselle Del Calvo, Renee A. Stoicovy, Jordana I. Borges, Malka S. Suster and Anastasios Lymperopoulos
Int. J. Mol. Sci. 2024, 25(10), 5227; https://doi.org/10.3390/ijms25105227 - 11 May 2024
Cited by 4 | Viewed by 2269
Abstract
Sympathetic nervous system (SNS) hyperactivity is mediated by elevated catecholamine (CA) secretion from the adrenal medulla, as well as enhanced norepinephrine (NE) release from peripheral sympathetic nerve terminals. Adrenal CA production from chromaffin cells is tightly regulated by sympatho-inhibitory α2-adrenergic (auto)receptors [...] Read more.
Sympathetic nervous system (SNS) hyperactivity is mediated by elevated catecholamine (CA) secretion from the adrenal medulla, as well as enhanced norepinephrine (NE) release from peripheral sympathetic nerve terminals. Adrenal CA production from chromaffin cells is tightly regulated by sympatho-inhibitory α2-adrenergic (auto)receptors (ARs), which inhibit both epinephrine (Epi) and NE secretion via coupling to Gi/o proteins. α2-AR function is, in turn, regulated by G protein-coupled receptor (GPCR)-kinases (GRKs), especially GRK2, which phosphorylate and desensitize them, i.e., uncouple them from G proteins. On the other hand, the short-chain free fatty acid (SCFA) receptor (FFAR)-3, also known as GPR41, promotes NE release from sympathetic neurons via the Gi/o-derived free Gβγ-activated phospholipase C (PLC)-β/Ca2+ signaling pathway. However, whether it exerts a similar effect in adrenal chromaffin cells is not known at present. In the present study, we examined the interplay of the sympatho-inhibitory α2A-AR and the sympatho-stimulatory FFAR3 in the regulation of CA secretion from rat adrenal chromaffin (pheochromocytoma) PC12 cells. We show that FFAR3 promotes CA secretion, similarly to what GRK2-dependent α2A-AR desensitization does. In addition, FFAR3 activation enhances the effect of the physiologic stimulus (acetylcholine) on CA secretion. Importantly, GRK2 blockade to restore α2A-AR function or the ketone body beta-hydroxybutyrate (BHB or 3-hydroxybutyrate), via FFAR3 antagonism, partially suppress CA production, when applied individually. When combined, however, CA secretion from PC12 cells is profoundly suppressed. Finally, propionate-activated FFAR3 induces leptin and adiponectin secretion from PC12 cells, two important adipokines known to be involved in tissue inflammation, and this effect of FFAR3 is fully blocked by the ketone BHB. In conclusion, SCFAs can promote CA and adipokine secretion from adrenal chromaffin cells via FFAR3 activation, but the metabolite/ketone body BHB can effectively inhibit this action. Full article
Show Figures

Figure 1

16 pages, 3966 KiB  
Article
Histamine H1 Receptor-Mediated JNK Phosphorylation Is Regulated by Gq Protein-Dependent but Arrestin-Independent Pathways
by Shotaro Michinaga, Ayaka Nagata, Ryosuke Ogami, Yasuhiro Ogawa and Shigeru Hishinuma
Int. J. Mol. Sci. 2024, 25(6), 3395; https://doi.org/10.3390/ijms25063395 - 17 Mar 2024
Cited by 1 | Viewed by 1753
Abstract
Arrestins are known to be involved not only in the desensitization and internalization of G protein-coupled receptors but also in the G protein-independent activation of mitogen-activated protein (MAP) kinases, such as extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), to regulate cell [...] Read more.
Arrestins are known to be involved not only in the desensitization and internalization of G protein-coupled receptors but also in the G protein-independent activation of mitogen-activated protein (MAP) kinases, such as extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), to regulate cell proliferation and inflammation. Our previous study revealed that the histamine H1 receptor-mediated activation of ERK is dually regulated by Gq proteins and arrestins. In this study, we investigated the roles of Gq proteins and arrestins in the H1 receptor-mediated activation of JNK in Chinese hamster ovary (CHO) cells expressing wild-type (WT) human H1 receptors, the Gq protein-biased mutant S487TR, and the arrestin-biased mutant S487A. In these mutants, the Ser487 residue in the C-terminus region of the WT was truncated (S487TR) or mutated to alanine (S487A). Histamine significantly stimulated JNK phosphorylation in CHO cells expressing WT and S487TR but not S487A. Histamine-induced JNK phosphorylation in CHO cells expressing WT and S487TR was suppressed by inhibitors against H1 receptors (ketotifen and diphenhydramine), Gq proteins (YM-254890), and protein kinase C (PKC) (GF109203X) as well as an intracellular Ca2+ chelator (BAPTA-AM) but not by inhibitors against G protein-coupled receptor kinases (GRK2/3) (cmpd101), β-arrestin2 (β-arrestin2 siRNA), and clathrin (hypertonic sucrose). These results suggest that the H1 receptor-mediated phosphorylation of JNK is regulated by Gq-protein/Ca2+/PKC-dependent but GRK/arrestin/clathrin-independent pathways. Full article
(This article belongs to the Special Issue Molecular Biology of Histamine Systems 2024)
Show Figures

Figure 1

15 pages, 7446 KiB  
Article
Cardioprotective Effects of the GRK2 Inhibitor Paroxetine on Isoproterenol-Induced Cardiac Remodeling by Modulating NF-κB Mediated Prohypertrophic and Profibrotic Gene Expression
by Asma S. Alonazi, Anfal F. Bin Dayel, Danah A. Albuaijan, Alhanouf S. Bin Osfur, Fatemah M. Hakami, Shaden S. Alzayed, Ahmad R. Almotairi, Mohammad R. Khan, Hana M. Alharbi, Rehab A. Ali, Maha A. Alamin, Hanan K. Alghibiwi, Nouf M. Alrasheed and Khaled A. Alhosaini
Int. J. Mol. Sci. 2023, 24(24), 17270; https://doi.org/10.3390/ijms242417270 - 8 Dec 2023
Cited by 7 | Viewed by 2135
Abstract
Pathological cardiac remodeling is associated with cardiovascular disease and can lead to heart failure. Nuclear factor-kappa B (NF-κB) is upregulated in the hypertrophic heart. Moreover, the expression of the G-protein-coupled receptor kinase 2 (GRK2) is increased and linked to the progression of heart [...] Read more.
Pathological cardiac remodeling is associated with cardiovascular disease and can lead to heart failure. Nuclear factor-kappa B (NF-κB) is upregulated in the hypertrophic heart. Moreover, the expression of the G-protein-coupled receptor kinase 2 (GRK2) is increased and linked to the progression of heart failure. The inhibitory effects of paroxetine on GRK2 have been established. However, its protective effect on IκBα/NFκB signaling has not been elucidated. This study investigated the cardioprotective effect of paroxetine in an animal model of cardiac hypertrophy (CH), focusing on its effect on GRK2-mediated NF-κB-regulated expression of prohypertrophic and profibrotic genes. Wistar albino rats were administered normal saline, paroxetine, or fluoxetine, followed by isoproterenol to induce CH. The cardioprotective effects of the treatments were determined by assessing cardiac injury, inflammatory biomarker levels, histopathological changes, and hypertrophic and fibrotic genes in cardiomyocytes. Paroxetine pre-treatment significantly decreased the HW/BW ratio (p < 0.001), and the expression of prohypertrophic and profibrotic genes Troponin-I (p < 0.001), BNP (p < 0.01), ANP (p < 0.001), hydroxyproline (p < 0.05), TGF-β1 (p < 0.05), and αSMA (p < 0.01) as well as inflammatory markers. It also markedly decreased pIκBα, NFκB(p105) subunit expression (p < 0.05) and phosphorylation. The findings suggest that paroxetine prevents pathological cardiac remodeling by inhibiting the GRK2-mediated IκBα/NF-κB signaling pathway. Full article
(This article belongs to the Special Issue Molecular Pharmacology of Cardiovascular Disease)
Show Figures

Figure 1

25 pages, 6486 KiB  
Article
G Protein-Coupled Receptor Kinase 2 Selectively Enhances β-Arrestin Recruitment to the D2 Dopamine Receptor through Mechanisms That Are Independent of Receptor Phosphorylation
by Marta Sánchez-Soto, Noelia M. Boldizsar, Kayla A. Schardien, Nora S. Madaras, Blair K. A. Willette, Laura R. Inbody, Christopher Dasaro, Amy E. Moritz, Julia Drube, Raphael S. Haider, R. Benjamin Free, Carsten Hoffman and David R. Sibley
Biomolecules 2023, 13(10), 1552; https://doi.org/10.3390/biom13101552 - 20 Oct 2023
Cited by 7 | Viewed by 4342
Abstract
The D2 dopamine receptor (D2R) signals through both G proteins and β-arrestins to regulate important physiological processes, such as movement, reward circuitry, emotion, and cognition. β-arrestins are believed to interact with G protein-coupled receptors (GPCRs) at the phosphorylated C-terminal tail or intracellular loops. [...] Read more.
The D2 dopamine receptor (D2R) signals through both G proteins and β-arrestins to regulate important physiological processes, such as movement, reward circuitry, emotion, and cognition. β-arrestins are believed to interact with G protein-coupled receptors (GPCRs) at the phosphorylated C-terminal tail or intracellular loops. GPCR kinases (GRKs) are the primary drivers of GPCR phosphorylation, and for many receptors, receptor phosphorylation is indispensable for β-arrestin recruitment. However, GRK-mediated receptor phosphorylation is not required for β-arrestin recruitment to the D2R, and the role of GRKs in D2R–β-arrestin interactions remains largely unexplored. In this study, we used GRK knockout cells engineered using CRISPR-Cas9 technology to determine the extent to which β-arrestin recruitment to the D2R is GRK-dependent. Genetic elimination of all GRK expression decreased, but did not eliminate, agonist-stimulated β-arrestin recruitment to the D2R or its subsequent internalization. However, these processes were rescued upon the re-introduction of various GRK isoforms in the cells with GRK2/3 also enhancing dopamine potency. Further, treatment with compound 101, a pharmacological inhibitor of GRK2/3 isoforms, decreased β-arrestin recruitment and receptor internalization, highlighting the importance of this GRK subfamily for D2R–β-arrestin interactions. These results were recapitulated using a phosphorylation-deficient D2R mutant, emphasizing that GRKs can enhance β-arrestin recruitment and activation independently of receptor phosphorylation. Full article
Show Figures

Figure 1

22 pages, 3660 KiB  
Article
Ubiquitination of GRK2 Is Required for the β-Arrestin-Biased Signaling Pathway of Dopamine D2 Receptors to Activate ERK Kinases
by Haiping Liu, Haixiang Ma, Xingyue Zeng, Chengyan Wu, Srijan Acharya, Sarabjeet Kour Sudan and Xiaohan Zhang
Int. J. Mol. Sci. 2023, 24(12), 10031; https://doi.org/10.3390/ijms241210031 - 12 Jun 2023
Cited by 10 | Viewed by 3151
Abstract
A class-A GPCR dopamine D2 receptor (D2R) plays a critical role in the proper functioning of neuronal circuits through the downstream activation of both G-protein- and β-arrestin-dependent signaling pathways. Understanding the signaling pathways downstream of D2R is critical for developing effective therapies with [...] Read more.
A class-A GPCR dopamine D2 receptor (D2R) plays a critical role in the proper functioning of neuronal circuits through the downstream activation of both G-protein- and β-arrestin-dependent signaling pathways. Understanding the signaling pathways downstream of D2R is critical for developing effective therapies with which to treat dopamine (DA)-related disorders such as Parkinson’s disease and schizophrenia. Extensive studies have focused on the regulation of D2R-mediated extracellular-signal-regulated kinase (ERK) 1/2 signaling; however, the manner in which ERKs are activated upon the stimulation of a specific signaling pathway of D2R remains unclear. The present study conducted a variety of experimental techniques, including loss-of-function experiments, site-directed mutagenesis, and the determination of protein interactions, in order to investigate the mechanisms underlying β-arrestin-biased signaling-pathway-mediated ERK activation. We found that the stimulation of the D2R β-arrestin signaling pathway caused Mdm2, an E3 ubiquitin ligase, to move from the nucleus to the cytoplasm and interact with tyrosine phosphorylated G-protein-coupled receptor kinase 2 (GRK2), which was facilitated by Src, a non-receptor tyrosine kinase. This interaction led to the ubiquitination of GRK2, which then moved to the plasma membrane and interacted with activated D2R, followed by the phosphorylation of D2R as well as the mediation of ERK activation. In conclusion, Mdm2-mediated GRK2 ubiquitination, which is selectively triggered by the stimulation of the D2R β-arrestin signaling pathway, is necessary for GRK2 membrane translocation and its interaction with D2R, which in turn mediates downstream ERK signaling. This study is primarily novel and provides essential information with which to better understand the detailed mechanisms of D2R-dependent signaling. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

19 pages, 3647 KiB  
Article
GRK2 Mediates Macrophage Polarization by Regulating EP4-cAMP-pCREB Signaling in Ulcerative Colitis and the Therapeutic Effect of Paroxetine on Mice with DSS-Induced Colitis
by Jiawei Zhang, Xianzheng Zhang, Mingdian Lu, Yan Chang, Qingtong Wang, Jiajie Tu, Huaxun Wu, Chun Wang, Zhongyang Hong, Maoming Xiong, Lihua Song and Wei Wei
Pharmaceuticals 2023, 16(5), 664; https://doi.org/10.3390/ph16050664 - 28 Apr 2023
Cited by 8 | Viewed by 2674
Abstract
G protein-coupled receptor kinase 2 (GRK2) is one of the cytosolic enzymes, and GRK2 translocation induces prostaglandin E2 receptor 4 (EP4) over-desensitization and reduces the level of cyclic adenosine monophosphate (cAMP) to regulate macrophage polarization. However, the role of GRK2 in the pathophysiology [...] Read more.
G protein-coupled receptor kinase 2 (GRK2) is one of the cytosolic enzymes, and GRK2 translocation induces prostaglandin E2 receptor 4 (EP4) over-desensitization and reduces the level of cyclic adenosine monophosphate (cAMP) to regulate macrophage polarization. However, the role of GRK2 in the pathophysiology of ulcerative colitis (UC) remains unclear. In this study, we investigated the role of GRK2 in macrophage polarization in UC, using biopsies from patients, a GRK2 heterozygous mouse model with dextran sulfate sodium (DSS)-induced colitis, and THP-1 cells. The results showed that a high level of prostaglandin E2 (PGE2) stimulated the receptor EP4 and enhanced the transmembrane activity of GRK2 in colonic lamina propria mononuclear cells (LPMCs), resulting in a down-regulation of membrane EP4 expression. Then, the suppression of cAMP–cyclic AMP responsive element-binding (CREB) signal inhibited M2 polarization in UC. Paroxetine is acknowledged as one of the selective serotonin reuptake inhibitors (SSRI), which is also considered as a potent GRK2 inhibitor with a high selectivity for GRK2. We found that paroxetine could alleviate symptoms of DSS-induced colitis in mice by regulating GPCR signaling to affect macrophage polarization. Taken together, the current results show that GRK2 may act as a novel therapeutic target in UC by regulating macrophage polarization, and paroxetine as a GRK2 inhibitor may have therapeutic effect on mice with DSS-induced colitis. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

21 pages, 3950 KiB  
Article
Delineation of G Protein-Coupled Receptor Kinase Phosphorylation Sites within the D1 Dopamine Receptor and Their Roles in Modulating β-Arrestin Binding and Activation
by Amy E. Moritz, Nora S. Madaras, Michele L. Rankin, Laura R. Inbody and David R. Sibley
Int. J. Mol. Sci. 2023, 24(7), 6599; https://doi.org/10.3390/ijms24076599 - 1 Apr 2023
Cited by 6 | Viewed by 2814
Abstract
The D1 dopamine receptor (D1R) is a G protein-coupled receptor that signals through activating adenylyl cyclase and raising intracellular cAMP levels. When activated, the D1R also recruits the scaffolding protein β-arrestin, which promotes receptor desensitization and internalization, as well as additional downstream [...] Read more.
The D1 dopamine receptor (D1R) is a G protein-coupled receptor that signals through activating adenylyl cyclase and raising intracellular cAMP levels. When activated, the D1R also recruits the scaffolding protein β-arrestin, which promotes receptor desensitization and internalization, as well as additional downstream signaling pathways. These processes are triggered through receptor phosphorylation by G protein-coupled receptor kinases (GRKs), although the precise phosphorylation sites and their role in recruiting β-arrestin to the D1R remains incompletely described. In this study, we have used detailed mutational and in situ phosphorylation analyses to completely identify the GRK-mediated phosphorylation sites on the D1R. Our results indicate that GRKs can phosphorylate 14 serine and threonine residues within the C-terminus and the third intracellular loop (ICL3) of the receptor, and that this occurs in a hierarchical fashion, where phosphorylation of the C-terminus precedes that of the ICL3. Using β-arrestin recruitment assays, we identified a cluster of phosphorylation sites in the proximal region of the C-terminus that drive β-arrestin binding to the D1R. We further provide evidence that phosphorylation sites in the ICL3 are responsible for β-arrestin activation, leading to receptor internalization. Our results suggest that distinct D1R GRK phosphorylation sites are involved in β-arrestin binding and activation. Full article
(This article belongs to the Special Issue State-of-the-Art Biochemistry in USA)
Show Figures

Figure 1

20 pages, 3933 KiB  
Article
Aged G Protein-Coupled Receptor Kinase 3 (Grk3)-Deficient Mice Exhibit Enhanced Osteoclastogenesis and Develop Bone Lesions Analogous to Human Paget’s Disease of Bone
by Emily M. Rabjohns, Rishi R. Rampersad, Arin Ghosh, Katlyn Hurst, Amanda M. Eudy, Jaime M. Brozowski, Hyun Ho Lee, Yinshi Ren, Anthony Mirando, Justin Gladman, Jessica L. Bowser, Kathryn Berg, Sachin Wani, Stuart H. Ralston, Matthew J. Hilton and Teresa K. Tarrant
Cells 2023, 12(7), 981; https://doi.org/10.3390/cells12070981 - 23 Mar 2023
Cited by 1 | Viewed by 2589
Abstract
Paget’s Disease of Bone (PDB) is a metabolic bone disease that is characterized by dysregulated osteoclast function leading to focal abnormalities of bone remodeling. It can lead to pain, fracture, and bone deformity. G protein-coupled receptor kinase 3 (GRK3) is an important negative [...] Read more.
Paget’s Disease of Bone (PDB) is a metabolic bone disease that is characterized by dysregulated osteoclast function leading to focal abnormalities of bone remodeling. It can lead to pain, fracture, and bone deformity. G protein-coupled receptor kinase 3 (GRK3) is an important negative regulator of G protein-coupled receptor (GPCR) signaling. GRK3 is known to regulate GPCR function in osteoblasts and preosteoblasts, but its regulatory function in osteoclasts is not well defined. Here, we report that Grk3 expression increases during osteoclast differentiation in both human and mouse primary cells and established cell lines. We also show that aged mice deficient in Grk3 develop bone lesions similar to those seen in human PDB and other Paget’s Disease mouse models. We show that a deficiency in Grk3 expression enhances osteoclastogenesis in vitro and proliferation of hematopoietic osteoclast precursors in vivo but does not affect the osteoclast-mediated bone resorption function or cellular senescence pathway. Notably, we also observe decreased Grk3 expression in peripheral blood mononuclear cells of patients with PDB compared with age- and gender-matched healthy controls. Our data suggest that GRK3 has relevance to the regulation of osteoclast differentiation and that it may have relevance to the pathogenesis of PDB and other metabolic bone diseases associated with osteoclast activation. Full article
(This article belongs to the Special Issue Advances in Bone Metabolism)
Show Figures

Figure 1

3 pages, 216 KiB  
Editorial
G Protein-Coupled Receptor Kinases Take Central Stage
by Federico Mayor and Cristina Murga
Cells 2023, 12(1), 23; https://doi.org/10.3390/cells12010023 - 21 Dec 2022
Cited by 4 | Viewed by 1485
Abstract
The relevance of the family of G protein-coupled receptor kinases (GRKs) is based on its key participation in the regulation and intracellular dynamics of the largest family of membrane receptors, namely G protein-coupled receptors (GPCRs) [...] Full article
16 pages, 1697 KiB  
Review
The Role of G Protein-Coupled Receptor Kinase 6 Regulation in Inflammation and Pain
by Maike Stegen and Ulrich H. Frey
Int. J. Mol. Sci. 2022, 23(24), 15880; https://doi.org/10.3390/ijms232415880 - 14 Dec 2022
Cited by 7 | Viewed by 3027
Abstract
The G protein-coupled receptor kinase 6 is associated with inflammation and pathological pain. Impairment of GRK6 expression was described in chronic inflammatory diseases such as rheumatoid arthritis and this was shown to be accompanied by an imbalance of downstream signaling pathways. Here, we [...] Read more.
The G protein-coupled receptor kinase 6 is associated with inflammation and pathological pain. Impairment of GRK6 expression was described in chronic inflammatory diseases such as rheumatoid arthritis and this was shown to be accompanied by an imbalance of downstream signaling pathways. Here, we discuss novel aspects of GRK6 interaction and its impact upon hyperalgesia and inflammatory processes. In this review, we compile important findings concerning GRK6 regulation for a better pathophysiological understanding of the intracellular interaction in the context of inflammation and show clinical implications—for example, the identification of possible therapy goals in the treatment of chronic inflammatory hyperalgesia. Full article
Show Figures

Figure 1

18 pages, 3022 KiB  
Article
Crosstalk between CXCR4/ACKR3 and EGFR Signaling in Breast Cancer Cells
by Maria Neves, Viviana Marolda, Federico Mayor and Petronila Penela
Int. J. Mol. Sci. 2022, 23(19), 11887; https://doi.org/10.3390/ijms231911887 - 6 Oct 2022
Cited by 9 | Viewed by 2913
Abstract
A better understanding of the complex crosstalk among key receptors and signaling pathways involved in cancer progression is needed to improve current therapies. We have investigated in cell models representative of the major subtypes of breast cancer (BC) the interplay between the chemokine [...] Read more.
A better understanding of the complex crosstalk among key receptors and signaling pathways involved in cancer progression is needed to improve current therapies. We have investigated in cell models representative of the major subtypes of breast cancer (BC) the interplay between the chemokine CXCL12/CXCR4/ACKR3 and EGF receptor (EGFR) family signaling cascades. These cell lines display a high heterogeneity in expression profiles of CXCR4/ACKR3 chemokine receptors, with a predominant intracellular localization and different proportions of cell surface CXCR4+, ACKR3+ or double-positive cell subpopulations, and display an overall modest activation of oncogenic pathways in response to exogenous CXCL12 alone. Interestingly, we find that in MDA-MB-361 (luminal B subtype, Her2-overexpressing), but not in MCF7 (luminal A) or MDA-MB-231 (triple negative) cells, CXCR4/ACKR3 and EGFR receptor families share signaling components and crosstalk mechanisms to concurrently promote ERK1/2 activation, with a key involvement of the G protein-coupled receptor kinase 2 (GRK2) signaling hub and the cytosolic tyrosine kinase Src. Our findings suggest that in certain BC subtypes, a relevant cooperation between CXCR4/ACKR3 and growth factor receptors takes place to integrate concurrent signals emanating from the tumor microenvironment and foster cancer progression. Full article
(This article belongs to the Special Issue State-of-the-Art Biochemistry in Spain)
Show Figures

Figure 1

Back to TopTop