Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = Fe2+/2-oxoglutarate-dependent dioxygenases

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4196 KiB  
Article
LcSAO1, an Unconventional DOXB Clade 2OGD Enzyme from Ligusticum chuanxiong Catalyzes the Biosynthesis of Plant-Derived Natural Medicine Butylphthalide
by Xueqing Chen, Xiaopeng Zhang, Wenkai Sun, Zhuangwei Hou, Bao Nie, Fengjiao Wang, Song Yang, Shourui Feng, Wei Li and Li Wang
Int. J. Mol. Sci. 2023, 24(24), 17417; https://doi.org/10.3390/ijms242417417 - 13 Dec 2023
Cited by 3 | Viewed by 1985
Abstract
Butylphthalide, a prescription medicine recognized for its efficacy in treating ischemic strokes approved by the State Food and Drug Administration of China in 2005, is sourced from the traditional botanical remedy Ligusticum chuanxiong. While chemical synthesis offers a viable route, limitations in [...] Read more.
Butylphthalide, a prescription medicine recognized for its efficacy in treating ischemic strokes approved by the State Food and Drug Administration of China in 2005, is sourced from the traditional botanical remedy Ligusticum chuanxiong. While chemical synthesis offers a viable route, limitations in the production of isomeric variants with compromised bioactivity necessitate alternative strategies. Addressing this issue, biosynthesis offers a promising solution. However, the intricate in vivo pathway for butylphthalide biosynthesis remains elusive. In this study, we examined the distribution of butylphthalide across various tissues of L. chuanxiong and found a significant accumulation in the rhizome. By searching transcriptome data from different tissues of L. chuanxiong, we identified four rhizome-specific genes annotated as 2-oxoglutarate-dependent dioxygenase (2-OGDs) that emerged as promising candidates involved in butylphthalide biosynthesis. Among them, LcSAO1 demonstrates the ability to catalyze the desaturation of senkyunolide A at the C-4 and C-5 positions, yielding the production of butylphthalide. Experimental validation through transient expression assays in Nicotiana benthamiana corroborates this transformative enzymatic activity. Notably, phylogenetic analysis of LcSAO1 revealed that it belongs to the DOXB clade, which typically encompasses genes with hydroxylation activity, rather than desaturation. Further structure modelling and site-directed mutagenesis highlighted the critical roles of three amino acid residues, T98, S176, and T178, in substrate binding and enzyme activity. By unraveling the intricacies of the senkyunolide A desaturase, the penultimate step in the butylphthalide biosynthesis cascade, our findings illuminate novel avenues for advancing synthetic biology research in the realm of medicinal natural products. Full article
(This article belongs to the Special Issue Biosynthesis and Application of Natural Compound)
Show Figures

Figure 1

23 pages, 9820 KiB  
Article
Genome-Wide Identification of 2-Oxoglutarate and Fe (II)-Dependent Dioxygenase (2ODD-C) Family Genes and Expression Profiles under Different Abiotic Stresses in Camellia sinensis (L.)
by Jingxue Han, Xiaojing Wang and Suzhen Niu
Plants 2023, 12(6), 1302; https://doi.org/10.3390/plants12061302 - 14 Mar 2023
Cited by 4 | Viewed by 2592
Abstract
The 2-oxoglutarate and Fe (II)-dependent dioxygenase (2ODD-C) family of 2-oxoglutarate-dependent dioxygenases potentially participates in the biosynthesis of various metabolites under various abiotic stresses. However, there is scarce information on the expression profiles and roles of 2ODD-C genes in Camellia sinensis. We identified [...] Read more.
The 2-oxoglutarate and Fe (II)-dependent dioxygenase (2ODD-C) family of 2-oxoglutarate-dependent dioxygenases potentially participates in the biosynthesis of various metabolites under various abiotic stresses. However, there is scarce information on the expression profiles and roles of 2ODD-C genes in Camellia sinensis. We identified 153 Cs2ODD-C genes from C. sinensis, and they were distributed unevenly on 15 chromosomes. According to the phylogenetic tree topology, these genes were divided into 21 groups distinguished by conserved motifs and an intron/exon structure. Gene-duplication analyses revealed that 75 Cs2ODD-C genes were expanded and retained after WGD/segmental and tandem duplications. The expression profiles of Cs2ODD-C genes were explored under methyl jasmonate (MeJA), polyethylene glycol (PEG), and salt (NaCl) stress treatments. The expression analysis showed that 14, 13, and 49 Cs2ODD-C genes displayed the same expression pattern under MeJA and PEG treatments, MeJA and NaCl treatments, and PEG and NaCl treatments, respectively. A further analysis showed that two genes, Cs2ODD-C36 and Cs2ODD-C21, were significantly upregulated and downregulated after MeJA, PEG, and NaCl treatments, indicating that these two genes played positive and negative roles in enhancing the multi-stress tolerance. These results provide candidate genes for the use of genetic engineering technology to modify plants by enhancing multi-stress tolerance to promote phytoremediation efficiency. Full article
(This article belongs to the Special Issue Molecular Breeding and Stress Physiology in Horticultural Crops)
Show Figures

Figure 1

25 pages, 13201 KiB  
Article
Genome-Wide Identification and Expression Profiling of 2OGD Superfamily Genes from Three Brassica Plants
by Ding Jiang, Guangguang Li, Guoju Chen, Jianjun Lei, Bihao Cao and Changming Chen
Genes 2021, 12(9), 1399; https://doi.org/10.3390/genes12091399 - 10 Sep 2021
Cited by 9 | Viewed by 3221
Abstract
The 2-oxoglutarate and Fe(II)-dependent dioxygenase (2OGD) superfamily is the second largest enzyme family in the plant genome, and its members are involved in various oxygenation and hydroxylation reactions. Due to their important biochemical significance in metabolism, a systematic analysis of the plant 2OGD [...] Read more.
The 2-oxoglutarate and Fe(II)-dependent dioxygenase (2OGD) superfamily is the second largest enzyme family in the plant genome, and its members are involved in various oxygenation and hydroxylation reactions. Due to their important biochemical significance in metabolism, a systematic analysis of the plant 2OGD genes family is necessary. Here, we identified 160, 179, and 337 putative 2OGDs from Brassica rapa, Brassica oleracea, and Brassica napus. According to their gene structure, domain, phylogenetic features, function, and previous studies, we also divided 676 2OGDs into three subfamilies: DOXA, DOXB, and DOXC. Additionally, homologous and phylogenetic comparisons of three subfamily genes provided valuable insight into the evolutionary characteristics of the 2OGD genes from Brassica plants. Expression profiles derived from the transcriptome and Genevestigator database exhibited distinct expression patterns of the At2OGD, Br2OGD, and Bo2OGD genes in different developmental stages, tissues, or anatomical parts. Some 2OGD genes showed high expression levels in various tissues, such as callus, seed, silique, and root tissues, while other 2OGD genes were expressed at very low levels in other tissues. Analysis of six Bo2OGD genes in different tissues by qRT-PCR indicated that these genes are involved in the metabolism of gibberellin, which in turn regulates plant growth and development. Our working system analysed 2OGD gene families of three Brassica plants and laid the foundation for further study of their functional characterization. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

23 pages, 5261 KiB  
Article
Effect of Posttranslational Modifications on the Structure and Activity of FTO Demethylase
by Michał Marcinkowski, Tomaš Pilžys, Damian Garbicz, Jan Piwowarski, Damian Mielecki, Grzegorz Nowaczyk, Michał Taube, Maciej Gielnik, Maciej Kozak, Maria Winiewska-Szajewska, Ewa Szołajska, Janusz Dębski, Agnieszka M. Maciejewska, Kaja Przygońska, Karolina Ferenc, Elżbieta Grzesiuk and Jarosław Poznański
Int. J. Mol. Sci. 2021, 22(9), 4512; https://doi.org/10.3390/ijms22094512 - 26 Apr 2021
Cited by 8 | Viewed by 3830
Abstract
The FTO protein is involved in a wide range of physiological processes, including adipogenesis and osteogenesis. This two-domain protein belongs to the AlkB family of 2-oxoglutarate (2-OG)- and Fe(II)-dependent dioxygenases, displaying N6-methyladenosine (N6-meA) demethylase activity. The aim of [...] Read more.
The FTO protein is involved in a wide range of physiological processes, including adipogenesis and osteogenesis. This two-domain protein belongs to the AlkB family of 2-oxoglutarate (2-OG)- and Fe(II)-dependent dioxygenases, displaying N6-methyladenosine (N6-meA) demethylase activity. The aim of the study was to characterize the relationships between the structure and activity of FTO. The effect of cofactors (Fe2+/Mn2+ and 2-OG), Ca2+ that do not bind at the catalytic site, and protein concentration on FTO properties expressed in either E. coli (ECFTO) or baculovirus (BESFTO) system were determined using biophysical methods (DSF, MST, SAXS) and biochemical techniques (size-exclusion chromatography, enzymatic assay). We found that BESFTO carries three phosphoserines (S184, S256, S260), while there were no such modifications in ECFTO. The S256D mutation mimicking the S256 phosphorylation moderately decreased FTO catalytic activity. In the presence of Ca2+, a slight stabilization of the FTO structure was observed, accompanied by a decrease in catalytic activity. Size exclusion chromatography and MST data confirmed the ability of FTO from both expression systems to form homodimers. The MST-determined dissociation constant of the FTO homodimer was consistent with their in vivo formation in human cells. Finally, a low-resolution structure of the FTO homodimer was built based on SAXS data. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Figure 1

19 pages, 819 KiB  
Review
Vitamin C Transporters and Their Implications in Carcinogenesis
by Kinga Linowiecka, Marek Foksinski and Anna A. Brożyna
Nutrients 2020, 12(12), 3869; https://doi.org/10.3390/nu12123869 - 18 Dec 2020
Cited by 27 | Viewed by 7881
Abstract
Vitamin C is implicated in various bodily functions due to its unique properties in redox homeostasis. Moreover, vitamin C also plays a great role in restoring the activity of 2-oxoglutarate and Fe2+ dependent dioxygenases (2-OGDD), which are involved in active DNA demethylation [...] Read more.
Vitamin C is implicated in various bodily functions due to its unique properties in redox homeostasis. Moreover, vitamin C also plays a great role in restoring the activity of 2-oxoglutarate and Fe2+ dependent dioxygenases (2-OGDD), which are involved in active DNA demethylation (TET proteins), the demethylation of histones, and hypoxia processes. Therefore, vitamin C may be engaged in the regulation of gene expression or in a hypoxic state. Hence, vitamin C has acquired great interest for its plausible effects on cancer treatment. Since its conceptualization, the role of vitamin C in cancer therapy has been a controversial and disputed issue. Vitamin C is transferred to the cells with sodium dependent transporters (SVCTs) and glucose transporters (GLUT). However, it is unknown whether the impaired function of these transporters may lead to carcinogenesis and tumor progression. Notably, previous studies have identified SVCTs’ polymorphisms or their altered expression in some types of cancer. This review discusses the potential effects of vitamin C and the impaired SVCT function in cancers. The variations in vitamin C transporter genes may regulate the active transport of vitamin C, and therefore have an impact on cancer risk, but further studies are needed to thoroughly elucidate their involvement in cancer biology. Full article
Show Figures

Graphical abstract

17 pages, 28726 KiB  
Article
Flavones Produced by Mulberry Flavone Synthase Type I Constitute a Defense Line against the Ultraviolet-B Stress
by Han Li, Dong Li, Zhen Yang, Qiwei Zeng, Yiwei Luo and Ningjia He
Plants 2020, 9(2), 215; https://doi.org/10.3390/plants9020215 - 7 Feb 2020
Cited by 35 | Viewed by 4346
Abstract
Flavones, one of the largest classes of flavonoids in plants, have a variety of bioactivities and participate in the resistance response of plants to biotic and abiotic stresses. However, flavone synthase (FNS), the key enzyme for flavone biosynthesis, has not yet been characterized [...] Read more.
Flavones, one of the largest classes of flavonoids in plants, have a variety of bioactivities and participate in the resistance response of plants to biotic and abiotic stresses. However, flavone synthase (FNS), the key enzyme for flavone biosynthesis, has not yet been characterized in mulberry. In this study, we report that the leaves of certain mulberry cultivars, namely BJ7, PS2, and G14, are rich in flavones. We identified a Fe2+/2-oxoglutarate-dependent dioxygenase from Morus notabilis (MnFNSI) that shows the typical enzymatic activity of a FNSI-type enzyme, and directly converts eriodictyol and naringenin into their corresponding flavones. Overexpression of MnFNSI in tobacco increased the flavones contents in leaves and enhanced the tolerance of tobacco to ultraviolet-B (UV-B) stress. We found that mulberry cultivars with higher flavones contents exhibit less UV-B induced damage after a UV-B treatment. Accordingly, our findings demonstrate that MnFNSI, a FNSI-type enzyme, is involved in the biosynthesis of flavones, which provide protection against UV-B radiation. These results lay the foundation for obtaining mulberry germplasm resources that are more tolerant to UV-B stress and richer in their nutritional value. Full article
(This article belongs to the Special Issue The Impacts of Abiotic Stresses on Plant Development)
Show Figures

Figure 1

20 pages, 5806 KiB  
Article
Genome-Wide Analysis of the Biosynthesis and Deactivation of Gibberellin-Dioxygenases Gene Family in Camellia sinensis (L.) O. Kuntze
by Cheng Pan, Kunhong Tian, Qiuyan Ban, Leigang Wang, Qilu Sun, Yan He, Yuanfei Yang, Yuting Pan, Yeyun Li, Jiayue Jiang and Changjun Jiang
Genes 2017, 8(9), 235; https://doi.org/10.3390/genes8090235 - 19 Sep 2017
Cited by 36 | Viewed by 6084
Abstract
Gibberellins (GAs), a class of diterpenoid phytohormones, play a key role in regulating diverse processes throughout the life cycle of plants. Bioactive GA levels are rapidly regulated by Gibberellin-dioxygenases (GAox), which are involved in the biosynthesis and deactivation of gibberellin. In this manuscript, [...] Read more.
Gibberellins (GAs), a class of diterpenoid phytohormones, play a key role in regulating diverse processes throughout the life cycle of plants. Bioactive GA levels are rapidly regulated by Gibberellin-dioxygenases (GAox), which are involved in the biosynthesis and deactivation of gibberellin. In this manuscript, a comprehensive genome-wide analysis was carried out to find all GAox in Camellia sinensis. For the first time in a tea plant, 14 CsGAox genes, containing two domains, DIOX_N (PF14226) and 2OG-FeII_Oxy, were identified (PF03171). These genes all belong to 2-oxoglutarate-dependent dioxygenases (2-ODD), including four CsGA20ox (EC: 1.14.11.12), three CsGA3ox (EC: 1.14.11.15), and seven CsGA2ox (EC: 1.14.11.13). According to the phylogenetic classification as in Arabidopsis, the CsGAox genes spanned five subgroups. Each CsGAox shows tissue-specific expression patterns, although these vary greatly. Some candidate genes, which may play an important role in response to external abiotic stresses, have been identified with regards to patterns, such as CsGA20ox2, CsGA3ox2, CsGA3ox3, CsGA2ox1, CsGA2ox2, and CsGA2ox4. The bioactive GA levels may be closely related to the GA20ox, GA3ox and GA2ox genes. In addition, the candidate genes could be used as marker genes for abiotic stress resistance breeding in tea plants. Full article
(This article belongs to the Special Issue Genetic Regulation of Abiotic Stress Responses)
Show Figures

Figure 1

25 pages, 1914 KiB  
Review
Flavones: From Biosynthesis to Health Benefits
by Nan Jiang, Andrea I. Doseff and Erich Grotewold
Plants 2016, 5(2), 27; https://doi.org/10.3390/plants5020027 - 21 Jun 2016
Cited by 274 | Viewed by 24276
Abstract
Flavones correspond to a flavonoid subgroup that is widely distributed in the plants, and which can be synthesized by different pathways, depending on whether they contain C- or O-glycosylation and hydroxylated B-ring. Flavones are emerging as very important specialized metabolites involved [...] Read more.
Flavones correspond to a flavonoid subgroup that is widely distributed in the plants, and which can be synthesized by different pathways, depending on whether they contain C- or O-glycosylation and hydroxylated B-ring. Flavones are emerging as very important specialized metabolites involved in plant signaling and defense, as well as key ingredients of the human diet, with significant health benefits. Here, we appraise flavone formation in plants, emphasizing the emerging theme that biosynthesis pathway determines flavone chemistry. Additionally, we briefly review the biological activities of flavones, both from the perspective of the functions that they play in biotic and abiotic plant interactions, as well as their roles as nutraceutical components of the human and animal diet. Full article
(This article belongs to the Special Issue Plant Flavonoids)
Show Figures

Graphical abstract

14 pages, 1436 KiB  
Article
Molecular Evolution of the TET Gene Family in Mammals
by Hiromichi Akahori, Stéphane Guindon, Sumio Yoshizaki and Yoshinori Muto
Int. J. Mol. Sci. 2015, 16(12), 28472-28485; https://doi.org/10.3390/ijms161226110 - 1 Dec 2015
Cited by 20 | Viewed by 10043
Abstract
Ten-eleven translocation (TET) proteins, a family of Fe2+- and 2-oxoglutarate-dependent dioxygenases, are involved in DNA demethylation. They also help regulate various cellular functions. Three TET paralogs have been identified (TET1, TET2, and TET3) in humans. This study focuses on the evolution [...] Read more.
Ten-eleven translocation (TET) proteins, a family of Fe2+- and 2-oxoglutarate-dependent dioxygenases, are involved in DNA demethylation. They also help regulate various cellular functions. Three TET paralogs have been identified (TET1, TET2, and TET3) in humans. This study focuses on the evolution of mammalian TET genes. Distinct patterns in TET1 and TET2 vs. TET3 were revealed by codon-based tests of positive selection. Results indicate that TET1 and TET2 genes have experienced positive selection more frequently than TET3 gene, and that the majority of codon sites evolved under strong negative selection. These findings imply that the selective pressure on TET3 may have been relaxed in several lineages during the course of evolution. Our analysis of convergent amino acid substitutions also supports the different evolutionary dynamics among TET gene subfamily members. All of the five amino acid sites that are inferred to have evolved under positive selection in the catalytic domain of TET2 are localized at the protein’s outer surface. The adaptive changes of these positively selected amino acid sites could be associated with dynamic interactions between other TET-interacting proteins, and positive selection thus appears to shift the regulatory scheme of TET enzyme function. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

16 pages, 404 KiB  
Review
The Function and Catalysis of 2-Oxoglutarate-Dependent Oxygenases Involved in Plant Flavonoid Biosynthesis
by Ai-Xia Cheng, Xiao-Juan Han, Yi-Feng Wu and Hong-Xiang Lou
Int. J. Mol. Sci. 2014, 15(1), 1080-1095; https://doi.org/10.3390/ijms15011080 - 15 Jan 2014
Cited by 102 | Viewed by 11920
Abstract
Flavonoids are secondary metabolites derived from phenylalanine and acetate metabolism. They fulfil a variety of functions in plants and have health benefits for humans. During the synthesis of the tricyclic flavonoid natural products in plants, oxidative modifications to the central C ring are [...] Read more.
Flavonoids are secondary metabolites derived from phenylalanine and acetate metabolism. They fulfil a variety of functions in plants and have health benefits for humans. During the synthesis of the tricyclic flavonoid natural products in plants, oxidative modifications to the central C ring are catalyzed by four of FeII and 2-oxoglutarate dependent (2-ODD) oxygenases, namely flavone synthase I (FNS I), flavonol synthase (FLS), anthocyanidin synthase (ANS) and flavanone 3β-hydroxylase (FHT). FNS I, FLS and ANS are involved in desaturation of C2–C3 of flavonoids and FHT in hydroxylation of C3. FNS I, which is restricted to the Apiaceae species and in rice, is predicted to have evolved from FHT by duplication. Due to their sequence similarity and substrate specificity, FLS and ANS, which interact with the α surface of the substrate, belong to a group of dioxygenases having a broad substrate specificity, while FNS I and FHT are more selective, and interact with the naringenin β surface. Here, we summarize recent findings regarding the function of the four 2-ODD oxygenases and the relationship between their catalytic activity, their polypeptide sequence and their tertiary structure. Full article
(This article belongs to the Section Biochemistry)
Show Figures

27 pages, 300 KiB  
Review
The Creation and Physiological Relevance of Divergent Hydroxylation Patterns in the Flavonoid Pathway
by Heidi Halbwirth
Int. J. Mol. Sci. 2010, 11(2), 595-621; https://doi.org/10.3390/ijms11020595 - 4 Feb 2010
Cited by 119 | Viewed by 21920
Abstract
Flavonoids and biochemically-related chalcones are important secondary metabolites, which are ubiquitously present in plants and therefore also in human food. They fulfill a broad range of physiological functions in planta and there are numerous reports about their physiological relevance for humans. Flavonoids have [...] Read more.
Flavonoids and biochemically-related chalcones are important secondary metabolites, which are ubiquitously present in plants and therefore also in human food. They fulfill a broad range of physiological functions in planta and there are numerous reports about their physiological relevance for humans. Flavonoids have in common a basic C6-C3-C6 skeleton structure consisting of two aromatic rings (A and B) and a heterocyclic ring (C) containing one oxygen atom, whereas chalcones, as the intermediates in the formation of flavonoids, have not yet established the heterocyclic C-ring. Flavonoids are grouped into eight different classes, according to the oxidative status of the C-ring. The large number of divergent chalcones and flavonoid structures is from the extensive modification of the basic molecules. The hydroxylation pattern influences physiological properties such as light absorption and antioxidative activity, which is the base for many beneficial health effects of flavonoids. In some cases antiinfective properties are also effected. Full article
(This article belongs to the Special Issue Phenolics and Polyphenolics)
Show Figures

Graphical abstract

Back to TopTop