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Abstract: The 2-oxoglutarate and Fe (II)-dependent dioxygenase (2ODD-C) family of 2-oxoglutarate-
dependent dioxygenases potentially participates in the biosynthesis of various metabolites under
various abiotic stresses. However, there is scarce information on the expression profiles and roles
of 2ODD-C genes in Camellia sinensis. We identified 153 Cs2ODD-C genes from C. sinensis, and
they were distributed unevenly on 15 chromosomes. According to the phylogenetic tree topology,
these genes were divided into 21 groups distinguished by conserved motifs and an intron/exon
structure. Gene-duplication analyses revealed that 75 Cs2ODD-C genes were expanded and retained
after WGD/segmental and tandem duplications. The expression profiles of Cs2ODD-C genes were
explored under methyl jasmonate (MeJA), polyethylene glycol (PEG), and salt (NaCl) stress treat-
ments. The expression analysis showed that 14, 13, and 49 Cs2ODD-C genes displayed the same
expression pattern under MeJA and PEG treatments, MeJA and NaCl treatments, and PEG and NaCl
treatments, respectively. A further analysis showed that two genes, Cs2ODD-C36 and Cs2ODD-C21,
were significantly upregulated and downregulated after MeJA, PEG, and NaCl treatments, indicating
that these two genes played positive and negative roles in enhancing the multi-stress tolerance. These
results provide candidate genes for the use of genetic engineering technology to modify plants by
enhancing multi-stress tolerance to promote phytoremediation efficiency.

Keywords: C. sinensis; Cs2ODD-C genes; phylogenetic analysis; expression profile; abiotic stresses

1. Introduction

Plants possess several mechanisms to cope directly with various abiotic stresses,
such as extreme temperature, salt, and drought, owing to their sessile nature [1]. One
of the important mechanisms for plants under environmental challenges is the regula-
tion of secondary metabolites [2]. Plants can produce more than 200,000 phytochemicals
through various metabolic enzymes [3,4]. In particular, oxygenation/hydroxylation reac-
tions are very important for plant growth and development, which are catalyzed by the
2-oxoglutarate-dependent dioxygenase (2OGD) [5,6]. 2OGDs, the second-largest enzyme
family in plants, require 2-oxoglutarate (2OG) and molecular oxygen as co-substrates, and
ferrous iron Fe(II) as a cofactor to catalyze the oxidation of a substrate with concomitant
decarboxylation of 2OG to form succinate and carbon dioxide. 2OGDs were involved in
the biosynthesis of many secondary metabolites [6–9].

In Arabidopsis, the 2OGD superfamily is divided into three subfamilies: DOXA, DOXB,
and DOXC, comprising 14, 14, and 96 2OGD genes, respectively. DOXA subfamily genes are
mainly involved in the N-methyl group hydroxylation of certain genes [10], DOXB subfam-
ily genes mainly participate in the hydroxylation of proline [11], and the DOXC subfamily,
as the most functionally diverse protein subfamily, is associated with the biosynthesis of sec-
ondary metabolites, such as dioxygenases for auxin oxidation (DAOs), 1-minocyclopropane

Plants 2023, 12, 1302. https://doi.org/10.3390/plants12061302 https://www.mdpi.com/journal/plants

https://doi.org/10.3390/plants12061302
https://doi.org/10.3390/plants12061302
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/plants
https://www.mdpi.com
https://doi.org/10.3390/plants12061302
https://www.mdpi.com/journal/plants
https://www.mdpi.com/article/10.3390/plants12061302?type=check_update&version=2


Plants 2023, 12, 1302 2 of 23

carboxylic acid oxidases (ACOs), and gibberellin (GA) 2-oxidases (GA2oxs, GA3oxs, and
GA20oxs) for GA synthesis; and metabolism, flavanone 3-hydroxylases (F3Hs), antho-
cyanidin synthases (ANSs), and aromatic glucosinolates (AOPs) for glucosinolate synthe-
sis [9]. The DOXC subfamily comprises 2-oxoglutarate and Fe-(II)-dependent dioxygenases
(2ODDs), characterized by conserved 2OG-FeII_Oxy (PF03171) and DIOX_N (PF14226)
domains [12]. Moreover, a phylogenetic analysis revealed that the DOXC subfamily pro-
teins in land plants clustered into 57 clades, with 23 clades comprising Arabidopsis 2ODD
genes [7].

Numerous studies have reported that 2ODDs play important roles in the growth and
development processes of plants and participate in the regulation of secondary metabolite
biosynthesis under various stresses. For example, overexpression of the CrCOMT gene
(encoding the caffeic acid O-methyltransferase) from Carex rigescens enhanced salt tolerance
in transgenic Arabidopsis. The TaACO1 gene from wheat (Triticum aestivum) also belongs to
the 2ODD gene family, which conferred salt sensitivity when overexpressed in transgenic
Arabidopsis [13]. The turnover of auxin can be manipulated under salt treatment through
inducing the expression of GH3 genes and inhibiting DAO genes [14]. The 2ODD family
members AOP and GSL-OH were reported to increase drought and salt tolerance by regu-
lating glucosinolate biosynthesis and metabolism [15]. Moreover, the T-DNA insertional
mutations of GSL-OH in Arabidopsis prevented the accumulation of 2-hydroxybut-3-enyl
glucosinolate, which decreased the insect resistance of the plants [16]. Overexpression of
the DOXC subfamily F3H gene from Camellia sinensis and Lycium chinense in tobacco and
Arabidopsis increased their salt and drought tolerance, respectively [17,18]. In addition,
overexpression of the SlF3H gene could improve the cold tolerance of Solanum lycopersicum
by regulating jasmonic acid accumulation [19]. Ectopic expression of the DOXC subfamily
DoFLS1 gene from Dendrobium officinale promoted flavonol accumulation and enhanced
tolerance to abiotic stress in Arabidopsis [20]. Overexpression of the DOXC subfamily gene
StGA2ox1 in potato improved stress tolerance compared with that of wild-type plants,
including salt, drought, and low-temperature tolerance [21].

Tea (C. sinensis) is the oldest natural, nonalcoholic, caffeine-containing beverage and
benefits human health due to its wealth of secondary metabolites, including catechins,
theanine, polysaccharides, caffeine, and volatiles [22–24]. Abiotic stresses considerably
affect the yield, quality, and even life of C. sinensis, and such adverse environmental
conditions may reduce the performance of the C. sinensis with reduced yield from 65% [25].
Although the functions of 2ODD-C genes have been extensively investigated in multiple
model organisms, these enzymes have not been systematically analyzed in C. sinensis. In
our current study, a comprehensive analysis of the Cs2ODD-C gene family in C. sinensis
was performed for phylogenetic evolution, gene structure, conserved motifs, chromosome
location, gene duplication, and expression patterns in different organs and under different
abiotic stress conditions. In addition, two candidate genes (Cs2ODD-C36 and Cs2ODD-C21)
might play both positive and negative roles in regulating the multi-stress tolerance. Our
results provide new insight into the function of Cs2ODD-C genes in C. sinensis and establish
a knowledge base for further genetic improvement of C. sinensis. Through this study, we
hope to develop a novel molecular basis to improve the multi-stress tolerance of plants and
promote the development of phytoremediation technology for multi-stress situations.

2. Results
2.1. Genome-Wide Identification of Cs2ODD-C Gene Family in C. sinensis

To identify the Cs2ODD-C family genes in C. sinensis, the full-length sequence align-
ments of the DIOX_N (PF14226) and 2OG-FeII_Oxy (PF03171) domains were downloaded
from the Pfam database and were used as queries to search the C. sinensis proteome [26].
A total of 153 Cs2ODD-C genes were identified in C. sinensis genome, encoding pro-
teins ranging from 162 aa (Cs2ODD-C129) to 422 aa (Cs2ODD-C104) in length, with an
average of 334.4 aa. The molecular weight of Cs2ODD-C family proteins ranged from
17.53 kDa (Cs2ODD-C129) to 47.36 kDa (Cs2ODD104), and the isoelectric points ranged
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from 4.18 (Cs2ODD-C130) to 9.55 (Cs2ODD-C47). The prediction of the subcellular lo-
calization of Cs2ODD-C family proteins showed that all proteins were distributed in the
cytoplasm (Supplementary Table S1). The detailed information of Cs2ODD-C family genes
is provided in Supplementary Table S1, including chromosome location, number of introns,
and the gene start and end sites.

Based on the valuable information for genome annotation, 146 of the identified
Cs2ODD-C genes were localized on 15 C. sinensis chromosomes, with the remaining 7 genes
(Cs2ODD-C1, Cs2ODD-C17, Cs2ODD-C49, Cs2ODD-C70, Cs2ODD-C74, Cs2ODD-C95, and
Cs2ODD-C107) unanchored to chromosomes. As shown in Figure 1, the congregate regions
and number of Cs2ODD-C genes are irregular across the 15 chromosomes. Chromo-
some 9 harbored the highest number of Cs2ODD-C genes (n = 18), whereas Chromosome
6 had the smallest number of genes (n = 3). Moreover, the percentage of Cs2ODD-C
genes per chromosome varied from 0.09% on Chromosome 6 to 0.65% on Chromosome 15
(Supplementary Table S1).
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Figure 1. Chromosome distribution and tandem duplication events for Cs2ODD−C genes. The
position of each Cs2ODD−C is noted on the right side of each chromosome (Chr). The size of a
chromosome is indicated by its relative length. Tandemly duplicated genes are indicated with a
red bar.

2.2. Phylogenetic Analysis of 2ODD-C Gene Family among Arabidopsis, O. sativa, and C. sinensis

To further explore the relationships among Cs2ODD-C family genes, an unrooted
phylogenetic tree in C. sinensis, O. sativa, and Arabidopsis was constructed by PhyML



Plants 2023, 12, 1302 4 of 23

3.0 software with the maximum-likelihood (ML) method. The Cs2ODD-C family genes
clustered into 21 groups (Groups I to XXI) based on the tree topology and the functions
of identified AtODD-C genes in Arabidopsis (Figure 2; Table 1). The number of Cs2ODD-C
genes in different groups was different. Group XIV, including 20 Cs2ODD-C genes, was
the largest group, followed by Group VI (15 genes), Group VIII (14 genes), and Group IV
(13 genes). Group XVIII contained only one Cs2ODD-C gene, making it the smallest group.
In addition, Groups IV, VIII, X, XII, XIII, XIV, XVII, XX, and XXI contained more Cs2ODD-C
genes in C. sinensis than in Arabidopsis and O. sativa. In addition, two groups (Groups VII
and XV) harbored only At2ODD-C or Cs2ODD-C genes without corresponding Os2ODD-C
genes in O. sativa, indicating that the number of 2ODD-C genes may have increased in C.
sinensis and Arabidopsis or that O. sativa lost these 2ODD-C genes during evolution.
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Figure 2. Phylogenetic analysis of 2ODD−C gene family in C. sinensis, O. sativa, and Arabidopsis. An
unrooted phylogenetic tree of 2ODD−C gene family among C. sinensis, O. sativa, and Arabidopsis was
constructed using the maximum-likelihood method in PhyML 3.0 software, with a bootstrap test
(replicated 100 times). The 2ODD−C gene families in C. sinensis, O. sativa, and Arabidopsis are marked
red, black, and black, respectively. The values of the bootstrap are shown on the nodes. Different
color arcs indicate different groups of ODD−Cs.
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Table 1. The number of the DOX−C genes belonging to each group.

Group
No. of DOX-C Genes

Clade c Representative Enzyme
C. sinensis A. thaliana O. sativa

I 5 5 10 DOXC52 T6OMD, CODM, CJNCSC1
II 2 1 1 DOXC54 SRG
III 4 4 10 DOXC55 –
IV 13 4 6 DOXC53 ACO
V 6 5 5 DOXC46 JAO
VI 15 16 9 DOXC31 D4H, GSLOH, BX6
VII 2 4 0 DOXC30 F6H
VIII 14 3 5 DOXC38 S3H
IX 4 4 5 DOXC37 –
X 9 7 3 DOXC47 FLS, NLS
XI 2 1 1 DOXC28 F3H
XII 8 5 5 DOXC12 C19-GA2ox
XIII 7 4 2 DOXC3 GA3ox
XIV 20 7 1 DOXC20 AOP
XV 2 2 0 DOXC17 –
XVI 5 2 1 DOXC15 DAO
XVII 12 4 2 DOXC24,27 –
XVIII 1 3 1 DOXC23 DIN
XIX 4 2 2 DOXC21 –
XX 7 4 4 DOXC13 C20-GA2ox
XXI 8 4 4 DOXC13 GA2ox

Soloist 3 0 1 – –

2.3. Gene Structure and Conserved Motifs of Cs2ODD-C Family Genes

To further investigate the gene structure diversity and motif composition of Cs2ODD-C
genes, the conserved motifs of Cs2ODD-C proteins were analyzed and visualized using
the MEME suite. Fifteen putative conserved motifs were identified in Cs2ODD-C proteins
(Figures 3a and S1). Motifs 2, 3, and 4 corresponding to the DIOX_N domain, and Motifs 1,
5, and 10 corresponding to the 2OG-Fe II_Oxy domain were shared by nearly all Cs2ODD-
C proteins. The distributions of some conserved motifs varied among the groups, with
some groups having specific conserved motifs. Motif 12 was specifically distributed in
all members of Group XVII, whereas Motif 15 was specifically distributed in Groups XII
and XIV. The members of Groups I–VI and VII–XI commonly contained Motifs 11 and 14.
These results indicated that the specific motifs appearing in different subgroups might be
associated with specific functions.

The exon/intron structural patterns of Cs2ODD-C genes are shown in Figure 3b
and Supplementary Table S1. The number of exons for the 153 Cs2ODD-C genes varied
from 1 to 11. A majority (138 of 153) of the Cs2ODD-C genes have 1–4 introns, and the
other 15 Cs2ODD-C genes have 9–11 introns. Cs2ODD-C genes in the same subgroups
consistently showed the same numbers and lengths of introns/exons, indicating that they
have the same intron/exon organization. For instance, all genes in Group XIII contained
only one intron, whereas most members of Groups X–XII possessed two introns, and all
members of Group XVII had more than ten introns. Thus, this analysis further verified the
topology of the phylogenetic tree of Cs2ODD-C family genes.
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family. (a) The conserved motifs of Cs2ODD−C proteins were conducted using the MEME online
program, as described in Section 5. (b) The intron and exon structures of the Cs2ODD−C genes were
obtained by Perl scripts and visualized by GSDS software. (c) Statistical analysis of the number of
conserved motif distributions in Cs2ODD-C proteins. (d) The proportion of the Cs2ODD−C genes
with different introns.

2.4. Cis-Regulatory Elements in the Cs2ODD-C Promoter Regions

Cis-regulatory elements are responsible for transcriptional regulation by binding to
transcription factors. The cis-elements in the promoter regions of Cs2ODD-C genes were
analyzed using PlantCARE online software (Supplementary Figure S2). There were 23 func-
tionally annotated cis-elements identified, and these were further classified into three
categories: stress-responsive elements (MYB, MBS, AE-box, ABRE, TCA-motif, box-III, and
TATA), hormone-responsive elements (RY-element, P-box, GA-motif, TATC-motif, ABRE,
and Sp1), and light-responsive elements (AT-rich element, I-box, G-box, GA motif, AT1-
motif, LTR, ATCT-motif, ACE, W-box, and TGA-box). The Cs2ODD-C genes contained nu-
merous stress-, hormone-, and light-responsive elements, suggesting that these genes might
be involved in response to light signaling, plant growth and development, stresses, and
hormones. In addition, the promoters of Cs2ODD-C36 and Cs2ODD-C21 genes contained
many stress-related cis-elements, such as CGTCA-motif, TATC-box, GARE-motif, ABRE,
MBS, P-box, TCA-motif, and GACG-motif, indicating that these two genes might play
crucial roles in response to various abiotic stresses in C. sinensis (Supplementary Figure S2).

2.5. Evolutionary Patterns of the Cs2ODD-C Gene Family

Gene duplication and divergence play important roles in the evolutionary momentum
of the genome, and tandem duplication (TD) and whole-genome duplication (WGD)
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contribute to evolutionary novelty and genome complexity [27]. Among the 153 Cs2ODD-C
genes, 36 (23.52%) and 39 (25.49%) were duplicated and retained from WGD/segmental
duplication and TD, respectively (Supplementary Figure S3), indicating that these two
gene duplication events mainly contribute to the expansion of Cs2ODD-C family genes in
C. sinensis.

A collinearity analysis of the Cs2ODD-C gene family in C. sinensis was conducted
to further study the underlying evolutionary processes. A total of 33 Cs2ODD-C genes
from 23 segmental duplication events were identified in C. sinensis, which accounted for
91.6% of WGD-type Cs2ODD-C genes (Figure 4a; Supplementary Table S2). Cs2ODD-C
genes were located within synteny blocks on all chromosomes. In addition, the ratio of
non-synonymous to synonymous substitutions (Ka/Ks) is a useful measure of the strength
and mode of natural selection acting on protein-coding genes. A Ka/Ks ratio of 1 is
indicative of neutral selection (no specific direction), lower than 1 indicates purifying
selection, and higher than 1 indicates positive selection [28]. In the present study, the
Ka/Ks ratio of 23 Cs2ODD-C gene pairs was less than one, implying that these genes are
under negative purifying selection, which maintained the functions of the Cs2ODD-C
gene family in C. sinensis (Supplementary Table S2). Moreover, Ks was usually used to
estimate the evolutionary dates of genome or gene duplication events. Te WGD/segmental
duplicated events in C. sinensis occurred from 0.91 (Ks = 0.0272) to 81.51 mya (Ks = 2.5541).
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Figure 4. Genomic locations of Cs2ODD−C genes and segmentally duplicated gene pairs in the C.
sinensis genome (a) and the orthologous relationships of Cs2ODD−C genes with O. sativa (b) and
Arabidopsis (c). The chromosome number is indicated at the top of each chromosome. Ka (d), Ks (e),
and Ka/Ks (f) ratio of segmental duplicate genes and orthologous genes among C. sinensis, O. sativa
and Arabidopsis. The box plots exhibit the distributions of Ka, Ks, and Ka/Ks values among paralogs
and orthologs. The small square and the line in the box represent average and median values of the
Ka, Ks, and Ka/Ks values, respectively. Cs, C. sinensis; Os, O. sativa; At, Arabidopsis.
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The orthologous relationships of 2ODD-C family genes among O. sativa, C. sinensis,
and Arabidopsis were further evaluated (Figure 4b,c; Supplementary Tables S3 and S4).
A total of 36 orthologous gene pairs of 2ODD-C were identified between C. sinensis and
Arabidopsis, whereas there were only 5 orthologous gene pairs of 2ODD-C between C.
sinensis and O. sativa identified in this study (Figure 4b,c). The much higher number of
orthologous events of Cs2ODD-C–At2ODD-C than that of Cs2ODD-C–Os2ODD-C indicated
that C. sinensis is more closely related to Arabidopsis than to O. sativa.

2.6. Expression of Cs2ODD-C Family Genes in Different Tissues of C. sinensis

The expression patterns of Cs2ODD-C genes in different tissues of C. sinensis were
evaluated using the previous RNA-seq data from the Tea Plant Information Archive (TPIA)
database [29]. Four Cs2ODD-C genes (Cs2ODD-C40, Cs2ODD-C47, Cs2ODD-C53, and
Cs2ODD-C58) were not detected in any tissue of C. sinensis. The expression patterns of the
remaining 149 Cs2ODD-C genes in different tissues of C. sinensis could be grouped into
three types (Figure 5). Type I contained 30 Cs2ODD-C genes, which were constitutively
expressed in all investigated organs of C. sinensis. Type II also contained 30 Cs2ODD-C
genes, which displayed a tissue-specific expression pattern, including 25 Cs2ODD-C genes
specifically expressed in the roots, 3 Cs2ODD-C genes (Cs2ODD-C43, Cs2ODD-C79, and
Cs2ODD-C129) expressed in the mature leaves, and 2 genes (Cs2ODD-C127 and Cs2ODD-
C128) expressed in the stems. Type III included 24 Cs2ODD-C genes, 22 of which exhibited
a high expression level in the vegetative organs, whereas the expression levels of the other
2 genes (Cs2ODD-C22 and Cs2ODD-C5) were higher in the fruits and flowers. Interestingly,
the expression patterns of some Cs2ODD-C genes in the same group were similar. The
genes in Group III showed high expression levels in all sampled tissues. Of the 13 genes
in Group IV, 10 showed significantly high expression levels in the roots. Sixteen genes
(Cs2ODD-C29, Cs2ODD-C31, Cs2ODD-C119, Cs2ODD-C56, Cs2ODD-C37, Cs2ODD-C38,
Cs2ODD-C96, Cs2ODD-C109, Cs2ODD-C11, Cs2ODD-C44, Cs2ODD-C51, Cs2ODD-C 113,
Cs2ODD-C12, Cs2ODD-C42, Cs2ODD-C23, Cs2ODD-C25, Cs2ODD-C1, Cs2ODD-C133, and
Cs2ODD-C147) were not expressed in any of the investigated organs or tissues.

2.7. Expression Pattern of Cs2ODD-C Family Genes under MeJA Treatment

The expression patterns of 153 Cs2ODD-C family genes in C. sinensis seedlings that
experienced MeJA treatment were evaluated used previous RNA-seq data from the TPIA
database (Figure 6). Under MeJA treatment, 11 Cs2ODD-C genes (Cs2ODD-C49, Cs2ODD-
C50, Cs2ODD-C36, Cs2ODD-C27, Cs2ODD-C110, Cs2ODD-C57, Cs2ODD-C8, Cs2ODD-C5,
Cs2ODD-C153, Cs2ODD-C125, and Cs2ODD-C18) were upregulated at both 24 h and 48 h,
whereas 14 Cs2ODD-C genes (Cs2ODD-C104, Cs2ODD-C54, Cs2ODD-C91, Cs2ODD-C39,
Cs2ODD-C3, Cs2ODD-C87, Cs2ODD-C21, Cs2ODD-C34, Cs2ODD-C123, Cs2ODD-C146,
Cs2ODD-C134, Cs2ODD-C145, Cs2ODD-C109, and Cs2ODD-C88) showed downregulated
expression at both time points (Figure 6), and this may indicate that these were long-term
response genes in C. sinensis under MeJA exposure. Moreover, the expression levels of
47 Cs2ODD-C genes increased to a maximum at 24 h and then sharply decreased at 48 h
of MeJA treatment, which may indicate that these were short-term response genes in C.
sinensis under MeJA exposure. Both long-term and short-term response genes in C. sinensis
might play important roles in the response to MeJA. In addition, 26 Cs2ODD-C genes
showed only upregulated expression at 48 h after MeJA treatment; this may indicate that
these genes are relatively less responsive to MeJA (Figure 6). However, there was no
significant change in the expression levels of 20 Cs2ODD-C genes between the tissues
treated with MeJA and untreated control tissues, indicating that these genes might not be
involved in the response to MeJA in C. sinensis (Figure 6).

2.8. Expression Pattern of Cs2ODD-C Family Genes under PEG Treatment

The expression levels of Cs2ODD-C family genes in C. sinensis seedlings under PEG
treatment were evaluated using the previous RNA-seq data from the TPIA database
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(Figure 7). The expression levels of 28 Cs2ODD-C genes significantly increased at both
24 h and 48 h after PEG treatment, whereas 59 Cs2ODD-C genes showed downregulated
expression at both time points. Moreover, the expression levels of 14 Cs2ODD-C genes
(Cs2ODD-C106, Cs2ODD-C49, Cs2ODD-C50, Cs2ODD-C66, Cs2ODD-C27, Cs2ODD-C46,
Cs2ODD-C4, Cs2ODD-C2, Cs2ODD-C107, Cs2ODD-C110, Cs2ODD-C153, Cs2ODD-C108,
Cs2ODD-C136, and Cs2ODD-C42) increased to a maximum at 24 h after PEG treatment
and then decreased sharply at 48 h after PEG treatment, which may indicate short-term
response genes in C. sinensis under PEG exposure. Both long-term and short-term response
genes in C. sinensis might play important roles in the response to PEG. In addition, the
expression of 13 Cs2ODD-C genes was only significantly upregulated at 48 h after PEG
treatment, suggesting that these genes are relatively less responsive to PEG stress (Figure 7).
However, there was no significant difference in the expression levels of 27 Cs2ODD-C genes
between the PEG treatment and control groups, thus indicating that these genes might not
be associated with drought stress in C. sinensis.
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2.9. Expression Pattern of Cs2ODD-C Family Genes under NaCl Stress

Salinity can regulate the growth and development of plants, and salt stress can severely
affect plant growth, thus reducing the plant yield. Therefore, we evaluated the expression
levels of the 153 Cs2ODD-C family genes in C. sinensis seedlings that experienced NaCl
treatment, using the previous RNA-seq data from the TPIA database. We found that the
expression of 21 Cs2ODD-C genes was significantly upregulated at both 24 h and 48 h
after NaCl treatment, whereas the expression of 58 Cs2ODD-C genes was significantly
downregulated at both 24 h and 48 h after NaCl treatment, indicating that these genes
may be long-term response genes in C. sinensis under salt stress (Figure 8). Moreover,
the expression levels of 20 Cs2ODD-C genes increased to a maximum at 24 h and then
decreased sharply at 48 h of NaCl treatment (Figure 8), and this may indicate that these
are short-term response genes in C. sinensis under salt stress. In addition, 16 Cs2ODD-C
genes were only significantly upregulated 48 h after NaCl treatment, implying that these
genes are relatively less responsive to salt stress (Figure 8). However, the expression levels
of 25 Cs2ODD-C genes showed no significant change after NaCl treatment in comparison
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with those of the controls, thus indicating that these genes might not be involved in the
response to the salt stress of C. sinensis (Figure 8).
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Pairwise comparisons of gene expression levels among MeJA, PEG, and NaCl treat-
ments were performed to further evaluate the expression pattern of Cs2ODD-C genes in
C. sinensis. The expression of three Cs2ODD-C genes (Cs2ODD-C125, Cs2ODD-C36, and
Cs2ODD-C8) was significantly upregulated at both 24 h and 48 h after MeJA and PEG
treatments, whereas four Cs2ODD-C genes (Cs2ODD-C104, Cs2ODD-C109, Cs2ODD-C54,
and Cs2ODD-C21) showed downregulated expression at both time points. The expression
levels of six Cs2ODD-C genes (Cs2ODD-C2, Cs2ODD-C4, Cs2ODD-C42, Cs2ODD-C46,
Cs2ODD-C66, and Cs2ODD-C107) increased to a maximum at 24 h and then decreased at
48 h of both the MeJA and PEG treatments. Only one gene (Cs2ODD-C93) showed upreg-
ulated expression at 48 h after both the MeJA and PEG treatments (Figures 6 and 7, and
Supplementary Table S5). As shown in Figures 6 and 8, the expression of two Cs2ODD-C
genes (Cs2ODD-C27 and Cs2ODD-C36) was upregulated at 24 h and 48 h of MeJA and
NaCl treatments, whereas three Cs2ODD-C genes (Cs2ODD-C109, Cs2ODD-C143, and
Cs2ODD-C21) showed downregulated expression at both time points in both treatments.
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The expression levels of four Cs2ODD-C genes (Cs2ODD-C30, Cs2ODD-C4, Cs2ODD-C72,
and Cs2ODD-C95) increased to a maximum at 24 h and then decreased at 48 h of MeJA
and NaCl treatments. Furthermore, four Cs2ODD-C genes (Cs2ODD-C116, Cs2ODD-C117,
Cs2ODD-C67, and Cs2ODD-C52) were only significantly upregulated at 48 h of MeJA and
NaCl treatments (Figures 6 and 8; Supplementary Table S6). Under the PEG and NaCl
treatments, nine Cs2ODD-C genes (Cs2ODD-C117, Cs2ODD-C 140, Cs2ODD-C35, Cs2ODD-
C36, Cs2ODD-C39, Cs2ODD-C44, Cs2ODD-C121, and Cs2ODD-C6) showed significantly
upregulated expression at 24 h and 48 h, while 37 Cs2ODD-C genes showed downreg-
ulated expression at both time points. The expression levels of two Cs2ODD-C genes
(Cs2ODD-C110 and Cs2ODD-C48) increased to a maximum at 24 h and then decreased at
48 h of PEG and NaCl treatments (Figures 7 and 8; Supplementary Table S7). It is worth
noting that one Cs2ODD-C gene (Cs2ODD-C36) showed upregulated expression at both
24 h and 48 h for the MeJA, PEG, and NaCl treatments, whereas the Cs2ODD-C gene
(Cs2ODD-C21) was downregulated at both time points in all three treatments (Figures 6–8;
Supplementary Table S8), suggesting that these three genes might play important roles
under various abiotic stresses in C. sinensis.
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2.10. Validation of Expression Patterns of 12 Cs2ODD-C Genes under PEG, NaCl, and MeJA
Treatments Using qRT-PCR

To validate the reliability of RNA-seq results, twelve Cs2ODD-C genes with high
expression after at least two treatments were selected to verify the expression patterns
by reverse transcription–quantitative polymerase chain reaction (RT-qPCR) experiments
(Figure 9). Expression comparisons were performed in C. sinensis seedlings treated with
PEG, NaCl, and MeJA, and the expression trends in the RT-PCR results were in agreement
with the RNA-Seq data.
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and NaCl treatments. Different lower-case letters indicate a significant difference between the treated
(24 h and 48 h) and untreated (0 h) samples (p < 0.05).

2.11. Tertiary Structures of 12 Candidate Stress-Related Cs2ODD-C Proteins

Based on the prediction from SWISS-MODEL (https://swissmodel.expasy.org, ac-
cessed on 15 March 2022), the protein tertiary structures of 12 candidate stress-related
Cs2ODD-C proteins were constructed according to the C300xA [2ogFe(II) oxygenase family
protein] template (Figure 10). The three highest scoring templates were 6lsv.2.A (JOX2),
6ku3.1.A (GA2ox3), and 5o7y.1.A (T6ODM). Seven Cs2ODD-C proteins (Cs2ODD-C27,
Cs2ODD-C35, Cs2ODD-C36, Cs2ODD-C39, Cs2ODD-C72, Cs2ODD-C80, and Cs2ODD-
C107) contained all three templates (6lsv.2.A, 6ku3.1.A, and 5o7y.1.A), which were used as
short- and long-term response genes in C. sinensis under MeJA, PEG, and NaCl treatments.
The 6lsv.2.A template was present in all 12 Cs2ODD-C proteins, suggesting that these
genes are derived from the same ancestor. The 6ku3.1.A template was mainly distributed
among 10 Cs2ODD-C proteins, except Cs2ODD-C44 and Cs2ODD-C95, and the 5o7y.1.A
template was distributed in 9 Cs2ODD-C proteins, except Cs2ODD-C44, Cs2ODD-C21,

https://swissmodel.expasy.org
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and Cs2ODD-C121, suggested that the functional differentiation of these 12 Cs2ODD-C
genes occurred in the process of genome evolution. These results further revealed that
these genes played important roles in response to abiotic stress and were also involved in
response to different stresses.
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2.12. Protein Interaction Networks

The hypothetical protein–protein interaction network was predicted to discover the
relationships among different Cs2ODD-C proteins. A total of 32 Cs2ODD-Cs were in-
volved in the interaction networks, which were part of various protein–protein interaction
networks (Figure 11). As shown in Figure 11, two Cs2ODD-C proteins (Cs2ODD-C32
and Cs2ODD-C44) interact with two Arabidopsis LDOX homologs in C. sinensis (Cs2ODD-
C57 and Cs2ODD-C63). Moreover, two GA2OX8 proteins in C. sinensis (Cs2ODD-C34 and
Cs2ODD-C59) interact with six Cs2ODD-C proteins (Cs2ODD-C29, Cs2ODD-C30, Cs2ODD-
C31, Cs2ODD-C37, Cs2ODD-C38, and Cs2ODD-C60), and Cs2ODD-C149 interacts with
five Cs2ODD-C proteins (Cs2ODD-C26, Cs2ODD-C44, Cs2ODD-C48, Cs2ODD-C49, and
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Cs2ODD-C50). The interaction network further showed the cascade interactions among
five Cs2ODD-C proteins. Specifically, Cs2ODD-C60 interacts with Cs2ODD-C146, Cs2ODD-
C146 interacts with Cs2ODD-C145, and Cs2ODD-C145 interacts with Cs2ODD-C72 and
Cs2ODD-C95, respectively (Figure 11; Supplementary Table S9).
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3. Discussion

Genes encoding members of the 2OGD superfamily, as the second largest enzyme
family in plants, play important roles in growth and development [6,7,30], including pro-
line hydroxylation, the biosynthesis of secondary metabolites, DNA demethylation, and
others [16,31–35]. The ODD-C family of genes, accounting for the majority of 2OGD genes
in plants, plays important roles in the biosynthesis or degradation of various secondary
metabolites, including hormones, flavonoids, glucosinolate, benzoxazinoid, and monoter-
penoid indole alkaloid [6]. However, a systematic characterization of Cs2ODD-C genes
in C. sinensis has not yet been performed. In this study, the genome-wide identification
and characterization of Cs2ODD-C family genes in C. sinensis were carried out. A total
of 153 Cs2ODD-C genes were identified and divided into 21 groups based on phylogeny,
gene structure, and protein motif analyses. The number of Cs2ODD-C family genes in C.
sinensis was less than in Glycine max (209) and Brassica rapa (154), but more than in Zea mays
(75), O. sativa (78), Vitis vinifera (103), Arabidopsis (93), and Fragaria vesca (123). These results
showed that the species-specific duplication events contributed to the expansion of the
Cs2ODD-C gene family in C. sinensis [36,37].

Gene duplication makes the primary contribution to gene family expansion and ge-
netic novelty. Several patterns of gene duplication, including tandem, proximal, dispersed,
and whole-genome duplication (WGD or segmental duplication), contribute differentially
to the expansion of specific gene families in plant genomes [38–40]. For example, seg-
mental and tandem duplications contributed to the expansion of WRKY and AP2/ERF
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transcription factor [41,42]. Transposed duplication was responsible for the proliferation of
other important gene families, including MADS-box, F-box, and B3 transcription factors in
Brassicales [43]. In the present study, nearly half of Cs2ODD-C family genes in C. sinensis
were derived from WGD (or segmental duplication) and tandem duplications, suggesting
that these two duplication events played important roles in the expansion of Cs2ODD-C
genes in C. sinensis. Gene expansion is accompanied by neofunctionalization and subfunc-
tionalization, as well as new protein–protein interactions and gene-expression patterns.
For example, Cs2ODD-C3 and Cs2ODD-C5 were duplicated and retained from WGD. The
Cs2ODD-C3 gene was highly expressed in leaves and apical buds, whereas Cs2ODD-C5
showed a high expression level in the roots, flowers, and fruits. Moreover, the expression
of Cs2ODD-C5 was downregulated after MeJA treatment, whereas there was no significant
difference in the expression level of Cs2ODD-C3 under MeJA stress (Figure 6).

In plants, the type of cis-acting elements at the 5′ regulatory region (promoter) de-
termines the complex regulatory properties of a given gene [44]. Our result showed that
the cis-acting elements in the promoters of Cs2ODD-C genes, including light-, stress-, and
hormone-responsive elements, are involved in light, stress, and hormone responses, and
this was consistent with previous studies [45–47]. Zhu et al. (2020) identified the cis-acting
elements in the promoters of key carotenoid pathway genes from Citrus species, which
were classified into light-, stress-, and hormone-responsive elements [48].

The members of 2ODD-C family are involved in biosynthesis of secondary metabo-
lites, including hormones (auxin, GA, jasmonic acid, salicylic acid, and ethylene) [33–35],
flavonoids [23], benzylisoquinoline alkaloids [7], glucosinolates [16,31], tropane alka-
loids [49], monoterpene indole alkaloids [50], benzoxazinoids [7], coumarins [7], mugineic
acid [7], and steroidal glycoalkaloids [12]. These secondary metabolites directly or indirectly
respond to abiotic stress. Our results showed that 64.05% (98), 74.5% (114), and 75.16% (115)
of Cs2ODD-C family genes in C. sinensis showed differential expression patterns under
MeJA, PEG, and NaCl treatment, respectively, suggesting that the Cs2ODD-C family genes
played essential roles in regulating various abiotic stresses. Moreover, paired comparison
analysis further showed that 14, 13, and 49 Cs2ODD-C genes displayed the same expression
pattern in the MeJA vs. PEG, MeJA vs. NaCl, and PEG vs. NaCl comparisons, implying
that these genes might play important roles under these two abiotic stresses, respectively.
In addition, two Cs2ODD-C genes, Cs2ODD-C36 and Cs2ODD-C21, were up- and down-
regulated after MeJA, PEG, and NaCl treatments, indicating that these two genes played
both positive and negative roles in enhancing the tolerance to abiotic stress. Functional
annotation revealed that the orthologous genes of Cs2ODD-C36 and Cs2ODD-C21 in O.
sativa and Arabidopsis were IDS3 (Os07g07410) and GA3ox, respectively. A previous study
revealed that the overexpression of GA3ox reduced stress tolerance in Arabidopsis [51,52].
Stress-induced DELLA accumulation reduced the bioactive GA content by inhibiting the
expression level of GA3ox, increased the activities of reactive oxygen species (ROS) detox-
ification enzymes (catalases and Cu/Zn-superoxide dismutases) and reduced the ROS
accumulation in plants [53,54]. In addition, previous studies reported that iron-containing
enzymes (superoxide dismutase, catalase, and glutathione peroxidase) were involved in the
detoxification of ROS [55,56], and iron deficiency is believed to be dependent on the type
and quantity of mugineic acid [57]. A functional annotation showed that the orthologous
genes of Cs2ODD-C36 in O. sativa was IDS3 (Os07g07410) encoding 2′-deoxymugineic-acid
2′-dioxygenase, which was involved in the formation of mugineic acids [58]. Thus, we
could propose potential molecular mechanisms for the underlying roles of Cs2ODD-C
genes in response to various abiotic stresses. One explanation is that stress-induced DELLA
accumulation in C. sinensis reduces the bioactive GA content by decreasing the expression
levels of Cs2ODD-C21 genes, thus enhancing stress tolerance. Another explanation is that
the Cs2ODD-C36 gene involved in the biosynthesis of mugineic acids plays important
roles in enhancing abiotic stress tolerance in C. sinensis by improving the absorption of
iron to enhance the activity of antioxidant enzymes (superoxide dismutase, catalase, and
glutathione peroxidase) (Figure 12).
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4. Conclusions

In the present study, 153 Cs2ODD-C genes were identified in the C. sinensis genome
and were classified into 21 groups based on the sequence similarity and phylogenetic
relationships. The conserved domain, gene structure, and evolutionary relationships of
Cs2ODD-C genes were also established and analyzed. Investigation of cis-regulatory ele-
ments of Cs2ODD-C genes indicated that many Cs2ODD-C genes are involved in regulating
abiotic stress tolerance. A comprehensive analysis revealed that two candidate genes,
namely Cs2ODD-C36 and Cs2ODD-C21, may be involved in both positively and negatively
regulating the multi-stress tolerance. The above results could provide a basis for the func-
tional characterization of Cs2ODD-C genes and also provide candidate genes for the future
improvement of leaf colorization in C. sinensis.

5. Materials and Methods
5.1. Identification and Classification of Cs2ODD-C Family Genes in C. sinensis

The genome sequence and corresponding annotations of the C. sinensis were obtained
from the TPIA database (http://tpia.teaplant.org, accessed on 15 February 2022). An
HMM file was constructed through the full alignment files of the DIOX_N (PF14226)
and 2OG-FeII_Oxy (PF03171) domains, using the hmmbuild program with the HMMER3

http://tpia.teaplant.org
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software package [59]. The C. sinensis protein databases were then used to conduct HMM
searches. Short proteins (<100 amino acids) and the redundant sequences mapped to
a similar location on the same chromosome were removed from all candidate genes in
the chromosomal localizations. Finally, the core domains (DIOX_N and 2OG-FeII_Oxy)
were further used to verify the candidate proteins with Pfam (https://pfam.xfam.org/,
accessed on 15 February 2022) and SMART (http://smart.embl-heidelberg.de/, accessed on
15 February 2022) [59,60]. Finally, the identified proteins containing DIOX_N and 2OG-Fe
II_Oxy domains were regarded as candidate Cs2ODD-C genes.

5.2. Chromosomal Localization, Motif, and Gene Structure Analyses

The physical location and gene structure of Cs2ODD-C genes were acquired in the C.
sinensis database, and the isodose distribution of the genes was plotted with MapInspect
software (http://mapinspect.software.informer.com/, accessed on 15 February 2022). The
conserved motifs in C. sinensis Cs2ODD-C protein sequences were identified with the online
program MEME5.0.1 (http://meme.nbcr.net/meme/intro.html, accessed on 15 February
2022) under the following optimized parameters: maximum motif width, 50 bp; minimum
motif width, 6 bp; and maximum numbers of different motifs, 20 [61].

5.3. Phylogenetic Analysis

The comparative analysis of full-length 2ODD-C protein sequences between C. sinensis
and Arabidopsis was conducted with Clustal X2.0 software, using default parameters, which
included 93 At2ODD-C and 153 Cs2ODD-C protein sequences [6]. The best-fit model of
protein evolution was identified with the Model-Generator program [62]. An unrooted
phylogenetic tree was constructed based on maximum likelihood (ML) and best model
of JTT and G with 100 bootstraps, using PhyML3.0 software. The phylogenetic tree was
visualized by using FIGTREE [63].

5.4. Synteny Analysis

Synteny analyses between the Arabidopsis and C. sinensis genomes were performed
locally according to the method described by Lee et al. [64]. The potential homologous gene
pairs were initially identified across multiple genomes by using BLASTP (E < 1× 10−5, top
5 matches). The result of BLASTP was then used as an input file for MCScanX to deter-
mine the different type of duplication events (tandem duplication, proximal duplication,
WGD/segmental duplication, or dispersed duplication) [65].

5.5. Ka/Ks Analysis of Cs2ODD-C Genes

To estimate the evolutionary rates of whole-genome/segmental and tandem-duplicated
Cs2ODD-C paralog genes, PAL2NAL software was used to construct a multiple-codon
alignment from the corresponding aligned protein sequences. Such codon alignments can
be used for synonymous (Ks) and nonsynonymous (Ka) estimation [66]. The Ks and Ka
substitutions of Cs2ODD-C genes were calculated using KaKs_Calculator 2.0, which is
commonly used to evaluate the pattern of selection [67]. Generally, Ka/Ks > 1 indicates that
genes have undergone positive selection, Ka/Ks < 1 indicates that genes have undergone
purifying or negative selection, and Ka/Ks = 1 indicates neutral selection [68].

5.6. Expression Analysis

The expression patterns of Cs2ODD-C genes in various organs of C. sinensis and
under various abiotic stress conditions were obtained from the TPIA database (http://
tpia.teaplant.org, accessed on 15 February 2022). A heat map of the reads per kilobase of
transcript per million reads mapped (RPKM) values from RNA-seq data for the relative
expression levels of Cs2ODD-C family genes was constructed. The inactive genes were
defined as those with RPKM < 2 based on previous reports [69,70]. A gene with RPKM > 2
in at least one organ or stress treatment was regarded as a differentially expressed gene in
C. sinensis.

https://pfam.xfam.org/
http://smart.embl-heidelberg.de/
http://mapinspect.software.informer.com/
http://meme.nbcr.net/meme/intro.html
http://tpia.teaplant.org
http://tpia.teaplant.org
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5.7. Growth Conditions, Plant Materials Collection, and Stress Treatments

Tea (C. sinensis) seeds were germinated, and the seedlings were planted in a growth
chamber (22 ◦C/18 ◦C, 14 h photoperiod, sand substrate) for three months. Two-month-old
untreated C. sinensis seedlings were collected from the growth chamber and used as control
samples. Experimental plants were treated with 10 µM MeJA, 10 mM PEG solution, and
200 mM NaCl, respectively. The treated and untreated samples were collected after 24 h
and 48 h treatment, immediately frozen in liquid nitrogen, and stored in a deep freezer at
−78 ◦C until further analysis.

5.8. RT-qPCR of Cs2ODD-C Genes

Total RNA was extracted from the tea seedling with TaKaRa MiniBEST Plant RNA
Extraction Kit (TaKaRA), and the corresponding cDNA was obtained with cDNA Re-
verse Transcription Kit (TaKaRa). Then qPCR was conducted with SYBR Premix Ex Tag
on a DNA Engine OpticonTM 2 system (PCR instrument: Bio-rad T100, manufacturer:
Bio-Rad Laboratories Inc, city: State of California, Country: United States). The CsTBP
(TATA-box binding protein gene)gene was used as a housekeeping gene to normalize the
expression level of target genes in C. sinensis. All primers used in this study are listed in
Supplementary Table S10. The reaction conditions of the PCR program were as follows: an
initial step at 95 ◦C for 30 s. After the cycling protocol, melting curves were obtained by
increasing the temperature from 60 to 95 ◦C (0.2 ◦C−s) to denature the double-stranded
DNA. Then qPCR amplifications were carried out in 96-well plates. The assays were run in
an ABI 7500 system, using the SDS v. 1.4 application software (Applied Biosystems, Foster
City, CA, USA). The primer efficiency was created based on a five-fold dilution series of
cDNA (1:5, 1:25, 1:50, and 1:100), followed by 42 cycles of 95 ◦C for 15 s, 58 ◦C for 15 s,
72 ◦C for 30 s, and 1 s at 80 ◦C for reading the plate. The expression levels were evaluated
by the 2−∆∆Ct method, with three biological replicates [71].

5.9. Analysis of the Tertiary Structures of Candidate Stress-Related Cs2ODD-C Proteins from
C. sinensis

The amino acid sequences of 12 candidate stress-related Cs2ODD-C proteins were
used as the target sequences to construct the tertiary structures with the SWISS-MODEL
program (https://swissmodel.expasy.org, accessed on 15 February 2022). The intensive
modeling mode was selected for this analysis.

5.10. Prediction of Protein Interaction Networks

The protein interaction networks of Cs2ODD-Cs in C. sinensis were predicted using
STRING (version 11.0) software (https://www.string-db.org/, accessed on 15 February
2022). The confidence threshold (combined score) was set to 0.5, and “full network” was
used as the network type. The protein interaction networks of Cs2ODD-C proteins in C.
sinensis were visualized using Cytoscape v3.8.2 software [72].

5.11. Statistical Analysis

Significant analyses between two sample groups were calculated using the t-test
analysis [73]. All of the expression analyses were conducted for three biological replicates.
The average data of three biological replicates were displayed with plus or minus the
standard deviation (average ± SD).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants12061302/s1, Figure S1: Sequence logos of Cs2ODD-C
proteins. Figure S2: Cis-element analysis of Cs2ODD-C genes from upstream 2000bp sequence to the
transcription start site. Figure S3: Proportion of genes originating from diferent replication events.
Table S1: The detail information of CsODD genes in C. sinensis. Table S2: Segmentally duplicated
Cs2ODD-C gene pairs. Table S3: One-to-one orthologous relationships between C. sinensis and
Arabidopsis. Table S4: One-to-one orthologous relationships between C. sinensis and rice. Table S5:
The same expression pattern of CsODD-C genes under MeJA and PEG treatments. Table S6: The

https://swissmodel.expasy.org
https://www.string-db.org/
https://www.mdpi.com/article/10.3390/plants12061302/s1
https://www.mdpi.com/article/10.3390/plants12061302/s1


Plants 2023, 12, 1302 20 of 23

same expression pattern of CsODD-C genes under MeJA and NaCl treatments. Table S7: The same
expression pattern of CsODD-C genes under PEG and NaCl treatments. Table S8: The same expression
pattern of CsODD-C genes under MeJA, PEG and NaCl treatments. Table S9: Protein interaction
networks of CsODD-C proteins. Table S10: The primer sequences used in this study.
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