Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Fanno flow

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 4995 KiB  
Article
Flow in Pillow-Plate Channels for High-Speed Turbomachinery Heat Exchangers
by Stephan Sundermeier, Maximilian Passmann, Stefan aus der Wiesche and Eugeny Y. Kenig
Int. J. Turbomach. Propuls. Power 2022, 7(2), 12; https://doi.org/10.3390/ijtpp7020012 - 22 Mar 2022
Cited by 3 | Viewed by 4336
Abstract
In numerous turbomachinery applications, e.g., in aero-engines with regenerators for improving specific fuel consumption (SFC), heat exchangers with low-pressure loss are required. Pil low-plate heat exchangers (PPHE) are a novel exchanger type and promising candidates for high-speed flow applications due to their smooth [...] Read more.
In numerous turbomachinery applications, e.g., in aero-engines with regenerators for improving specific fuel consumption (SFC), heat exchangers with low-pressure loss are required. Pil low-plate heat exchangers (PPHE) are a novel exchanger type and promising candidates for high-speed flow applications due to their smooth profiles avoiding blunt obstacles in the flow path. This work deals with the overall system behavior and gas dynamics of pillow-plate channels. A pillow-plate channel was placed in the test section of a blow-down wind tunnel working with dry air, and compressible flow phenomena were investigated utilizing conventional and focusing schlieren optics; furthermore, static and total pressure measurements were performed. The experiments supported the assumption that the system behavior can be described through a Fanno–Rayleigh flow model. Since only wavy walls with smooth profiles were involved, linearized gas dynamics was able to cover important flow features within the channel. The effects of the wavy wall structures on pressure drop and Mach number distribution within the flow path were investigated, and a good qualitative agreement with theoretical and numerical predictions was found. The present analysis demonstrates that pressure losses in pillow-plate heat exchangers are rather low, although their strong turbulent mixing enables high convective heat transfer coefficients. Full article
Show Figures

Figure 1

18 pages, 2240 KiB  
Article
A Comparison of Data Reduction Methods for Average Friction Factor Calculation of Adiabatic Gas Flows in Microchannels
by Danish Rehman, Gian Luca Morini and Chungpyo Hong
Micromachines 2019, 10(3), 171; https://doi.org/10.3390/mi10030171 - 28 Feb 2019
Cited by 14 | Viewed by 3662
Abstract
In this paper, a combined numerical and experimental approach for the estimation of the average friction factor along adiabatic microchannels with compressible gas flows is presented. Pressure-drop experiments are performed for a rectangular microchannel with a hydraulic diameter of 295 μ m by [...] Read more.
In this paper, a combined numerical and experimental approach for the estimation of the average friction factor along adiabatic microchannels with compressible gas flows is presented. Pressure-drop experiments are performed for a rectangular microchannel with a hydraulic diameter of 295 μ m by varying Reynolds number up to 17,000. In parallel, the calculation of friction factor has been repeated numerically and results are compared with the experimental work. The validated numerical model was also used to gain an insight of flow physics by varying the aspect ratio and hydraulic diameter of rectangular microchannels with respect to the channel tested experimentally. This was done with an aim of verifying the role of minor loss coefficients for the estimation of the average friction factor. To have laminar, transitional, and turbulent regimes captured, numerical analysis has been performed by varying Reynolds number from 200 to 20,000. Comparison of numerically and experimentally calculated gas flow characteristics has shown that adiabatic wall treatment (Fanno flow) results in better agreement of average friction factor values with conventional theory than the isothermal treatment of gas along the microchannel. The use of a constant value for minor loss coefficients available in the literature is not recommended for microflows as they change from one assembly to the other and their accurate estimation for compressible flows requires a coupling of numerical analysis with experimental data reduction. Results presented in this work demonstrate how an adiabatic wall treatment along the length of the channel coupled with the assumption of an isentropic flow from manifold to microchannel inlet results in a self-sustained experimental data reduction method for the accurate estimation of friction factor values even in presence of significant compressibility effects. Results also demonstrate that both the assumption of perfect expansion and consequently wrong estimation of average temperature between inlet and outlet of a microchannel can be responsible for an apparent increase in experimental average friction factor in choked flow regime. Full article
(This article belongs to the Special Issue Gas Flows in Microsystems)
Show Figures

Figure 1

14 pages, 222 KiB  
Article
Conservation Laws and Invariant Solutions in the Fanno Model for Turbulent Compressible Flow
by M. Anthonyrajah and DP Mason
Math. Comput. Appl. 2010, 15(4), 529-542; https://doi.org/10.3390/mca15040529 - 1 Dec 2010
Cited by 19 | Viewed by 1354
Abstract
Asymptotic reductions of the Fanno model for one-dimensional turbulent compressible flow of a perfect gas in a long tube are investigated. Conservation laws are derived using the multiplier method for a nonlinear wave equation and a nonlinear diffusion equation for the mean velocity [...] Read more.
Asymptotic reductions of the Fanno model for one-dimensional turbulent compressible flow of a perfect gas in a long tube are investigated. Conservation laws are derived using the multiplier method for a nonlinear wave equation and a nonlinear diffusion equation for the mean velocity and a nonlinear diffusion equation for the mean pressure. Two conserved quantities for the mean velocity are obtained from the conservation laws and boundary conditions. An invariant solution is derived for the mean velocity using the Lie point symmetries associated with the conserved vector which generated the conserved quantity for the boundary value problem. Full article
Back to TopTop