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Abstract- Asymptotic reductions of the Fanno model for one-dimensional turbu-

lent compressible flow of a perfect gas in a long tube are investigated. Conservation

laws are derived using the multiplier method for a nonlinear wave equation and a

nonlinear diffusion equation for the mean velocity and a nonlinear diffusion equa-

tion for the mean pressure. Two conserved quantities for the mean velocity are

obtained from the conservation laws and boundary conditions. An invariant solu-

tion is derived for the mean velocity using the Lie point symmetries associated with

the conserved vector which generated the conserved quantity for the boundary value

problem.
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1. INTRODUCTION

When the flow of a perfect gas in a tube is turbulent and the tube is long enough

for wall drag to be important a more realistic model than that of inviscid flow is the

Fanno flow model [1, 2]. The Fanno model contains a drag term in the momentum

balance equation while the mass and energy balance equations are the same as for

inviscid laminar flow. The Fanno model has applications to the air-jet spinning of

polymer filaments [3], inlets to pressure transducers [4] and to high speed trains

travelling through a long tunnel [5]. It may also be applicable to the analysis of air

blasts in long tunnel networks in a mining environment [6, 7]. The Fanno model for

one-dimensional flow has been investigated mathematically by Ockenden et al [1].

These authors analysed flow of initially small amplitude in a semi-infinite tube as

well as gas driven by a piston. They introduced a range of time scales and derived

similarity solutions for boundary value problems for the mean turbulent velocity
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and pressure averaged over the tube. Hastings et al [2] proved rigorously the exis-

tence, uniqueness and asymptotic behaviour of the waves. We will refer to the mean

turbulent velocity and pressure of the gas simply as the gas velocity and pressure.

In this paper conservation laws for the partial differential equations obtained by

Ockendon et al [1] in the asymptotic reductions of the Fanno model are derived.

The gas velocity satisfies a nonlinear diffusion equation subject to homogeneous

boundary conditions and a conserved quantity. A new method of solution due to

Kara and Mahomed [8] is applied. A linear combination of the Lie point symmetries

which are associated with the conservation law for the partial differential equation

which generates the conserved quantity is used to derive the solution instead of a

linear combination of the Lie point symmetries of the partial differential equation.

2. ASYMPTOTIC REDUCTIONS OF THE FANNO MODEL

The gas is initially at rest in a semi-infinite tube x ≥ 0. We will consider two

physical problems formulated by Ockendon et al [1]. These authors derived asymp-

totic reductions of the Fanno by introducing appropriate scales in t, x, gas velocity

u(t, x) and gas pressure p(t, x). In this paper the different scales are denoted simply

by t, x, u and p.

2.1. Pressure increase at entrance

At t = 0 the pressure at the entrance to the tube, x = 0, is suddenly increased

by a small amount and a shock moves into the undisturbed gas in the tube. In the

region close to the shock the following boundary value problem for the nonlinear

wave equation for u(t, x) was derived:

∂2u

∂t2
− ∂2u

∂x2
= −2u

∂u

∂t
, (2.1)

x = t : u =
2

t
, u ∼ 3t

x2
as x → 0 . (2.2)

In the region further from the shock and nearer the entrance to the tube the mo-

mentum and energy equations take the form

∂p

∂x
= −u2 ,

∂p

∂t
+

∂u

∂x
= 0 . (2.3)

The velocity u(t, x) can be eliminated to give a nonlinear diffusion equation for the
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pressure p(t, x). Alternatively the pressure can be eliminated to give a nonlinear dif-

fusion equation for the velocity u(t, x). The following two boundary value problems

for p(t, x) and u(t, x) were derived:

∂p

∂t
=

1

2

(
−∂p

∂x

)−1/2
∂2p

∂x2
, (2.4)

p(t, 0) = 1 , p ∼ 3t2

x3
as x → ∞ (2.5)

∂2u

∂x2
= 2u

∂u

∂t
, (2.6)

∂u

∂x
(t, 0) = 0 , u ∼ 3t

x2
as x → ∞ . (2.7)

2.2 Compressive wave generated by piston

Ockendon et al [1] also considered the compressive wave generated by a piston

moved impulsively into the gas with constant velocity much less than the speed of

sound. The following boundary value problem for u(t, x) was obtained:

∂2u

∂x2
= 2u

∂u

∂t
, (2.8)

u(t, 0) = 1 , u ∼ 3t

x2
as x → ∞ , (2.9)

3. CONSERVATION LAWS

Conservation laws for a partial differential equation do not depend on the bound-

ary conditions. We will obtain conservation laws for the partial differential equations

(2.1), (2.4) and (2.6). The multiplier method will be used [9–11]. The derivation

will be outlined for the nonlinear diffusion equation (2.6) and the results will then

be stated for equations (2.1) and (2.4).

A conservation law for (2.6) is of the form

D1T
1 +D2T

2

∣∣∣∣∣
(2.5)

= 0 , (3.1)

D1 = Dt =
∂

∂t
+ ut

∂

∂u
+ utt

∂

∂ut

+ uxt
∂

∂ux

+ · · · , (3.2)

D2 = Dx =
∂

∂x
+ ux

∂

∂u
+ utx

∂

∂ut

+ uxx
∂

∂ux

+ · · · (3.3)
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and subscripts denote partial derivatives. The vector T = (T 1, T 2) is a conserved

vector for the partial differential equation (2.6).

A multiplier Λ of equation (2.6) has the property that

Λ(2uut − uxx) = D1T
1 +D2T

2 (3.4)

for all functions u(t, x) and not only for solutions of (2.6). We will consider multipli-

ers of the form Λ = Λ(t, x, u). Multipliers of this form were found to be sufficient to

derive significant conservation laws for two-dimensional and radial jets [12]. We will

see that they are sufficient to derive the conserved vector which generates the in-

variant solution for the boundary value problem, (2.6) and (2.7). Multipliers which

depend on the first order and higher order partial derivatives of u could also be con-

sidered but the calculations rapidly become more complicated. Computer assisted

calculations could then be performed which may lead to further conservation laws.

The right hand side of (3.4) is a divergence expression. The determining equation

for the multiplier Λ is

Eu

[
Λ(2uut − uxx)

]
= 0 , (3.5)

where Eu is the standard Euler operator which annihilates divergence expressions:

Eu =
∂

∂u
−Dx

∂

∂ux

−Dy
∂

∂uy

+D2
x

p

∂uxx

+DxDy
∂

∂uxy

+D2
y

∂

∂uyy

− · · · (3.6)

The expansion of (3.5) yields

∂Λ

∂u
uxx + 2u

∂Λ

∂t
+

∂2Λ

∂x2
+ 2

∂2Λ

∂x∂u
ux +

∂2Λ

∂u2
u2
x +

∂Λ

∂u
uxx = 0 . (3.7)

Since (3.7) is satisfied for all functions u(t, x) it can be separated by equating the

coefficients of the partial derivatives of u(t, x). The coefficients of uxx give

∂Λ

∂u
= 0 (3.8)

and therefore Λ = Λ(t, x). Equation (3.7) reduces to

2u
∂Λ

∂t
+

∂2Λ

∂x2
= 0 . (3.9)

Separating (3.9) according to powers of u gives

∂Λ

∂t
= 0 ,

∂2Λ

∂x2
= 0 . (3.10)

Thus Λ = Λ(x) where

Λ(x) = c1 + c2 x (3.1)
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and c1 and c2 are constants.

From (3.4)and (3.11) and by performing elementary manipulations,

(c1 + c2x)(2uut − uxx) = Dt[c1u
2 + c2xu

2] +Dx

[
c1(−ux) + c2(u− xux)

]
(3.12)

for all functions u(t, x). Thus when u(t, x) is a solution of (2.5)

Dt[c1u
2 + c2xu

2] +Dx

[
c1(−ux) + c2(u− xux)

]
= 0 . (3.13)

Any conserved vector of the partial differential equation (2.6) with multiplier of the

form Λ(t, x, u) is therefore a linear combination of the two conserved vectors

T 1 = u2 , T 2 = −ux , (3.14)

T 1 = xu2 , T 2 = u− xux . (3.15)

The conserved vectors (3.14) and (3.15) therefore form a basis of conserved vectors

for the partial differential equation (2.5) with multipliers of the form Λ(t, x, u). The

conserved vectors were readily constructed by elementary manipulations once the

multipliers had been derived. They can also be derived systematically using (3.4)

with (3.11) as the determining equation.

Conservation laws for the nonlinear wave equation (2.1) with multiplier of the

form Λ(t, x, u) and of the nonlinear diffusion equation (2.4) with multiplier of the

form Λ(t, x, p) were investigated in the same way. The results are displayed in Table

3.1. In each case the first conserved vector is the elementary conserved vector which

may readily be derived by writing the partial differential equation in conserved form.

For equation (2.4) for p(t, x) only one conserved vector with multiplier Λ(t, x, p) was

found.
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Table 3.1 Conserved vectors

Partial differential Multiplier Conserved vectors

equation Λ

uxx = 2uut Λ(t, x, u) T 1 = u2

T 2 = −ux

Λ = c1 + c2x T 1 = xu2

T 2 = u− xux

utt − uxx = −2uut Λ(t, x, u) T 1 = u2 + ut

T 2 = −ux

Λ = c1 + c2x T 1 = x(u2 + ut)

T 2 = u− xux

pt =
1

2
(−px)

−1/2pxx Λ(t, x, p) T 1 = p

T 2 = (−px)
1/2

Λ = c1

4. CONSERVED QUANTITIES

Conserved quantities for a boundary value problem are derived from the partial dif-

ferential equation and the boundary conditions. The boundary conditions determine

which conservation law to apply.

We will investigate conserved quantities for the two boundary value problems for

the nonlinear diffusion equation for u. Since u = u(t, x) the conserved vectors (3.14)

and (3.15) for equation (2.6) can be expressed as functions of t and x and therefore

DtT
1 +DxT

2 =
∂

∂t
T 1(t, x) +

∂

∂x
T 2(t, x) . (4.1)

For a conserved vector the left hand side of (4.1) vanishes and hence

∂

∂t
T 1(t, x) +

∂

∂x
T 2(t, x) = 0 . (4.2)

Consider first the boundary value problem (2.6) and (2.7). Substituting the elemen-

tary conserved vector (3.14) into (4.2) gives

∂

∂t
(u2) +

∂

∂x
(−ux) = 0 (4.3)
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and integrating with respect to x along the tube from x = 0 to x = ∞ we obtain

d

dt

∫ ∞

0

u2(t, x)dx = ux(t,∞)− ux(t, 0) . (4.4)

But from the boundary conditions (2.7), ux(t, 0) = 0 and ux(t,∞) = 0, therefore

d

dt

∫ ∞

0

u2(t, x) dx = 0 . (4.5)

Hence∫ ∞

0

u2(t, x)dx = constant independent of t. (4.6)

The constant in (4.6) determines the strength of the flow along the tube due to the

sudden pressure change at the entrance x = 0. It is obtained by substituting the

first equation in (2.3) into (4.6) and using the boundary conditions (2.5) for p(t, x).

This yields the conserved quantity∫ ∞

0

u2(t, x) dx = 1 . (4.7)

Consider next the piston problem, (2.8) and (2.9). Substituting the second conserved

vector (3.15) into (4.2) and integrating with respect to x along the tube from x = 0

to x = ∞ we obtain

d

dt

∫ ∞

0

xu2(t, x) dx+
[
u(t, x)− xux(t, x)

]∞
0

= 0 . (4.8)

We impose the boundary condition (2.9) and assume that xux → 0 as x → 0. This

gives

d

dt

∫ ∞

0

xu2(t, x) dx = 1 (4.9)

and therefore∫ ∞

0

xu2(t, x) dx− t = constant independent of t. (4.10)

We see clearly that the boundary conditions determine which conservation law to

apply.
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5. INVARIANT SOLUTIONS

We know from the derivation of similarity solutions using a scaling transformation

that all the parameters in the solution cannot be determined from the boundary

conditions when the boundary conditions are homogeneous and a further condition

is required [13]. The boundary condition (2.7) may be expressed as ux(t, 0) = 0

and u(t,∞) = 0 and is therefore homogeneous while the other boundary conditions,

(2.2), (2.5) and (2.9) are non-homogeneous. We will derive the solution of the

boundary value problem, (2.6) and (2.7). The additional condition required to

complete the solution is the conserved quantity (4.7). It describes in terms of u(x, t)

the strength of the flow along the tube which cannot be prescribed by a boundary

condition.

The conserved quantity (4.7) was derived from the elementary conserved vector

(3.14). We will derive the solution for u(x, t) using a linear combination of the Lie

point symmetries associated with the conserved vector (3.14). This new method of

deriving invariant solutions of problems with conserved quantities is due to Kara

and Mahomed [8] and is more direct than the standard procedure of using a linear

combination of all the Lie point symmetries of the partial differential equation [14].

The Lie point symmetry

X = ξ1(t, x, u)
∂

∂t
+ ξ2(t, x, u)

∂

∂x
+ η(t, x, u)

∂

∂u
(5.1)

of the partial differential equation (2.6) is said to be associated with the conserved

vector T = (T 1, T 2) for (2.6) if [8, 15]

X(T i) + T iDk(ξ
k)− T k Dk(ξ

i) = 0 , i = 1, 2, (5.2)

where k is summed from 1 to 2 and the total derivatives, D1 and D2, are defined by

(3.2) and (3.3). In (5.2), X is prolongated as required when T i depends on deriva-

tives of u.

Equation (5.2) is the determining equation for the Lie point symmetries X as-

sociated with T = (T 1, T 2). It consists of two components

X(T 1) + T 1D2(ξ
2)− T 2 D2(ξ

1) = 0 , (5.3)

X(T 2) + T 2D1(ξ
1)− T 1 D1(ξ

2) = 0 . (5.4)

Substituting the elementary conserved vector (3.14) into (5.3) and (5.4) gives

2uη + u2 ∂ξ
2

∂x
+ ux

(
u2∂ξ

2

∂u
+

∂ξ1

∂x

)
+ u2

x

∂ξ1

∂u
= 0 , (5.5)
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∂η

∂x
+u

∂ξ1

∂t
+u2 ∂ξ

2

∂t
+ux

(
∂η

∂u
− ∂ξ2

∂x

)
−u2

x

∂ξ2

∂u
+ut

(
u2 ∂ξ

2

∂u
− ∂ξ1

∂x

)
= 0 . (5.6)

Equations (5.5) and (5.6) are separated according to the derivatives of u. It is found

that

X = (c1 + 3c3 t)
∂

∂t
+ (c2 + 2c3 t)

∂

∂x
− c3 u

∂

∂u
, (5.7)

where c1, c2 and c3 are constants. The generator (5.7) is a linear combination of

the three Lie point symmetries associated with elementary conserved vector (3.14).

Now, u = Φ(t, x) is an invariant solution generated by the symmetries associated

with the conserved vector (3.14) provided

X
(
u− Φ(t, x)

)∣∣∣∣∣
u=Φ

= 0 , (5.8)

that is, provided

(c1 + 3c3 t)
∂Φ

∂t
+ (c2 + 2c3 x)

∂Φ

∂x
= −c3Φ . (5.9)

The general solution of (5.9) is

u(t, x) = (c1 + 3c3 t)
−1/3F (ξ) , ξ =

c2 + 2c3 x

(c1 + 3c3 t)2/3
. (5.10)

Substitution of (5.10) into (2.6) yields the ordinary differential equation

d2F

dξ2
+

1

2c3

d

dξ
(ξF 2) = 0 (5.11)

and the conserved quantity (4.7) becomes

1

2c3

∫ ∞

0

F 2(ξ)dξ = 1 . (5.12)

The conserved quantity is independent of t without a condition being placed on

c1, c2, c3 because X is associated with the elementary conserved vector (3.14).

We choose c2 = 0 to make ξ = 0 when x = 0. To satisfy the second boundary con-

dition in (2.7) we choose c1 = 0. There is only one non-zero constant c3. SinceX con-

tains c3 as a constant factor, u(t, x) will not depend

on c3. (This can be verified by direct calculation keeping c3 unspecified.) We can

therefore choose c3 conveniently. We choose c3 = 9/8 in order to simplify ξ. Hence

u(t, x) =
2

3

F (ξ)

t1/3
, ξ =

x

t2/3
, (5.13)
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where F (ξ) satisfies the differential equation

d2F

dξ2
+

4

9

d

dξ
(ξ F 2) = 0 (5.14)

subject to the boundary conditions

dF

dξ
(0) = 0 , F (ξ) ∼ 9

2ξ2
as ξ → ∞ (5.15)

and to the initial condition∫ ∞

0

F 2(ξ) dξ =
9

4
. (5.16)

The solution of (5.14) subject to the boundary conditions (5.15) is

F (ξ) =
9

2(ξ2 + k2)
, (5.17)

where k is a constant which cannot be obtained from at the boundary conditions. It

is obtained from the conserved quantity (5.16). Substituting (5.17) into (5.16) and

using

∫ ∞

0

dw

(1 + w2)2
=

π

4
(5.18)

gives

k =

(
9

4
π

)1/3

. (5.19)

Finally from (5.13),

u(t, x) =
3t[

x2 +
(
9π
4

)2/3
t4/3

] . (5.20)
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Table 5.1 Lie point symmetries

Partial differential Lie point Symmetries

∂2u

∂t2
− ∂2u

∂x2
= −2u

∂u

∂t
X1 =

∂

∂t

X2 =
∂

∂x

X3 = t
∂

∂t
+ x

∂

∂x
− u

∂

∂u

∂p

∂t
=

1

2

(
−∂p

∂x

)−1/2
∂2p

∂x2
X1 =

∂

∂t
X4 = 3t

∂

∂t
+ 2x

∂

∂x

X2 =
∂

∂x
X5 = t

∂

∂t
+ 2p

∂

∂p

X3 =
∂

∂p

∂2u

∂x2
= 2u

∂u

∂t
X1 =

∂

∂t
X3 = 2t

∂

∂t
+ x

∂

∂x

X2 =
∂

∂x
X4 = x

∂

∂x
− 2u

∂

∂u

From (5.7), the solution is generated by

X = 3t
∂

∂t
+ 2x

∂

∂x
− u

∂

∂u
. (5.21)

The scaling symmetry (5.21) is a linear combination

X = a1 X1 + a2X2 + a3 X3 + a4X4 , (5.22)

of the Lie point symmetries of (2.6), which are listed in Table 5.1, with a1 = 0,

a2 = 0, a3 = 3/2, a4 = 1/2. In the standard method, starting from (5.22), the ratio

a3/a4 = 3 is obtained by insisting that (4.7) is time independent.

The pressure p(r, t) can now be obtained by integrating the first equation in(2.3)

and imposing the first boundary condition in (2.5). The results obtained for u(r, t)

and p(r, t) are the same as derived by Ockendon et al [1]. These authors first derived

the similarity solution for p(r, t) by solving (2.4) subject to (2.5) and then obtained

u(r, t) using the first equation in(2.3).
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The Lie point symmetries of equations (2.1) and (2.4) as well as (2.6) are listed in

Table 5.1. These Lie point symmetries were derived directly using the determining

equation of the partial differential equation and not using condition (5.2). The

similarity transformations and solutions of Ockendon et al [1] may be re-derived

using (5.8) and a linear combination of the Lie point symmetries of the partial

differential equations.

It is only the boundary value problem, (2.6) with the homogeneous boundary

conditions (2.7), that requires a conserved quantity to complete the solution and

to which the method described in this paper to find the invariant solution can be

applied. The other three boundary value problems formulated in Section 2 do not

have a conserved quantity and do not need one to complete the solution because the

boundary conditions are nonhomogenous.

6. DISCUSSION

Conservation laws for a partial differential equation depend only on the differential

equation and are independent of the boundary conditions. The conservation laws

derived here may therefore be useful in other problems described by the same partial

differential equations but different boundary conditions.

The conservation laws for the nonlinear wave and diffusion equations were de-

rived using multipliers which are independent of partial derivatives. It remains to

be investigated if further conservation laws and conserved vectors can be obtained

if multipliers which depend on the first and higher order partial derivatieves are

considered.

The boundary value problem for the gas velocity due to a small pressure increase

at the entrance to the tube, solved in Section 5, belongs to a class of boundary

value problems with homogeneous boundary conditions which require a conserved

quantity to complete their mathematical formulation. Important problems in this

class include jet flows in fluid mechanics [12, 14].

In problems with a conserved quantity the derivation of the invariant solution

using a linear combination of the Lie point symmetries associated with the con-

served vector is more direct and shorter than the standard method of using a linear

combination of all the Lie point symmetries of the partial differential equation. The

derivation of the associated Lie point symmetries is less laborious because the or-

der of the conserved vector is one less than that of the partial differential equation.

For the invariant solution generated by the associated symmetries the conserved

quantity is identically satisfied while in the standard approach a condition on the

expansion constants is obtained for the quantity to be conserved. When the same
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partial differential equation applies to more than one problem, the problems being

distinguished by different boundary conditions, the conserved quantities will be dif-

ferent for each problem. The standard method then has advantages because the

same Lie point symmetries can be used for all problems. Condition (5.2) can then

be applied to obtain the ratio of constants in the linear combination of Lie point

symmetries for each problem [16, 17].
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