Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = FUT8 knockdown

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1598 KB  
Article
Detection of Selection Signatures and Genome-Wide Association Analysis of Body Weight Traits in Xianan Cattle
by Huaini Zhu, Xiaofeng Li, Man Zhang, Siyu Liu, Yan Zhang, Ying Zheng, Zhitong Wei, Mingpeng Han, Hetian Huang, Tong Fu and Dong Liang
Genes 2025, 16(6), 682; https://doi.org/10.3390/genes16060682 - 30 May 2025
Viewed by 555
Abstract
Background: Xianan cattle, the first cross-bred beef cattle developed in China, are recognized for their rapid growth, tolerance to rough feed, and high meat yield. These characteristics make them a valuable model for studies aimed at improving beef production traits. Methods: In this [...] Read more.
Background: Xianan cattle, the first cross-bred beef cattle developed in China, are recognized for their rapid growth, tolerance to rough feed, and high meat yield. These characteristics make them a valuable model for studies aimed at improving beef production traits. Methods: In this study, two complementary gene mapping strategies, selection signature analysis and association analysis, were employed to identify candidate genes associated with body weight. The analyses utilized resequencing data comprising 16,250,950 high-quality single nucleotide polymorphisms (SNPs). Twenty independent variables showed significant correlations with body weight, with effect sizes ranging from 239 kg to 629.37 kg, while controlling for a false discovery rate (FDR) of less than 0.5. Results: The most prominent signal was identified in the 54.24–54.39 MB region on chromosome 9, which contains the MANEA gene. Furthermore, we investigated the functional role of the MANEA gene at the cellular level. siRNA-mediated knockdown of MANEA resulted in significant alterations in the expression of downstream genes, notably MGAT1, MGAT3, FUT8, and HK1. Among these, the expression of MGAT1 was markedly increased, showing an increase of up to 600-fold compared to the control. Conclusions: These results offer critical insights into the molecular mechanisms underlying body weight regulation and provide a foundation for developing strategies to enhance economically important production traits in beef cattle. Full article
(This article belongs to the Special Issue Research on Genetics and Breeding of Cattle)
Show Figures

Figure 1

20 pages, 2808 KB  
Article
Core Fucosylation Mediated by the FucT-8 Enzyme Affects TRAIL-Induced Apoptosis and Sensitivity to Chemotherapy in Human SW480 and SW620 Colorectal Cancer Cells
by Rubén López-Cortés, Isabel Correa Pardo, Laura Muinelo-Romay, Almudena Fernández-Briera and Emilio Gil-Martín
Int. J. Mol. Sci. 2023, 24(15), 11879; https://doi.org/10.3390/ijms241511879 - 25 Jul 2023
Cited by 8 | Viewed by 2528
Abstract
Epithelial cells can undergo apoptosis by manipulating the balance between pro-survival and apoptotic signals. In this work, we show that TRAIL-induced apoptosis can be differentially regulated by the expression of α(1,6)fucosyltransferase (FucT-8), the only enzyme in mammals that transfers the α(1,6)fucose residue to [...] Read more.
Epithelial cells can undergo apoptosis by manipulating the balance between pro-survival and apoptotic signals. In this work, we show that TRAIL-induced apoptosis can be differentially regulated by the expression of α(1,6)fucosyltransferase (FucT-8), the only enzyme in mammals that transfers the α(1,6)fucose residue to the pentasaccharide core of complex N-glycans. Specifically, in the cellular model of colorectal cancer (CRC) progression formed using the human syngeneic lines SW480 and SW620, knockdown of the FucT-8-encoding FUT8 gene significantly enhanced TRAIL-induced apoptosis in SW480 cells. However, FUT8 repression did not affect SW620 cells, which suggests that core fucosylation differentiates TRAIL-sensitive premetastatic SW480 cells from TRAIL-resistant metastatic SW620 cells. In this regard, we provide evidence that phosphorylation of ERK1/2 kinases can dynamically regulate TRAIL-dependent apoptosis and that core fucosylation can control the ERK/MAPK pro-survival pathway in which SW480 and SW620 cells participate. Moreover, the depletion of core fucosylation sensitises primary tumour SW480 cells to the combination of TRAIL and low doses of 5-FU, oxaliplatin, irinotecan, or mitomycin C. In contrast, a combination of TRAIL and oxaliplatin, irinotecan, or bevacizumab reinforces resistance of FUT8-knockdown metastatic SW620 cells to apoptosis. Consequently, FucT-8 could be a plausible target for increasing apoptosis and drug response in early CRC. Full article
(This article belongs to the Special Issue Molecular Biomarkers in Cancer and Their Applications)
Show Figures

Graphical abstract

20 pages, 7482 KB  
Article
FUT2 Facilitates Autophagy and Suppresses Apoptosis via p53 and JNK Signaling in Lung Adenocarcinoma Cells
by Yuqi Zhang, Enze Yao, Yijing Liu, Yining Zhang, Mengyang Ding, Jingyu Liu, Xiaoming Chen and Sairong Fan
Cells 2022, 11(24), 4031; https://doi.org/10.3390/cells11244031 - 13 Dec 2022
Cited by 12 | Viewed by 2586
Abstract
Lung cancer is the most common cancer with high morbidity and mortality worldwide. Our previous studies showed that fucosyltransferase 2 (FUT2) is highly expressed in lung adenocarcinoma (LUAD) and plays a vital role in the tumorigenesis of LUAD. However, the underlying mechanism is [...] Read more.
Lung cancer is the most common cancer with high morbidity and mortality worldwide. Our previous studies showed that fucosyltransferase 2 (FUT2) is highly expressed in lung adenocarcinoma (LUAD) and plays a vital role in the tumorigenesis of LUAD. However, the underlying mechanism is not fully understood. Autophagy has recently attracted increasing attention due to its pro-survival role in cancer progression and metastasis. Here, we found that FUT2 was up-regulated and had an AUC (Area Under Curve) value of 0.964 in lung adenocarcinoma based on the TCGA dataset. Knockdown of FUT2 weakened the autophagy response, as evidenced by a degradation of LC3-II and Beclin1. The phosphorylation levels of AMPK, ULK1, and PI3K III were significantly reduced by FUT2 knockdown. FUT2 promoted the translocation of p53 from the cytoplasm into the nucleus, which triggered the DRAM1 pathway and enhanced autophagy. Meanwhile, the knockdown of FUT2 increased the phosphorylation of JNK and promoted mitochondrial-mediated apoptosis. Furthermore, the knockdown of FUT2 inhibited the autophagy induced by Z-VAD-FMK and promoted the apoptosis suppressed by rapamycin. The autophagy and apoptosis regulated by FUT2 antagonized each other. Taken together, these findings provide a mechanistic understanding of how FUT2 mediated the crosstalk between autophagy and apoptosis, which determine lung cancer cell death and survival, leading to the progression of lung adenocarcinoma. Full article
Show Figures

Figure 1

18 pages, 5574 KB  
Article
Effect and Mechanism Analysis of Pig FUT8 Gene on Resistance to Escherichia coli F18 Infection
by Lisi Wu, Yifu Wang, Shenglong Wu, Zhengchang Wu and Wenbin Bao
Int. J. Mol. Sci. 2022, 23(23), 14713; https://doi.org/10.3390/ijms232314713 - 25 Nov 2022
Cited by 1 | Viewed by 2071
Abstract
Post-weaning diarrhea caused by enterotoxigenic Escherichia coli F18 (E. coli F18) causes significant economic losses for pig producers. Fucosyltransferase 8 (FUT8) is a glycosyltransferase that catalyzes core fucosylation; however, its role in mediating the resistance to E. coli F18 infection [...] Read more.
Post-weaning diarrhea caused by enterotoxigenic Escherichia coli F18 (E. coli F18) causes significant economic losses for pig producers. Fucosyltransferase 8 (FUT8) is a glycosyltransferase that catalyzes core fucosylation; however, its role in mediating the resistance to E. coli F18 infection in pigs remains unknown. In this study, we systematically verified the relationship between FUT8 expression and E. coli resistance. The results showed that FUT8 was expressed in all detected tissues of Meishan piglets and that its expression was significantly increased in the duodenum and jejunum of E. coli F18-sensitive individuals when compared to E. coli F18-resistant individuals. FUT8 expression increased after exposure to E. coli F18 (p < 0.05) and decreased significantly after LPS induction for 6 h (p < 0.01). Then, the IPEC-J2 stable cell line with FUT8 interference was constructed, and FUT8 knockdown decreased the adhesion of E. coli F18ac to IPEC-J2 cells (p < 0.05). Moreover, we performed a comparative transcriptome study of IPEC-J2 cells after FUT8 knockdown via RNA-seq. In addition, further expression verification demonstrated the significant effect of FUT8 on the glycosphingolipid biosynthesis and Toll-like signaling pathways. Moreover, the core promoter of FUT8, which was located at −1213 bp to −673 bp, was identified via luciferase assay. Interestingly, we found a 1 bp C base insertion mutation at the −774 bp region, which could clearly inhibit the transcriptional binding activity of C/EBPα to an FUT8 promoter. Therefore, it is speculated that FUT8 acts in a critical role in the process of E. coli infection; furthermore, the low expression of FUT8 is conducive to the enhancement of E. coli resistance in piglets. Our findings revealed the mechanism of pig FUT8 in regulating E. coli resistance, which provided a theoretical basis for the screening of E. coli resistance in Chinese local pig breeds. Full article
Show Figures

Figure 1

16 pages, 2793 KB  
Article
Inhibition of α(1,6)fucosyltransferase: Effects on Cell Proliferation, Migration, and Adhesion in an SW480/SW620 Syngeneic Colorectal Cancer Model
by Rubén López-Cortés, Laura Muinelo-Romay, Almudena Fernández-Briera and Emilio Gil-Martín
Int. J. Mol. Sci. 2022, 23(15), 8463; https://doi.org/10.3390/ijms23158463 - 30 Jul 2022
Cited by 7 | Viewed by 2718
Abstract
The present study explored the impact of inhibiting α(1,6)fucosylation (core fucosylation) on the functional phenotype of a cellular model of colorectal cancer (CRC) malignization formed by the syngeneic SW480 and SW620 CRC lines. Expression of the FUT8 gene encoding α(1,6)fucosyltransferase was inhibited in [...] Read more.
The present study explored the impact of inhibiting α(1,6)fucosylation (core fucosylation) on the functional phenotype of a cellular model of colorectal cancer (CRC) malignization formed by the syngeneic SW480 and SW620 CRC lines. Expression of the FUT8 gene encoding α(1,6)fucosyltransferase was inhibited in tumor line SW480 by a combination of shRNA-based antisense knockdown and Lens culinaris agglutinin (LCA) selection. LCA-resistant clones were subsequently assayed in vitro for proliferation, migration, and adhesion. The α(1,6)FT-inhibited SW480 cells showed enhanced proliferation in adherent conditions, unlike their α(1,6)FT-depleted SW620 counterparts, which displayed reduced proliferation. Under non-adherent conditions, α(1,6)FT-inhibited SW480 cells also showed greater growth capacity than their respective non-targeted control (NTC) cells. However, cell migration decreased in SW480 after FUT8 knockdown, while adhesion to EA.hy926 cells was significantly enhanced. The reported results indicate that the FUT8 knockdown strategy with subsequent selection for LCA-resistant clones was effective in greatly reducing α(1,6)FT expression in SW480 and SW620 CRC lines. In addition, α(1,6)FT impairment affected the proliferation, migration, and adhesion of α(1,6)FT-deficient clones SW480 and SW620 in a tumor stage-dependent manner, suggesting that core fucosylation has a dynamic role in the evolution of CRC. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

13 pages, 2934 KB  
Article
Calreticulin Regulates β1-Integrin mRNA Stability in PC-3 Prostate Cancer Cells
by Yueh-Chien Lin, Yuan-Li Huang, Ming-Hua Wang, Chih-Yu Chen, Wei-Min Chen, Yi-Cheng Weng and Pei-Yi Wu
Biomedicines 2022, 10(3), 646; https://doi.org/10.3390/biomedicines10030646 - 11 Mar 2022
Cited by 4 | Viewed by 2772
Abstract
Prostate cancer (PCa) is the major cause of cancer-related death among aging men worldwide. Recent studies have suggested that calreticulin (CRT), a multifunctional chaperon protein, may play an important role in the regulation of PCa tumorigenesis and progression. However, the underlying mechanisms are [...] Read more.
Prostate cancer (PCa) is the major cause of cancer-related death among aging men worldwide. Recent studies have suggested that calreticulin (CRT), a multifunctional chaperon protein, may play an important role in the regulation of PCa tumorigenesis and progression. However, the underlying mechanisms are still unclear. Integrin is an important regulator of cancer metastasis. Our previous study demonstrated that in J82 bladder cancer cells, CRT affects integrin activity through FUBP-1-FUT-1-dependent fucosylation, rather than directly affecting the expression of β1-integrin itself. However, whether this regulatory mechanism is conserved among different cell types remains to be determined. Herein, we attempted to determine the effects of CRT on β1-integrin in human prostate cancer PC-3 cells. CRT expression was suppressed in PC-3 cells through siRNA treatment, and then the expression levels of FUT-1 and β1-integrin were monitored through RT-PCR. We found that knockdown of CRT expression in PC-3 cells significantly affected the expression of β1-integrin itself. In addition, the lower expression level of β1-integrin was due to affecting the mRNA stability. In contrast, FUT-1 expression level was not affected by knockdown of CRT. These results strongly suggested that CRT regulates cellular behavior differently in different cell types. We further confirmed that CRT directly binds to the 3′UTR of β1-integrin mRNA by EMSA and therefore affects its stability. The suppression of CRT expression also affects PC-3 cell adhesion to type I collagen substrate. In addition, the levels of total and activated β1-integrin expressed on cell surface were both significantly suppressed by CRT knockdown. Furthermore, the intracellular distribution of β1-integrin was also affected by lowering the expression of CRT. This change in distribution is not lysosomal nor proteosomal pathway-dependent. The treatment of fucosydase significantly affected the activation of surface β1-integrin, which is conserved among different cell types. These results suggested that CRT affects the expression of β1-integrin through distinct regulatory mechanisms. Full article
(This article belongs to the Special Issue Oncogenic Signaling Pathways in Cancer)
Show Figures

Figure 1

15 pages, 13554 KB  
Article
New Insight into the Molecular Mechanism of the FUT2 Regulating Escherichia coli F18 Resistance in Weaned Piglets
by Zhengchang Wu, Haiyue Feng, Yue Cao, Yanjie Huang, Chaohui Dai, Shenglong Wu and Wenbin Bao
Int. J. Mol. Sci. 2018, 19(11), 3301; https://doi.org/10.3390/ijms19113301 - 24 Oct 2018
Cited by 19 | Viewed by 3950
Abstract
Escherichia coli (E. coli) F18 is the main pathogen responsible for post-weaning diarrhea (PWD) in piglets. Resistance to E. coli F18 depends on the expression of the cognate receptors in the intestinal epithelial cells. However, the molecular mechanism of E. coli [...] Read more.
Escherichia coli (E. coli) F18 is the main pathogen responsible for post-weaning diarrhea (PWD) in piglets. Resistance to E. coli F18 depends on the expression of the cognate receptors in the intestinal epithelial cells. However, the molecular mechanism of E. coli F18 resistance in weaned piglets remains unclear. Here, we performed a comparative transcriptome study of the duodenal tissue from Sutai E. coli F18 sensitive and resistant pigs by RNA-seq, and pig α(1,2) fucosyltransferase 2 (FUT2) was identified as a host differentially expressed gene controlling the E. coli F18 infection. Function analysis showed that the FUT2 expression was high in the duodenum and jejunum, with higher levels detected in sensitive individuals than in resistant individuals (p < 0.01). Expression levels of FUT2 were upregulated in IPEC-J2 cells after lipopolysaccharide (LPS)-induction or E. coli stimulation. FUT2 knockdown decreased the adhesion of E. coli F18 to IPEC-J2 cells (p < 0.05). FUT2 overexpression markedly increased the adhesion of E. coli F18 to IPEC-J2 cells (p < 0.05 or p < 0.01). Furthermore, the FUT2 mRNA levels correlated with methylation levels of the mC-22 site in the specificity protein 1 (Sp1) transcription factor (p < 0.05). Electrophoretic mobility shift assays (EMSA) showed that Sp1 interacts with the wild-type FUT2 promoter DNA, but not with methylated DNA. Our data suggested that FUT2 methylation at the mC-22 site inhibits Sp1 binding to the FUT2 promoter, thereby reducing FUT2 expression and enhancing E. coli F18 resistance in weaned piglets. These observations highlight FUT2 as a promising new target for combating E. coli F18 susceptibility in weaned piglets. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

32 pages, 1896 KB  
Article
RNA-Sequencing Analysis of 5' Capped RNAs Identifies Many New Differentially Expressed Genes in Acute Hepatitis C Virus Infection
by Neven Papic, Christopher I. Maxwell, Don A. Delker, Shuanghu Liu, Bret S. E. Heale and Curt H. Hagedorn
Viruses 2012, 4(4), 581-612; https://doi.org/10.3390/v4040581 - 16 Apr 2012
Cited by 43 | Viewed by 12599
Abstract
We describe the first report of RNA sequencing of 5' capped (Pol II) RNAs isolated from acutely hepatitis C virus (HCV) infected Huh 7.5 cells that provides a general approach to identifying differentially expressed annotated and unannotated genes that participate in viral-host interactions. [...] Read more.
We describe the first report of RNA sequencing of 5' capped (Pol II) RNAs isolated from acutely hepatitis C virus (HCV) infected Huh 7.5 cells that provides a general approach to identifying differentially expressed annotated and unannotated genes that participate in viral-host interactions. We identified 100, 684, and 1,844 significantly differentially expressed annotated genes in acutely infected proliferative Huh 7.5 cells at 6, 48, and 72 hours, respectively (fold change ≥ 1.5 and Bonferroni adjusted p-values < 0.05). Most of the differentially expressed genes (>80%) and biological pathways (such as adipocytokine, Notch, Hedgehog and NOD-like receptor signaling) were not identified by previous gene array studies. These genes are critical components of host immune, inflammatory and oncogenic pathways and provide new information regarding changes that may benefit the virus or mediate HCV induced pathology. RNAi knockdown studies of newly identified highly upregulated FUT1 and KLHDC7B genes provide evidence that their gene products regulate and facilitate HCV replication in hepatocytes. Our approach also identified novel Pol II unannotated transcripts that were upregulated. Results further identify new pathways that regulate HCV replication in hepatocytes and suggest that our approach will have general applications in studying viral-host interactions in model systems and clinical biospecimens. Full article
(This article belongs to the Special Issue Hepatitis C Pathology)
Show Figures

Figure 1

Back to TopTop