Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = FARSA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2019 KB  
Case Report
Two Novel Biallelic Variants in the FARSA Gene: The First Italian Case and a Literature Review
by Sonia Lomuscio, Dario Cocciadiferro, Francesco Petrizzelli, Niccolò Liorni, Tommaso Mazza, Annalisa Allegorico, Nicola Ullmann, Giuseppe Novelli, Renato Cutrera and Antonio Novelli
Genes 2024, 15(12), 1573; https://doi.org/10.3390/genes15121573 - 5 Dec 2024
Cited by 1 | Viewed by 1872
Abstract
Background/Objectives: The FARSA gene encodes for the catalytic α subunit of Cytoplasmic phenylalanine-tRNA synthetase (FARS1), an essential enzyme for protein biosynthesis in transferring its amino acid component to tRNAs. Biallelic pathogenic variants have been associated with a multisystemic condition, characterized by variable [...] Read more.
Background/Objectives: The FARSA gene encodes for the catalytic α subunit of Cytoplasmic phenylalanine-tRNA synthetase (FARS1), an essential enzyme for protein biosynthesis in transferring its amino acid component to tRNAs. Biallelic pathogenic variants have been associated with a multisystemic condition, characterized by variable expressivity and incomplete penetrance. Here, we report the case of an 11 year-old girl presenting interstitial lung disease, supratentorial leukoencephalopathy with brain cysts, hepatic dysfunction, hypoalbuminemia, skin and joint hyperlaxity, growth retardation, and dysmorphic features. In addition, our patient also developed two clinical features never reported before: hypergammaglobulinemia and myopic chorioretinitis. Methods: NGS analysis of the patient’s skin-derived DNA revealed two novel biallelic variants in FARSA gene (NM_004461.3) never described before: the maternal nonsense variant, c.799C>T [p.(Gln267Ter)], and the paternal missense variant, c.737T>C [p.(Met246Thr)], both predicted as deleterious. Results: From a therapeutic perspective, this young girl has been enrolled in a clinical trial with Nintedanib, in order to treat the severe pulmonary fibrosis, with interesting initial results. Conclusions: Our findings expand the clinical and molecular spectrum of the FARSA-related phenotype and introduce new cues on lung fibrosis treatment in pediatric age. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

17 pages, 7573 KB  
Article
FARSB Facilitates Hepatocellular Carcinoma Progression by Activating the mTORC1 Signaling Pathway
by Yaofeng Wang, Gengqiao Wang, Shaobo Hu, Chuanzheng Yin, Peng Zhao, Xing Zhou, Shuyu Shao, Ran Liu, Wenjun Hu, Gang Logan Liu, Wenbo Ke and Zifang Song
Int. J. Mol. Sci. 2023, 24(23), 16709; https://doi.org/10.3390/ijms242316709 - 24 Nov 2023
Cited by 8 | Viewed by 2824
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor with high mortality. Human phenylalanine tRNA synthetase (PheRS) comprises two α catalytic subunits encoded by the FARSA gene and two β regulatory subunits encoded by the FARSB gene. FARSB is a potential oncogene, but no [...] Read more.
Hepatocellular carcinoma (HCC) is a common malignant tumor with high mortality. Human phenylalanine tRNA synthetase (PheRS) comprises two α catalytic subunits encoded by the FARSA gene and two β regulatory subunits encoded by the FARSB gene. FARSB is a potential oncogene, but no experimental data show the relationship between FARSB and HCC progression. We found that the high expression of FARSB in liver cancer is closely related to patients’ low survival and poor prognosis. In liver cancer cells, the mRNA and protein expression levels of FARSB are increased and promote cell proliferation and migration. Mechanistically, FARSB activates the mTOR complex 1 (mTORC1) signaling pathway by binding to the component Raptor of the mTORC1 complex to play a role in promoting cancer. In addition, we found that FARSB can inhibit erastin-induced ferroptosis by regulating the mTOR signaling pathway, which may be another mechanism by which FARSB promotes HCC progression. In summary, FARSB promotes HCC progression and is associated with the poor prognosis of patients. FARSB is expected to be a biomarker for early screening and treatment of HCC. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Liver Cancer)
Show Figures

Figure 1

18 pages, 3376 KB  
Article
First Report of FARSA in the Regulation of Cell Cycle and Survival in Mantle Cell Lymphoma Cells via PI3K-AKT and FOXO1-RAG1 Axes
by Min Feng, Kun Yang, Jia Wang, Guilan Li and Han Zhang
Int. J. Mol. Sci. 2023, 24(2), 1608; https://doi.org/10.3390/ijms24021608 - 13 Jan 2023
Cited by 7 | Viewed by 2871
Abstract
Cancer-associated factors have been largely identified in the understanding of tumorigenesis and progression. However, aminoacyl-transfer RNA (tRNA) synthetases (aaRSs) have so far been neglected in cancer research due to their canonical activities in protein translation and synthesis. FARSA, the alpha subunit of the [...] Read more.
Cancer-associated factors have been largely identified in the understanding of tumorigenesis and progression. However, aminoacyl-transfer RNA (tRNA) synthetases (aaRSs) have so far been neglected in cancer research due to their canonical activities in protein translation and synthesis. FARSA, the alpha subunit of the phenylalanyl-tRNA synthetase is elevated across many cancer types, but its function in mantle cell lymphoma (MCL) remains undetermined. Herein, we found the lowest levels of FARSA in patients with MCL compared with other subtypes of lymphomas, and the same lower levels of FARSA were observed in chemoresistant MCL cell lines. Unexpectedly, despite the essential catalytic roles of FARSA, knockdown of FARSA in MCL cells did not lead to cell death but resulted in accelerated cell proliferation and cell cycle, whereas overexpression of FARSA induced remarkable cell-cycle arrest and overwhelming apoptosis. Further RNA sequencing (RNA-seq) analysis and validation experiments confirmed a strong connection between FARSA and cell cycle in MCL cells. Importantly, FARSA leads to the alteration of cell cycle and survival via both PI3K-AKT and FOXO1-RAG1 axes, highlighting a FARSA-mediated regulatory network in MCL cells. Our findings, for the first time, reveal the noncanonical roles of FARSA in MCL cells, and provide novel insights into understanding the pathogenesis and progression of B-cell malignancies. Full article
Show Figures

Figure 1

15 pages, 1075 KB  
Article
Aminopeptidase N Inhibitors as Pointers for Overcoming Antitumor Treatment Resistance
by Oldřich Farsa, Veronika Ballayová, Radka Žáčková, Peter Kollar, Tereza Kauerová and Peter Zubáč
Int. J. Mol. Sci. 2022, 23(17), 9813; https://doi.org/10.3390/ijms23179813 - 29 Aug 2022
Cited by 8 | Viewed by 2997
Abstract
Aminopeptidase N (APN), also known as CD13 antigen or membrane alanyl aminopeptidase, belongs to the M1 family of the MA clan of zinc metallopeptidases. In cancer cells, the inhibition of aminopeptidases including APN causes the phenomenon termed the amino acid deprivation response (AADR), [...] Read more.
Aminopeptidase N (APN), also known as CD13 antigen or membrane alanyl aminopeptidase, belongs to the M1 family of the MA clan of zinc metallopeptidases. In cancer cells, the inhibition of aminopeptidases including APN causes the phenomenon termed the amino acid deprivation response (AADR), a stress response characterized by the upregulation of amino acid transporters and synthetic enzymes and activation of stress-related pathways such as nuclear factor kB (NFkB) and other pro-apoptotic regulators, which leads to cancer cell death by apoptosis. Recently, APN inhibition has been shown to augment DR4-induced tumor cell death and thus overcome resistance to cancer treatment with DR4-ligand TRAIL, which is available as a recombinant soluble form dulanermin. This implies that APN inhibitors could serve as potential weapons for overcoming cancer treatment resistance. In this study, a series of basically substituted acetamidophenones and the semicarbazones and thiosemicarbazones derived from them were prepared, for which APN inhibitory activity was determined. In addition, a selective anti-proliferative activity against cancer cells expressing APN was demonstrated. Our semicarbazones and thiosemicarbazones are the first compounds of these structural types of Schiff bases that were reported to inhibit not only a zinc-dependent aminopeptidase of the M1 family but also a metalloenzyme. Full article
Show Figures

Figure 1

25 pages, 4530 KB  
Article
Hypoxia-Induced Adaptations of miRNomes and Proteomes in Melanoma Cells and Their Secreted Extracellular Vesicles
by Geoffroy Walbrecq, Odile Lecha, Anthoula Gaigneaux, Miriam R. Fougeras, Demetra Philippidou, Christiane Margue, Milène Tetsi Nomigni, François Bernardin, Gunnar Dittmar, Iris Behrmann and Stephanie Kreis
Cancers 2020, 12(3), 692; https://doi.org/10.3390/cancers12030692 - 14 Mar 2020
Cited by 42 | Viewed by 6309
Abstract
Reduced levels of intratumoural oxygen are associated with hypoxia-induced pro-oncogenic events such as invasion, metabolic reprogramming, epithelial–mesenchymal transition, metastasis and resistance to therapy, all favouring cancer progression. Small extracellular vesicles (EV) shuttle various cargos (proteins, miRNAs, DNA and others). Tumour-derived EVs can be [...] Read more.
Reduced levels of intratumoural oxygen are associated with hypoxia-induced pro-oncogenic events such as invasion, metabolic reprogramming, epithelial–mesenchymal transition, metastasis and resistance to therapy, all favouring cancer progression. Small extracellular vesicles (EV) shuttle various cargos (proteins, miRNAs, DNA and others). Tumour-derived EVs can be taken up by neighbouring or distant cells in the tumour microenvironment, thus facilitating intercellular communication. The quantity of extracellular vesicle secretion and their composition can vary with changing microenvironmental conditions and disease states. Here, we investigated in melanoma cells the influence of hypoxia on the content and number of secreted EVs. Whole miRNome and proteome profiling revealed distinct expression patterns in normoxic or hypoxic growth conditions. Apart from the well-known miR-210, we identified miR-1290 as a novel hypoxia-associated microRNA, which was highly abundant in hypoxic EVs. On the other hand, miR-23a-5p and -23b-5p were consistently downregulated in hypoxic conditions, while the protein levels of the miR-23a/b-5p-predicted target IPO11 were concomitantly upregulated. Furthermore, hypoxic melanoma EVs exhibit a signature consisting of six proteins (AKR7A2, DDX39B, EIF3C, FARSA, PRMT5, VARS), which were significantly associated with a poor prognosis for melanoma patients, indicating that proteins and/or miRNAs secreted by cancer cells may be exploited as biomarkers. Full article
(This article belongs to the Special Issue Inhibition of HIFs as an Anti-Cancer Strategy)
Show Figures

Figure 1

26 pages, 6044 KB  
Review
Fluoroalkyl Amino Reagents (FARs): A General Approach towards the Synthesis of Heterocyclic Compounds Bearing Emergent Fluorinated Substituents
by Bruno Commare, Etienne Schmitt, Fallia Aribi, Armen Panossian, Jean-Pierre Vors, Sergiy Pazenok and Frédéric R. Leroux
Molecules 2017, 22(6), 977; https://doi.org/10.3390/molecules22060977 - 12 Jun 2017
Cited by 18 | Viewed by 11490
Abstract
Fluorinated heterocycles are important building blocks in pharmaceutical, agrochemical and material sciences. Therefore, organofluorine chemistry has witnessed high interest in the development of efficient methods for the introduction of emergent fluorinated substituents (EFS) onto heterocycles. In this context, fluoroalkyl amino reagents (FARs)—a class [...] Read more.
Fluorinated heterocycles are important building blocks in pharmaceutical, agrochemical and material sciences. Therefore, organofluorine chemistry has witnessed high interest in the development of efficient methods for the introduction of emergent fluorinated substituents (EFS) onto heterocycles. In this context, fluoroalkyl amino reagents (FARs)—a class of chemicals that was slightly forgotten over the last decades—has emerged again recently and proved to be a powerful tool for the introduction of various fluorinated groups onto (hetero)aromatic derivatives. Full article
Show Figures

Graphical abstract

11 pages, 150 KB  
Article
Chromatographic Behaviour Predicts the Ability of Potential Nootropics to Permeate the Blood-Brain Barrier
by Oldřich FARSA
Sci. Pharm. 2013, 81(1), 81-92; https://doi.org/10.3797/scipharm.1208-19 - 14 Oct 2012
Cited by 5 | Viewed by 1786
Abstract
The log BB parameter is the logarithm of the ratio of a compound’s equilibrium concentrations in the brain tissue versus the blood plasma. This parameter is a useful descriptor in assessing the ability of a compound to permeate the blood-brain barrier. The aim [...] Read more.
The log BB parameter is the logarithm of the ratio of a compound’s equilibrium concentrations in the brain tissue versus the blood plasma. This parameter is a useful descriptor in assessing the ability of a compound to permeate the blood-brain barrier. The aim of this study was to develop a Hansch-type linear regression QSAR model that correlates the parameter log BB and the retention time of drugs and other organic compounds on a reversed-phase HPLC containing an embedded amide moiety. The retention time was expressed by the capacity factor log k'. The second aim was to estimate the brain’s absorption of 2-(azacycloalkyl)acetamidophenoxyacetic acids, which are analogues of piracetam, nefiracetam, and meclofenoxate. Notably, these acids may be novel nootropics. Two simple regression models that relate log BB and log k' were developed from an assay performed using a reversed-phase HPLC that contained an embedded amide moiety. Both the quadratic and linear models yielded statistical parameters comparable to previously published models of log BB dependence on various structural characteristics. The models predict that four members of the substituted phenoxyacetic acid series have a strong chance of permeating the barrier and being absorbed in the brain. The results of this study show that a reversed-phase HPLC system containing an embedded amide moiety is a functional in vitro surrogate of the blood-brain barrier. These results suggest that racetam-type nootropic drugs containing a carboxylic moiety could be more poorly absorbed than analogues devoid of the carboxyl group, especially if the compounds penetrate the barrier by a simple diffusion mechanism. Full article
Back to TopTop