Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (527)

Search Parameters:
Keywords = FAK

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2530 KB  
Article
Glyoxalase 2 Drives D-Lactate Oncometabolite Signaling to Promote Prostate Cancer Aggressiveness via FAK/Src Activation
by Dominga Manfredelli, Camilla Torcoli, Veronica Ceccarelli, Tatiana Armeni, Guido Bellezza, Vincenzo N. Talesa, Angelo Sidoni and Cinzia Antognelli
Antioxidants 2026, 15(2), 171; https://doi.org/10.3390/antiox15020171 - 28 Jan 2026
Viewed by 154
Abstract
Glyoxalase 2 (Glo2) is a key enzyme of the glyoxalase system that catalyzes the conversion of S-lactoylglutathione (LSG) into glutathione (GSH) and D-lactate. In prostate cancer (PCa), we previously demonstrated that the oncogenic PTEN-PI3K–AKT–mTOR–ERα signaling pathway upregulates Glo2, leading to intracellular D-lactate accumulation [...] Read more.
Glyoxalase 2 (Glo2) is a key enzyme of the glyoxalase system that catalyzes the conversion of S-lactoylglutathione (LSG) into glutathione (GSH) and D-lactate. In prostate cancer (PCa), we previously demonstrated that the oncogenic PTEN-PI3K–AKT–mTOR–ERα signaling pathway upregulates Glo2, leading to intracellular D-lactate accumulation and enhanced cell migration, invasiveness, and expression of epithelial-to-mesenchymal transition (EMT)-associated markers. However, whether D-lactate acts as a bioactive metabolic signal contributing to tumor aggressiveness remains unclear. Here, after confirming our previous findings, we demonstrate—using Glo2 silencing, ectopic expression, pharmacological inhibitors, and exogenous D-lactate supplementation—that Glo2-dependent D-lactate accumulation promotes EMT-like plasticity, migration, and invasion in PTEN-deficient PCa cells via a functional link with FAK/Src signaling. Collectively, these results suggest that the Glo2–D-lactate axis may contribute to metabolic rewiring associated with aggressive behavior in PTEN-deficient PCa, warranting further in vivo studies to evaluate its potential as a therapeutic target to limit tumor progression. Full article
Show Figures

Figure 1

20 pages, 12872 KB  
Article
Cyclin D1/D2–CDK4 Drives Cell Migration by Orchestrating Cytoskeletal Dynamics Through a TGFβ–FAK–Rac1 Axis
by Ruifang Guo, Yihang Wang, Aiwen Zhang, Siwanon Jirawatnotai, Chen Chu and Lijun Liu
Int. J. Mol. Sci. 2026, 27(3), 1228; https://doi.org/10.3390/ijms27031228 (registering DOI) - 26 Jan 2026
Viewed by 132
Abstract
Beyond their canonical role in promoting G1/S progression, the complexes formed by cyclin D and cyclin-dependent kinase (CDK) 4/6 have emerged as contributors to enhanced cell migration. However, a direct link between this complex and cytoskeletal remodeling during cell motility has remained poorly [...] Read more.
Beyond their canonical role in promoting G1/S progression, the complexes formed by cyclin D and cyclin-dependent kinase (CDK) 4/6 have emerged as contributors to enhanced cell migration. However, a direct link between this complex and cytoskeletal remodeling during cell motility has remained poorly understood. Here, we show that CDK4/6 inhibition in HeLa cells disrupts lamellipodia formation and subsequent focal adhesion assembly, leading to a reduction in cell migration and invasion. Notably, CDK4, but not CDK6, in complex with cyclin D1/D2, localizes to membrane ruffles to facilitate cytoskeletal reorganization. Mechanistically, proteomic and phosphoproteomic analyses revealed that CDK4 inhibition attenuates the transforming growth factor β (TGFβ) pathway via reduced Smad3 phosphorylation at Thr8, downregulating integrin subunits (α5, α6, and β1). Furthermore, CDK4 inhibition significantly decreased focal adhesion kinase (FAK) phosphorylation at Tyr397 and Rac1-GTP levels. Importantly, the resulting migration defect was largely restored by activation of either Rac1 or FAK. Thus, our data support a model in which cyclin D1/D2–CDK4 promotes phosphorylation of Smad3, leading to upregulation of integrin subunits, activation of FAK and Rac1, and consequent lamellipodia formation and cell migration. These findings provide direct evidence that CDK4 regulates actin cytoskeletal reorganization during cell migration and suggest that CDK4/6 inhibitors may dampen cytoskeleton-dependent tumor invasion, in addition to their antiproliferative effects. Full article
Show Figures

Graphical abstract

26 pages, 1806 KB  
Review
CXCR4: A Promising Novel Strategy for Lung Cancer Treatment
by Mengting Liao, Jianmin Wu, Tengkun Dai, Guiyan Liu, Jiayi Zhang, Yiling Zhu, Lin Xu and Juanjuan Zhao
Biomolecules 2026, 16(2), 188; https://doi.org/10.3390/biom16020188 - 26 Jan 2026
Viewed by 169
Abstract
Lung cancer remains a major public health challenge due to high incidence and mortality. The chemokine receptor CXCR4 and its ligand CXCL12 (SDF-1) constitute a critical axis in tumor biology, influencing tumor cell proliferation, invasion, angiogenesis, and immune evasion. Aberrant CXCR4 expression is [...] Read more.
Lung cancer remains a major public health challenge due to high incidence and mortality. The chemokine receptor CXCR4 and its ligand CXCL12 (SDF-1) constitute a critical axis in tumor biology, influencing tumor cell proliferation, invasion, angiogenesis, and immune evasion. Aberrant CXCR4 expression is frequently observed in lung cancer and is closely associated with adverse prognosis, enhanced metastatic potential, and therapeutic resistance. Mechanistically, CXCR4 activates signaling pathways including PI3K/AKT, MAPK/ERK, JAK/STAT, and FAK/Src, promoting epithelial–mesenchymal transition, stemness, and survival. The CXCL12/CXCR4 axis also orchestrates interactions with the tumor microenvironment, facilitating chemotaxis toward CXCL12-rich niches (e.g., bone marrow and brain) and modulating anti-tumor immunity via regulatory cells. Regulation of CXCR4 occurs at transcriptional, epigenetic, and post-transcriptional levels, with modulation by hypoxia, inflammatory signals, microRNAs, and post-translational modifications. Clinically, high CXCR4 expression correlates with metastasis, poor prognosis, and reduced response to certain therapies, underscoring its potential as a prognostic biomarker and therapeutic target. Therapeutic strategies targeting CXCR4 include small-molecule antagonists (e.g., AMD3100/plerixafor; balixafortide), anti-CXCR4 antibodies, and CXCL12 decoys, as well as imaging probes for patient selection and response monitoring (e.g., 68Ga-pentixafor PET). Preclinical and early clinical studies suggest that CXCR4 blockade can impair tumor growth, limit metastatic spread, and enhance chemotherapy and immunotherapy efficacy, although hematopoietic side effects and infection risk necessitate careful therapeutic design. This review synthesizes the molecular features, regulatory networks, and translational potential of CXCR4 in lung cancer and discusses future directions for precision therapy and biomarker-guided intervention. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Figure 1

15 pages, 3536 KB  
Review
Extracellular Matrix in Human Disease and Therapy: From Pathogenic Remodeling to Biomaterial Platforms and Precision Diagnostics
by Jun-Hyeog Jang
Biomedicines 2026, 14(1), 247; https://doi.org/10.3390/biomedicines14010247 - 21 Jan 2026
Viewed by 217
Abstract
The extracellular matrix (ECM) is a dynamic, tissue-specific network that integrates biochemical and mechanical cues to regulate cell behavior and organ homeostasis. Increasing evidence indicates that dysregulated ECM remodeling is an upstream driver of chronic human diseases rather than a passive consequence of [...] Read more.
The extracellular matrix (ECM) is a dynamic, tissue-specific network that integrates biochemical and mechanical cues to regulate cell behavior and organ homeostasis. Increasing evidence indicates that dysregulated ECM remodeling is an upstream driver of chronic human diseases rather than a passive consequence of injury. This review summarizes principles of ECM organization, mechanotransduction, and pathological remodeling and highlights translational opportunities for ECM-targeted therapies, biomaterial platforms, and precision diagnostics. We conducted a narrative synthesis of foundational and recent literature covering ECM composition and turnover, stiffness-dependent signaling, and disease-associated remodeling across fibrosis/cardiovascular disease, cancer, and metabolic disorders, together with advances in ECM-based biomaterials, drug delivery, and ECMderived biomarkers and imaging. Across organs, a self-reinforcing cycle of altered matrix composition, excessive crosslinking, and stiffness-dependent mechanotransduction (including integrin–FAK and YAP/TAZ pathways) sustains fibroinflammation, myofibroblast persistence, and progressive tissue dysfunction. In tumors, aligned and crosslinked ECM promotes invasion, immune evasion, and therapy resistance while also shaping perfusion and drug penetration. Translational strategies increasingly focus on modulating ECM synthesis and crosslinking, normalizing rather than ablating matrix architecture, and targeting ECM–cell signaling axes in combination with anti-fibrotic, cytotoxic, or immunotherapeutic regimens. ECM biology provides a unifying framework linking pathogenesis, therapy, and precision diagnostics across chronic diseases. Clinical translation will benefit from standardized quantitative measures of matrix remodeling, mechanism-based biomarkers of ECM turnover, and integrative imaging–omics approaches for patient stratification and treatment monitoring. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Graphical abstract

17 pages, 3542 KB  
Article
Mechanobiological Regulation of Alveolar Bone Remodeling: A Finite Element Study and Molecular Pathway Interpretation
by Anna Ewa Kuc, Magdalena Sulewska, Kamil Sybilski, Jacek Kotuła, Grzegorz Hajduk, Szymon Saternus, Jerzy Małachowski, Julia Bar, Joanna Lis, Beata Kawala and Michał Sarul
Biomolecules 2026, 16(1), 150; https://doi.org/10.3390/biom16010150 - 14 Jan 2026
Viewed by 358
Abstract
Background: Mechanical loading is a fundamental regulator of bone remodelling; however, the mechanotransduction mechanisms governing alveolar bone adaptation under tensile-dominant orthodontic loading remain insufficiently defined. In particular, the molecular pathways associated with tension-driven cortical modelling in the periodontal ligament (PDL)–bone complex have not [...] Read more.
Background: Mechanical loading is a fundamental regulator of bone remodelling; however, the mechanotransduction mechanisms governing alveolar bone adaptation under tensile-dominant orthodontic loading remain insufficiently defined. In particular, the molecular pathways associated with tension-driven cortical modelling in the periodontal ligament (PDL)–bone complex have not been systematically interpreted in the context of advanced biomechanical simulations. Methods: A nonlinear finite element model of the alveolar bone–PDL–tooth complex was developed using patient-specific CBCT data. Three loading configurations were analysed: (i) conventional orthodontic loading, (ii) loading combined with corticotomy alone, and (iii) a translation-dominant configuration generated by the Bone Protection System (BPS). Pressure distribution, displacement vectors, and stress polarity within the PDL and cortical plate were quantified across different bone density conditions. The mechanical outputs were subsequently interpreted in relation to established mechanotransductive molecular pathways involved in osteogenesis and angiogenesis. Results: Conventional loading generated compression-dominant stress fields within the marginal PDL, frequently exceeding physiological thresholds and producing moment-driven root displacement. Corticotomy alone reduced local stiffness but did not substantially alter stress polarity. The BPS configuration redirected loads toward a tensile-favourable mechanical environment characterised by reduced peak compressive pressures and parallel (translation-dominant) displacement vectors. The predicted tensile stress distribution is compatible with activation profiles of key mechanosensitive pathways, including integrin–FAK signalling, Wnt/β-catenin–mediated osteogenic differentiation and HIF-1α/VEGF-driven angiogenic coupling, suggesting a microenvironment that may be more conducive to cortical apposition than to resorption. Conclusions: This study presents a computational–molecular framework linking finite element–derived tensile stress patterns with osteogenic and angiogenic signalling pathways relevant to alveolar bone remodelling. The findings suggestthat controlled redirection of orthodontic loading toward tensile domains may shift the mechanical environment of the PDL–bone complex toward conditions associated with osteogenic than resorptive responses providing a mechanistic basis for tension-induced cortical modelling. This mechanobiological paradigm advances the understanding of load-guided alveolar bone adaptation at both the tissue and molecular levels. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

22 pages, 4486 KB  
Article
Astaxanthin as a Natural Photoprotective Agent: In Vitro and In Silico Approach to Explore a Multi-Targeted Compound
by Aida Lahmar, Balkis Abdelaziz, Nahla Gouader, Abir Salek, Imen Waer and Leila Chekir Ghedira
Sci. Pharm. 2026, 94(1), 8; https://doi.org/10.3390/scipharm94010008 - 13 Jan 2026
Viewed by 305
Abstract
Ultraviolet B radiation is a major cause of skin aging, cellular senescence, and inflammaging, mediated by the excessive production of reactive oxygen species (ROS) and induction of apoptosis. This study evaluated the photo-protective effects of astaxanthin, one of the strongest natural antioxidants, in [...] Read more.
Ultraviolet B radiation is a major cause of skin aging, cellular senescence, and inflammaging, mediated by the excessive production of reactive oxygen species (ROS) and induction of apoptosis. This study evaluated the photo-protective effects of astaxanthin, one of the strongest natural antioxidants, in UVB-treated keratinocytes. The antioxidant capacity of astaxanthin was evaluated using ABTS, DPPH, and NBT/riboflavin/SOD assays. HaCaT cells were exposed to 30 mJ/cm2 of UVB radiation. Photoprotective effects and accumulated ROS were evaluated in UVB-irradiated HaCaT cells by MTT and DCFH-DA assays. Nitric oxide levels were quantified using the Griess reagent. Apoptosis was assessed by dual staining using acridine orange/ethidium bromide, lysosomal integrity by acridine orange uptake, and cell migration by scratch assay. Cell adhesion was assessed on ECM-coated Nunc plates. Finally, we formulated a 0.5% astaxanthin-enriched cream. Astaxanthin mitigated UVB-induced damage by reducing intracellular ROS levels by 3.7-fold, decreasing nitric oxide production to 29.8 ± 7.7% at the highest concentration, and maintaining lysosomal integrity. The carotenoid significantly enhanced cell viability, increasing it from 60.64 ± 8.3% in UV-treated cells to 102.1 ± 3.22% at 40 µM. Moreover, treated cells showed a significant reduction (p < 0.001) in the apoptotic rate (37.7 ± 3.1 vs. 87.7 ± 3.8 in UVB-irradiated cells, as evidenced by reduced chromatin condensation and nuclear fragmentation. Astaxanthin also enhanced tissue repair, as evidenced by increased cell migration and adhesion to several extracellular matrix (ECM) proteins (poly-L-lysine, laminin, fibrinogen, vitronectin and collagen I). In silico molecular docking predicted strong binding affinities between astaxanthin and key cellular targets, including JAK2 (−9.9 kcal/mol, highest affinity), STAT3, FAK, COX-2, NF-k-B, MMP2, and MMP9. The formulated cream demonstrated an in vitro SPF of 7.2 ± 2.5. Astaxanthin acts as a multifunctional photoprotective compound, providing a strong rationale for its incorporation into cosmetic and dermatological formulations, as further supported by the successful formulation and in vitro SPF estimation of an astaxanthin-enriched cream. Full article
Show Figures

Figure 1

14 pages, 1446 KB  
Systematic Review
Biomarkers for Predicting Malignant Transformation of Premalignant Lesions of the Larynx: A Systematic Review
by Juan P. Rodrigo, Reydson Alcides de Lima-Souza, Fernando López, Göran Stenman, Abbas Agaymy, Miquel Quer, Vinidh Paleri, Ilmo Leivo, Alfons Nadal, Nina Zidar, Fernanda V. Mariano, Henrik Hellquist, Nina Gale and Alfio Ferlito
Diagnostics 2026, 16(2), 236; https://doi.org/10.3390/diagnostics16020236 - 12 Jan 2026
Viewed by 259
Abstract
Background/Objectives: Premalignant laryngeal lesions carry a variable risk of malignant transformation to squamous cell carcinoma. Identifying reliable biomarkers that predict malignant transformation could improve patient management and surveillance strategies. The objective of this work is to perform a systematic review of the [...] Read more.
Background/Objectives: Premalignant laryngeal lesions carry a variable risk of malignant transformation to squamous cell carcinoma. Identifying reliable biomarkers that predict malignant transformation could improve patient management and surveillance strategies. The objective of this work is to perform a systematic review of the literature on biomarkers that predict malignant transformation of premalignant laryngeal lesions. Methods: We conducted a systematic review following PRISMA 2020 guidelines. The PubMed, Scopus and Embase databases, and Google Scholar were searched for studies published between January 2011 and November 2025. Studies investigating biomarkers that predict malignant transformation of histopathologically confirmed premalignant laryngeal lesions were included. Risk of bias was assessed using the ROBINS-I tool. Results: From 166 initially identified records, 11 studies met the inclusion criteria, including 730 patients. These studies investigated diverse biomarker categories such as protein markers (cortactin, FAK, NANOG, SOX2, CSPG4), immune markers (tumor-infiltrating lymphocytes, immune gene signatures), microRNAs (miR-183-5p, miR-155-5p, miR-106b-3p), and genetic markers (chromosomal instability, PIK3CA amplification and mutations, FGFR3 mutations). Five studies provided adequate follow-up data on transformation outcomes. Most studies showed a moderate to serious risk of bias primarily due to limited confounder control and incomplete reporting. Conclusions: While several promising biomarker candidates have been identified, the evidence base remains limited due to small sample sizes, heterogeneous methodologies, and inadequate follow-up data. Cortactin/FAK protein expression and immune signatures are the most promising but require validation in larger, well-designed prospective cohorts. Full article
(This article belongs to the Special Issue Clinical Diagnosis of Otorhinolaryngology)
Show Figures

Figure 1

18 pages, 1109 KB  
Review
Exercise-Based Mechanotherapy: From Biomechanical Principles and Mechanotransduction to Precision Regenerative Rehabilitation
by Guang-Zhen Jin
Int. J. Mol. Sci. 2026, 27(2), 694; https://doi.org/10.3390/ijms27020694 - 9 Jan 2026
Viewed by 331
Abstract
Mechanical loading generated during physical activity and exercise is a fundamental determinant of musculoskeletal development, adaptation, and regeneration. Exercise-based mechanotherapy, encompassing structured movement, resistance training, stretching, and device-assisted loading, has evolved from empirical rehabilitation toward mechanism-driven and precision-oriented therapeutic strategies. At the macroscopic [...] Read more.
Mechanical loading generated during physical activity and exercise is a fundamental determinant of musculoskeletal development, adaptation, and regeneration. Exercise-based mechanotherapy, encompassing structured movement, resistance training, stretching, and device-assisted loading, has evolved from empirical rehabilitation toward mechanism-driven and precision-oriented therapeutic strategies. At the macroscopic level, biomechanical principles governing load distribution, stress–strain relationships, and tissue-specific adaptation provide the physiological basis for exercise-induced tissue remodeling. At the molecular level, mechanical cues are transduced into biochemical signals through conserved mechanotransduction pathways, including integrin–FAK–RhoA/ROCK signaling, mechanosensitive ion channels such as Piezo, YAP/TAZ-mediated transcriptional regulation, and cytoskeleton–nucleoskeleton coupling. These mechanisms orchestrate extracellular matrix (ECM) remodeling, cellular metabolism, and regenerative responses across bone, cartilage, muscle, and tendon. Recent advances in mechanotherapy leverage these biological insights to promote musculoskeletal tissue repair and regeneration, while emerging engineering innovations, including mechanoresponsive biomaterials, 4D-printed dynamic scaffolds, and artificial intelligence-enabled wearable systems, enable mechanical loading to be quantified, programmable, and increasingly standardized for individualized application. Together, these developments position exercise-informed precision mechanotherapy as a central strategy for prescription-based regenerative rehabilitation and long-term musculoskeletal health. Full article
Show Figures

Graphical abstract

39 pages, 12089 KB  
Article
Polydopamine-Coated Surfaces Promote Adhesion, Migration, Proliferation, Chemoresistance, Stemness, and Epithelial–Mesenchymal Transition of Human Prostate Cancer Cell Lines In Vitro via Integrin α2β1–FAK–JNK Signaling
by Won Hoon Song, Ji-Eun Kim, Lata Rajbongshi, Su-Rin Lee, Yuna Kim, Seon Yeong Hwang, Sae-Ock Oh, Byoung Soo Kim, Dongjun Lee and Sik Yoon
Int. J. Mol. Sci. 2026, 27(2), 655; https://doi.org/10.3390/ijms27020655 - 8 Jan 2026
Viewed by 302
Abstract
Polydopamine (PDA) surface coatings are widely used in biomedical engineering to enhance cell–substrate interactions; however, their effects on cancer-cell behavior remain unclear. In this study, we investigated how PDA-coated two-dimensional (2D) culture surfaces influence oncogenic traits of human prostate cancer (PC) cells in [...] Read more.
Polydopamine (PDA) surface coatings are widely used in biomedical engineering to enhance cell–substrate interactions; however, their effects on cancer-cell behavior remain unclear. In this study, we investigated how PDA-coated two-dimensional (2D) culture surfaces influence oncogenic traits of human prostate cancer (PC) cells in vitro. Using LNCaP, DU145, and PC3 cell lines, we found that PDA-coated substrates markedly increased the adhesion, migration, invasion, proliferation, and colony formation in a dose- and time-dependent manner. PDA exposure also induced epithelial–mesenchymal transition (EMT), upregulated cancer stem cell markers (CD44, CD117, CD133, Sox2, Oct4, and Nanog), and elevated expression of metastasis- and chemoresistance-associated molecules (MMP-2, MMP-9, MDR1, and MRP1). Mechanistically, PDA coatings enhanced integrin α2β1-associated cell adhesion, accompanied by increased focal adhesion kinase (FAK) phosphorylation and downstream activation of JNK signaling. Pharmacological inhibition of integrin α2β1 (BTT-3033), FAK (PF573228) and JNK (SP600125) effectively abrogated PDA-induced malignant phenotypes and restored chemosensitivity to cabazitaxel, cisplatin, docetaxel, curcumin, and enzalutamide. Collectively, these findings identify PDA-coated surfaces as a simple, efficient, and reductionist in vitro platform for studying adhesion-mediated signaling and phenotypic plasticity in PC cells, while acknowledging that further validation in three-dimensional (3D) and patient-derived models will be required to establish in vivo relevance. Full article
(This article belongs to the Special Issue Breakthroughs in Anti-Cancer Agents Discovery)
Show Figures

Graphical abstract

14 pages, 2851 KB  
Article
DMP1-Mediated FAK Activation Contributes to P Utilization of Broiler Osteoblasts by Suppressing FGF23 Expression
by Tingting Li, Xinyu Feng, Weiyun Zhang, Jingyi Zhao, Liyang Zhang, Yun Hu, Xiaoyan Cui, Shengchen Wang and Xugang Luo
Biology 2026, 15(2), 121; https://doi.org/10.3390/biology15020121 - 8 Jan 2026
Viewed by 280
Abstract
Improving phosphorus (P) utilization in broilers is crucial for reducing feed costs and environmental pollution. Bone mineralization trait is strongly associated with P utilization in poultry and is thus often used as an alternative trait for evaluating P utilization. Dentin matrix protein 1 [...] Read more.
Improving phosphorus (P) utilization in broilers is crucial for reducing feed costs and environmental pollution. Bone mineralization trait is strongly associated with P utilization in poultry and is thus often used as an alternative trait for evaluating P utilization. Dentin matrix protein 1 (DMP1), an essential matrix protein for bone mineralization and P deposition, has been shown to be actively involved in P utilization in broilers, but the underlying mechanisms remain unclear. The current study aimed to investigate the possible mechanisms whereby DMP1 regulates P utilization of poultry by using gene silencing and overexpression technologies, combined with an in vitro model of primary broiler osteoblasts. The results showed that DMP1 overexpression augmented the P utilization of broiler osteoblasts, characterized by significant increases (p < 0.001) in P utilization rate, mineralization formation, alkaline phosphatase activity, and bone gla protein content. Meanwhile, DMP1 overexpression effectively (p < 0.05) activated the focal adhesion kinase (FAK) signaling, along with obvious (p < 0.01) decreases in fibroblast growth factor 23 (FGF23) expression and production. In contrast, DMP1 silencing reversed (p < 0.05) the above effects. Consistently, FAK activation promoted (p < 0.05) P utilization accompanied by remarkable (p < 0.05) decreases in FGF23 expression and production. Furthermore, gain- and loss-of-function assays demonstrated that a high level of FGF23 contributed to impaired P utilization, while a low level was beneficial. Interestingly, blocking FAK signaling not only recovered (p < 0.05) the FGF23 expression and production in DMP1 overexpressed cells but also obviously (p < 0.05) weakened their P utilization. These findings indicate that DMP1 inhibits FGF23 expression by activating FAK, thereby contributing to P utilization in broiler osteoblasts. They reveal a novel DMP1-FAK-FGF23 regulatory axis in broiler osteoblasts and provide a potential target for improving P efficiency in poultry. Full article
(This article belongs to the Special Issue Nutritional Physiology of Animals)
Show Figures

Figure 1

20 pages, 2378 KB  
Article
Phosphomimetic Thrombospondin-1 Modulates Integrin β1-FAK Signaling and Vascular Cell Functions
by Assala Raya, Bálint Bécsi and Anita Boratkó
Biomolecules 2026, 16(1), 84; https://doi.org/10.3390/biom16010084 - 4 Jan 2026
Viewed by 430
Abstract
Thrombospondin-1 (TSP1) is a multifunctional glycoprotein that plays a crucial role in angiogenesis and vascular remodeling. Ser93 of TSP1 has recently been identified as a novel phosphorylation site, influencing angiogenic properties; however, the underlying signaling mechanism remains unclear. Here, we investigated the functional [...] Read more.
Thrombospondin-1 (TSP1) is a multifunctional glycoprotein that plays a crucial role in angiogenesis and vascular remodeling. Ser93 of TSP1 has recently been identified as a novel phosphorylation site, influencing angiogenic properties; however, the underlying signaling mechanism remains unclear. Here, we investigated the functional impact of Ser93 phosphorylation using phosphomimetic (TSP1S93D) and phosphonull (TSP1S93A) mutants. Endothelial cell (EC) migration was analyzed using scratch assay and electric cell-substrate impedance sensing. Activation of key pathways (Akt, p38, ERK, and FAK) was analyzed by immunoblotting. TSP1 secretion was quantified by ELISA. Downstream effects on smooth muscle cells were examined by Western blot using conditioned media of endothelial cells. Expression of TSP1S93D significantly impaired endothelial migration and wound closure, associated with reduced phosphorylation of FAK and paxillin. Upstream of FAK signaling, TSP1S93D showed enhanced binding to integrin β1 and promoted its clustering. In contrast, TSP1S93D stimulated smooth muscle cell proliferation, migration, cytoskeletal remodeling, and phenotypic switching toward a synthetic, pro-inflammatory state characterized by elevated marker protein expression. Together, these findings demonstrate that the impaired angiogenic properties induced by TSP1S93D result from the modulation of integrin β1-FAK pathways in ECs, suppressing endothelial motility while promoting smooth muscle activation, suggesting a role in early vascular remodeling and inflammation. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Figure 1

19 pages, 3327 KB  
Article
Ovulation-Derived Fibronectin Promotes Peritoneal Seeding of High-Grade Serous Carcinoma Precursor Cells via Integrin β1 Signaling
by Che-Fang Hsu, Liang-Yuan Wang, Vaishnavi Seenan, Pao-Chu Chen and Tang-Yuan Chu
Cells 2026, 15(1), 80; https://doi.org/10.3390/cells15010080 - 4 Jan 2026
Viewed by 465
Abstract
High-grade serous ovarian carcinoma (HGSC) is predominantly diagnosed at advanced stages with extensive peritoneal metastasis. A pivotal early event in HGSC development is the peritoneal seeding of tumor cells originating from the fallopian tube epithelial (FTE) precursor lesions. Ovulation releases follicular fluid (FF), [...] Read more.
High-grade serous ovarian carcinoma (HGSC) is predominantly diagnosed at advanced stages with extensive peritoneal metastasis. A pivotal early event in HGSC development is the peritoneal seeding of tumor cells originating from the fallopian tube epithelial (FTE) precursor lesions. Ovulation releases follicular fluid (FF), which is known to contain oncogenic factors that promote FTE cell transformation. However, the specific mechanisms and factors within FF that drive the early metastatic seeding of precancerous FTE cells remain poorly defined. We investigated the role of FF in the peritoneal dissemination of FTE-derived cells, and the abundance of fibronectin (FN) as a potential key mediator. Functional assays were performed using FN-depleted FF to assess its impact on migration, invasion, anchorage-independent growth, and peritoneal attachment. The role of the fibronectin receptor, integrin β1 (ITGB1), and the signaling pathways were evaluated via knockdown studies. In vivo xenograft models were used to quantify peritoneal seeding, and mechanistic studies elucidated the involved signaling pathways. We identified FN as a critical component of FF, present at high concentrations (~210 µg/mL), that potently drives FTE cell migration, invasion, and peritoneal seeding. Depletion of FN from FF abrogated the majority of these pro-metastatic activities in vitro and led to a dramatic 82% reduction in peritoneal tumor seeding in vivo. Knockdown of ITGB1 similarly impaired seeding. Mechanistically, FF-derived FN activates the ITGB1/FAK-SRC signaling pathway to promote tumor cell motility and colonization. Our study establishes FF-fibronectin as an important regulator of the early peritoneal seeding of HGSC precursor cells. These findings reveal a direct link between ovulation and HGSC development, suggesting that targeting the FN-ITGB1 signaling axis may offer a novel preventive strategy for high-risk individuals. Full article
(This article belongs to the Special Issue Genomics and Cellular Mechanisms in Ovarian Cancer)
Show Figures

Figure 1

19 pages, 2902 KB  
Communication
Unraveling Resistance Mechanisms to Gαq Pathway Inhibition in Uveal Melanoma: Insights from Signaling-Activation Library Screening
by Simone Lubrano, Rodolfo Daniel Cervantes-Villagrana, Nadia Arang, Elena Sofia Cardenas-Alcoser, Kuniaki Sato, Gabriela Cuesta-Margolles, Justine S. Paradis, Monica Acosta and J. Silvio Gutkind
Cancers 2026, 18(1), 74; https://doi.org/10.3390/cancers18010074 - 25 Dec 2025
Viewed by 460
Abstract
Background/Objectives: Uveal melanoma (UVM), the leading primary intraocular cancer in adults, is driven by GNAQ/GNA11 mutations, encoding the active forms of Gαq proteins. While local treatments like surgery or radiation can control primary tumors, nearly half of patients die from metastasis. [...] Read more.
Background/Objectives: Uveal melanoma (UVM), the leading primary intraocular cancer in adults, is driven by GNAQ/GNA11 mutations, encoding the active forms of Gαq proteins. While local treatments like surgery or radiation can control primary tumors, nearly half of patients die from metastasis. Our aim was identifying potential pathways involved in resistance to targeted therapy in UVM. Methods: Here, we screened 100 pathway-activating mutant complementary DNAs by lentiviral overexpression to identify those that enhance the survival of cancer cells in the presence of clinically relevant targeted therapies, using BAP1 wild-type UVM cells and validated the most significant results in BAP1-mutant cells. Results: This revealed JAK/STAT activation, overexpression of anti-apoptotic BCL2/BCL-XL, and dysregulated PI3K/mTOR or Hippo pathways as escape routes under MEK-ERK or FAK inhibition. Bioinformatic analysis of UVM transcriptome in TCGA further showed that high expression of the hallmark PI3K/AKT/mTOR pathway and IL6/JAK/STAT signaling correlates with poor prognosis. A similar correlation was shown by YAP and anti-apoptotic signatures. The analysis of individual representative genes from these signatures revealed that MTOR, BCL2L1 (BCL-XL), and TEAD4 gene expression are linked to poorer survival, underscoring the potential clinical impact of these adaptive pathways. Proliferation and apoptosis assay demonstrated that aberrant activation of AKT and YAP promotes resistance to FAK and MEK inhibitors. Conclusions: These findings support the adaptability of UVM lesions and suggest rational combination therapies targeting both primary GNAQ/GNA11-driven oncogenic signals and their compensatory networks as a more effective, personalized treatment approach for advanced UVM. Full article
(This article belongs to the Special Issue Advances in Uveal Melanoma)
Show Figures

Figure 1

24 pages, 7533 KB  
Article
FAK-Activated Mucosal Healing Promotes Resistance to Reinjury
by Sema Oncel, Guiming Liu, Louis Kwantwi, Emilie E. Vomhof-DeKrey, Ricardo Gallardo-Macias, Vadim J. Gurvich and Marc D. Basson
Cells 2026, 15(1), 16; https://doi.org/10.3390/cells15010016 - 22 Dec 2025
Cited by 1 | Viewed by 561
Abstract
Background: Gastrointestinal (GI) mucosal injury is a frequent complication of long-term nonsteroidal anti-inflammatory drug (NSAID) use. Effective mucosal healing requires coordinated epithelial migration, proliferation, and angiogenesis, which may be influenced by focal adhesion kinase (FAK). This study aimed to determine whether our newly [...] Read more.
Background: Gastrointestinal (GI) mucosal injury is a frequent complication of long-term nonsteroidal anti-inflammatory drug (NSAID) use. Effective mucosal healing requires coordinated epithelial migration, proliferation, and angiogenesis, which may be influenced by focal adhesion kinase (FAK). This study aimed to determine whether our newly developed FAK activators promote intestinal mucosal healing by enhancing angiogenesis and whether FAK activation increases resistance to reinjury. Methods: Ischemic jejunal ulcers were induced in C57BL/6 mice. After 24 h, mice received intraperitoneal injections of the FAK activator ZINC40099027 (ZN27, 900 µg/kg every 6 h) or vehicle for 2, 4, or 14 days. Ulcer areas were quantified, and liver and kidney function were assessed. Ulcer and adjacent tissues were analyzed by immunofluorescence staining for angiogenesis and proliferation markers. In vitro, human umbilical vein endothelial cells (HUVECs) were treated with ZN27 to evaluate proliferation, migration, angiogenesis, and intracellular signaling. In a reinjury model, male C57BL/6J mice received continuous infusion of the FAK activator M64HCl (25 mg/kg/day) or vehicle for 7 days, with a single subcutaneous injection of indomethacin (10 mg/kg) on day 1 to induce GI injury. Fourteen days after the first dose of indomethacin, the mice received a second indomethacin challenge, and one day later, total ulcer areas in the pyloric opening and small intestine were quantified. Results: Ulcer areas were significantly smaller in ZN27-treated mice compared with vehicle-treated controls at 3 and 5 days, accompanied by increased expression of angiogenesis and proliferation markers. In vitro, ZN27 enhanced HUVEC migration via FAK activation in an ERK1/2-dependent manner and increased the number of angiogenic sprouts. In the reinjury model, treatment with M64HCl during the initial indomethacin-induced injury resulted in significantly smaller ulcer areas in both the pyloric opening and small intestine after the second indomethacin challenge compared with controls. Conclusions: FAK activation accelerates ischemic ulcer healing, in part by enhancing angiogenesis. Moreover, FAK activation during an initial injury reduces susceptibility to recurrent NSAID-induced intestinal injury, perhaps because it promotes initial higher-quality ulcer repair. Full article
(This article belongs to the Special Issue Translational Aspects of Cell Signaling)
Show Figures

Figure 1

28 pages, 4028 KB  
Article
A Critical Assessment of Computer-Aided Approaches for Identifying FAK Inhibitors
by Patricia A. Quispe, Daniel Lietha, Ignacio E. León and Martin J. Lavecchia
Kinases Phosphatases 2025, 3(4), 27; https://doi.org/10.3390/kinasesphosphatases3040027 - 18 Dec 2025
Viewed by 378
Abstract
Focal Adhesion Kinase (FAK) is a key regulator of tumor cell migration and survival, and its persistent overexpression in aggressive cancers has motivated ongoing efforts to identify novel small-molecule inhibitors. Despite this interest, progress in discovering new potent scaffolds has been limited. In [...] Read more.
Focal Adhesion Kinase (FAK) is a key regulator of tumor cell migration and survival, and its persistent overexpression in aggressive cancers has motivated ongoing efforts to identify novel small-molecule inhibitors. Despite this interest, progress in discovering new potent scaffolds has been limited. In this work, we applied a multistep computational workflow followed by experimental testing to refine hit selection and reduce the false positives typically associated with docking. DrugBank and several commercial libraries were screened using Exponential Consensus Ranking (ECR) docking, and molecular dynamics simulations were used to assess pose stability and interaction persistence. A subset of predicted binders was then tested in MG-63 (bone cancer) and MDA-MB-231 (breast cancer) cells using cell viability and wound-healing assays, followed by direct autophosphorylation assays with recombinant FAK. Several repurposed compounds, including clofazimine and tafamidis, produced clear dose-dependent effects on cell migration, although their inhibitory activity in biochemical assays remained weak (IC50 values above 100 μM), far from the potency of the reference inhibitor TAE226. Retrospective analysis of the computational workflow showed that standard MM-GBSA calculations did not correlate with these experimental outcomes. However, incorporating explicit water molecules through the NWAT-MMGBSA approach improved agreement with the biochemical data and helped to rationalize the limited affinity observed experimentally. Taken together, the results underline the relevance of explicit solvation in modeling the FAK active site and suggest that refined solvent-aware protocols may provide more reliable guidance for future screening efforts. Full article
Show Figures

Figure 1

Back to TopTop