Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = Everglades National Park (ENP)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6966 KiB  
Article
Quantification of Evapotranspiration and Water Chemistry in a Remediated Wetland in Everglades National Park, USA
by Dillon Nicholas Reio, René M. Price, Assefa M. Melesse and Michael Ross
Water 2023, 15(4), 611; https://doi.org/10.3390/w15040611 - 4 Feb 2023
Cited by 2 | Viewed by 2645
Abstract
Similar to most wetlands, the Florida Everglades landscape was altered to promote agriculture and human settlement, significantly altering the natural hydrologic regime. Once former agricultural land located within Everglades National Park (ENP), the Hole-in-the-Donut (HID) wetland restoration program became the first mitigation bank [...] Read more.
Similar to most wetlands, the Florida Everglades landscape was altered to promote agriculture and human settlement, significantly altering the natural hydrologic regime. Once former agricultural land located within Everglades National Park (ENP), the Hole-in-the-Donut (HID) wetland restoration program became the first mitigation bank project in Florida. The HID program utilized a restoration technique of complete soil removal to effectively eradicate an invasive plant species. This research investigated the effects of the vegetation and soil removal on the hydrologic conditions of the HID, specifically evapotranspiration and water chemistry. Annual evapotranspiration rates were determined for the region using remotely sensed data and compared to the acres restored over a 15-year period. Groundwater and surface waters were collected from both inside the HID and from adjacent areas within ENP for major cations and anions and total nutrient concentrations. Evapotranspiration rates were found to decrease from a mean of 1083.4 mm year−1 in the year 2000 to 891.6 mm year−1 in 2014 as the restored area increased to 4893 acres. Concentrations of ions and nutrients were lower in groundwater and surface water within the restored areas compared to adjacent areas. We conclude that the lack of soil cover (along with reduced evapotranspiration rates) contributed to the lower ion and nutrient concentrations in the surface water and groundwater within the HID. Full article
Show Figures

Figure 1

26 pages, 8837 KiB  
Article
Geophysical Characterization in the Shallow Water Estuarine Lakes of the Southern Everglades, Florida
by Michael Eyob Kiflai, Dean Whitman, René M. Price, Thomas A. Frankovich and Christopher J. Madden
Appl. Sci. 2022, 12(3), 1154; https://doi.org/10.3390/app12031154 - 22 Jan 2022
Cited by 3 | Viewed by 3498
Abstract
Anthropogenic activities have greatly modified freshwater flows through Everglades National Park (ENP) such that saltwater has intruded extensively inland from the coastline, causing coastal lakes and their ecosystems to be exposed to varying salinity conditions. The Comprehensive Everglades Restoration Plan (CERP) makes an [...] Read more.
Anthropogenic activities have greatly modified freshwater flows through Everglades National Park (ENP) such that saltwater has intruded extensively inland from the coastline, causing coastal lakes and their ecosystems to be exposed to varying salinity conditions. The Comprehensive Everglades Restoration Plan (CERP) makes an effort to restore the quantity, quality, timing, and distribution of freshwater flow in ENP with a goal of reducing salinity conditions within the coastal communities and adjacent estuaries. An understanding of the temporal and spatial variations of surface water and shallow groundwater salinity in the coastal lakes of ENP is needed to evaluate restoration efforts. Geophysical surveys were conducted between 2016 to 2019 using electrical resistivity and electromagnetic (EM) methods in the coastal lakes of ENP. A mean local formation factor of 10.7 ± 1.8 was calculated for the region by comparing the lakes’ bottom formation inverted electrical resistivity soundings with coincident pore water resistivity measured in groundwater wells. The conductivity of surface and groundwater increased during the dry season, reflecting decreased precipitation, increased evapotranspiration, and the increasing influence of saline water from Florida Bay. Spatially, salinity in the lakes increased from west to east in the surface water with an opposite trend observed in the shallow groundwater. Along the south to north inland direction, the salinity of both surface water and groundwater decreased. This study demonstrates that floating electrical resistivity and EM methods can characterize the subsurface formation resistivity and describe temporal and spatial patterns of surface and shallow groundwater conductivity. Full article
Show Figures

Figure 1

8 pages, 773 KiB  
Communication
Microbial Respiration and Enzyme Activity Downstream from a Phosphorus Source in the Everglades, Florida, USA
by Sanku Dattamudi, Saoli Chanda and Leonard J. Scinto
Land 2021, 10(7), 696; https://doi.org/10.3390/land10070696 - 1 Jul 2021
Viewed by 2593
Abstract
Northeast Shark River Slough (NESS), lying at the northeastern perimeter of Everglades National Park (ENP), Florida, USA, has been subjected to years of hydrologic modifications. Construction of the Tamiami Trail (US 41) in 1928 connected the east and west coasts of SE Florida [...] Read more.
Northeast Shark River Slough (NESS), lying at the northeastern perimeter of Everglades National Park (ENP), Florida, USA, has been subjected to years of hydrologic modifications. Construction of the Tamiami Trail (US 41) in 1928 connected the east and west coasts of SE Florida and essentially created a hydrological barrier to southern sheet flow into ENP. Recently, a series of bridges were constructed to elevate a portion of Tamiami Trail, allow more water to flow under the bridges, and attempt to restore the ecological balance in the NESS and ENP. This project was conducted to determine aspects of soil physiochemistry and microbial dynamics in the NESS. We evaluated microbial respiration and enzyme assays as indicators of nutrient dynamics in NESS soils. Soil cores were collected from sites at certain distances from the inflow (near canal, NC (0–150 m); midway, M (150–600 m); and far from canal, FC (600–1200 m)). Soil slurries were incubated and assayed for CO2 emission and β-glucoside (MUFC) or phosphatase (MUFP) activity in concert with physicochemical analysis. Significantly higher TP contents at NC (2.45 times) and M (1.52 times) sites than FC sites indicated an uneven P distribution downstream from the source canal. The highest soil organic matter content (84%) contents were observed at M sites, which was due to higher vegetation biomass observed at those sites. Consequently, CO2 efflux was greater at M sites (average 2.72 µmoles g dw−1 h−1) than the other two sites. We also found that amendments of glucose increased CO2 efflux from all soils, whereas the addition of phosphorus did not. The results indicate that microbial respiration downstream of inflows in the NESS is not limited by P, but more so by the availability of labile C. Full article
(This article belongs to the Special Issue Celebrating 25 Years of World Wetlands Day)
Show Figures

Figure 1

12 pages, 1610 KiB  
Article
Water Quality of Inflows to the Everglades National Park over Three Decades (1985–2014) Analyzed by Multivariate Statistical Methods
by Lei Wan and Xiaohui Fan
Int. J. Environ. Res. Public Health 2018, 15(9), 1882; https://doi.org/10.3390/ijerph15091882 - 30 Aug 2018
Cited by 2 | Viewed by 3837
Abstract
The Everglades, a vast subtropical wetland, dominates the landscape of south Florida and is widely recognized as an ecosystem of great ecological importance. Data from seven inflow sites to the Everglades National Park (ENP) were analyzed over three decades (1985–2014) for temporal trends [...] Read more.
The Everglades, a vast subtropical wetland, dominates the landscape of south Florida and is widely recognized as an ecosystem of great ecological importance. Data from seven inflow sites to the Everglades National Park (ENP) were analyzed over three decades (1985–2014) for temporal trends by the STL (integrated seasonal-trend decomposition using LOESS) method. A cluster analysis (CA) and principal component analysis (PCA) were applied for the evaluation of spatial variation. The results indicate that the water quality change trend is closely associated with rainfall. Increasing rainfall results in increasing flow and thus, decreasing concentrations of nitrogen and phosphorus. Based on 10 variables, the seven sampling stations were classified by CA into four distinct clusters: A, B, C, and D. The PCA analysis indicated that total nitrogen (TN) and total phosphorus (TP) are the main pollution factors, especially TN. The results suggest that non-point sources are the main pollution sources and best management practices (BMPs) effectively reduce organic nitrogen. However, TN and TP control is still the focus of future work in this area. Increasing the transfer water quantity can improve the water quality temporarily and planting submersed macrophytes can absorb nitrogen and phosphorus and increase the dissolved oxygen (DO) concentration in water, continuously improving the water quality. Full article
(This article belongs to the Special Issue Water Quality Improvement and Ecological Restoration)
Show Figures

Figure 1

15 pages, 3949 KiB  
Article
Using Bi-Seasonal WorldView-2 Multi-Spectral Data and Supervised Random Forest Classification to Map Coastal Plant Communities in Everglades National Park
by Kristie S. Wendelberger, Daniel Gann and Jennifer H. Richards
Sensors 2018, 18(3), 829; https://doi.org/10.3390/s18030829 - 9 Mar 2018
Cited by 17 | Viewed by 5125
Abstract
Coastal plant communities are being transformed or lost because of sea level rise (SLR) and land-use change. In conjunction with SLR, the Florida Everglades ecosystem has undergone large-scale drainage and restoration, altering coastal vegetation throughout south Florida. To understand how coastal plant communities [...] Read more.
Coastal plant communities are being transformed or lost because of sea level rise (SLR) and land-use change. In conjunction with SLR, the Florida Everglades ecosystem has undergone large-scale drainage and restoration, altering coastal vegetation throughout south Florida. To understand how coastal plant communities are changing over time, accurate mapping techniques are needed that can define plant communities at a fine-enough resolution to detect fine-scale changes. We explored using bi-seasonal versus single-season WorldView-2 satellite data to map three mangrove and four adjacent plant communities, including the buttonwood/glycophyte community that harbors the federally-endangered plant Chromolaena frustrata. Bi-seasonal data were more effective than single-season to differentiate all communities of interest. Bi-seasonal data combined with Light Detection and Ranging (LiDAR) elevation data were used to map coastal plant communities of a coastal stretch within Everglades National Park (ENP). Overall map accuracy was 86%. Black and red mangroves were the dominant communities and covered 50% of the study site. All the remaining communities had ≤10% cover, including the buttonwood/glycophyte community. ENP harbors 21 rare coastal species threatened by SLR. The spatially explicit, quantitative data provided by our map provides a fine-scale baseline for monitoring future change in these species’ habitats. Our results also offer a method to monitor vegetation change in other threatened habitats. Full article
(This article belongs to the Special Issue Remote Sensing of Mangrove Ecosystems)
Show Figures

Figure 1

14 pages, 10278 KiB  
Article
Estimating Mangrove Canopy Height and Above-Ground Biomass in the Everglades National Park with Airborne LiDAR and TanDEM-X Data
by Emanuelle A. Feliciano, Shimon Wdowinski, Matthew D. Potts, Seung-Kuk Lee and Temilola E. Fatoyinbo
Remote Sens. 2017, 9(7), 702; https://doi.org/10.3390/rs9070702 - 7 Jul 2017
Cited by 48 | Viewed by 10211
Abstract
Mangrove forests are important natural ecosystems due to their ability to capture and store large amounts of carbon. Forest structural parameters, such as canopy height and above-ground biomass (AGB), provide a good measure for monitoring temporal changes in carbon content. The protected coastal [...] Read more.
Mangrove forests are important natural ecosystems due to their ability to capture and store large amounts of carbon. Forest structural parameters, such as canopy height and above-ground biomass (AGB), provide a good measure for monitoring temporal changes in carbon content. The protected coastal mangrove forest of the Everglades National Park (ENP) provides an ideal location for studying these processes, as harmful human activities are minimal. We estimated mangrove canopy height and AGB in the ENP using Airborne LiDAR/Laser (ALS) and TanDEM-X (TDX) datasets acquired between 2011 and 2013. Analysis of both datasets revealed that mangrove canopy height can reach up to ~25 m and AGB can reach up to ~250 Mg•ha−1. In general, mangroves ranging from 9 m to 12 m in stature dominate the forest canopy. The comparison of ALS and TDX canopy height observations yielded an R2 = 0.85 and Root Mean Square Error (RMSE) = 1.96 m. Compared to a previous study based on data acquired during 2000–2004, our analysis shows an increase in mangrove stature and AGB, suggesting that ENP mangrove forests are continuing to accumulate biomass. Our results suggest that ENP mangrove forests have managed to recover from natural disturbances, such as Hurricane Wilma. Full article
(This article belongs to the Section Forest Remote Sensing)
Show Figures

Figure 1

31 pages, 4357 KiB  
Article
Airborne Laser Scanning Quantification of Disturbances from Hurricanes and Lightning Strikes to Mangrove Forests in Everglades National Park, USA
by Keqi Zhang, Marc Simard, Michael Ross, Victor H. Rivera-Monroy, Patricia Houle, Pablo Ruiz, Robert R. Twilley and Kevin Whelan
Sensors 2008, 8(4), 2262-2292; https://doi.org/10.3390/s8042262 - 1 Apr 2008
Cited by 55 | Viewed by 15041
Abstract
Airborne light detection and ranging (LIDAR) measurements derived before and after Hurricanes Katrina and Wilma (2005) were used to quantify the impact of hurricanes and lightning strikes on the mangrove forest at two sites in Everglades National Park (ENP). Analysis of LIDAR measurements [...] Read more.
Airborne light detection and ranging (LIDAR) measurements derived before and after Hurricanes Katrina and Wilma (2005) were used to quantify the impact of hurricanes and lightning strikes on the mangrove forest at two sites in Everglades National Park (ENP). Analysis of LIDAR measurements covering 61 and 68 ha areas of mangrove forest at the Shark River and Broad River sites showed that the proportion of high tree canopy detected by the LIDAR after the 2005 hurricane season decreased significantly due to defoliation and breakage of branches and trunks, while the proportion of low canopy and the ground increased drastically. Tall mangrove forests distant from tidal creeks suffered more damage than lower mangrove forests adjacent to the tidal creeks. The hurricanes created numerous canopy gaps, and the number of gaps per square kilometer increased from about 400~500 to 4000 after Katrina and Wilma. The total area of gaps in the forest increased from about 1~2% of the total forest area to 12%. The relative contribution of hurricanes to mangrove forest disturbance in ENP is at least 2 times more than that from lightning strikes. However, hurricanes and lightning strikes disturb the mangrove forest in a related way. Most seedlings in lightning gaps survived the hurricane impact due to the protection of trees surrounding the gaps, and therefore provide an important resource for forest recovery after the hurricane. This research demonstrated that LIDAR is an effective remote sensing tool to quantify the effects of disturbances such as hurricanes and lightning strikes in the mangrove forest. Full article
(This article belongs to the Special Issue Remote Sensing of Natural Resources and the Environment)
Show Figures

Back to TopTop