Quantification of Evapotranspiration and Water Chemistry in a Remediated Wetland in Everglades National Park, USA
Abstract
:1. Introduction
2. Study Area and Methods
2.1. Site Description
2.2. Evapotranspiration Modeling
2.3. Groundwater and Surface-Water Chemistry
2.4. Statistical Analysis
3. Results
3.1. Evapotranspiration Modeling
3.2. Groundwater and Surface-Water Chemistry
4. Discussion
4.1. Changes in Evapotranspiration as A Function of Restoration
4.2. Water Chemistry Inside and Outside the HID
4.3. Recommendations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abtew, W.; Melesse, A.M. Evaporation and Evapotranspiration: Measurements and Estimations; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar]
- Maltby, E.; Dugan, P.J. Wetland ecosystem protection, management, and restoration: An international perspective. In Everglades: The Ecosystem and Its Restoration; Davis, S.M., Ogden, J.C., Eds.; St. Lucie Press: Delray Beach, FL, USA, 1994; pp. 29–46. [Google Scholar]
- Zedler, J.B.; Kercher, S. Wetland Resources: Status, Trends, Ecosystem Services, and Restorability. Annu. Rev. Environ. Resour. 2005, 30, 39–74. [Google Scholar] [CrossRef]
- Graf, W.L. Water resources science, policy, and politics for the Florida everglades. Ann. Assoc. Am. Geogr. 2013, 103, 353–362. [Google Scholar] [CrossRef]
- Light, S.S.; Dineen, J.W. Water control in the Everglades: A Historical Perspective. In Everglades: The Ecosystem and Its Restoration; Davis, S.M., Ogden, J.C., Eds.; St. Lucie Press: Boca Raton, FL, USA, 1994; pp. 47–84. [Google Scholar]
- Fling, H.; Aumen, N.; Armentano, T.; Mazzotti, F. The Role of Flow in the Everglades Landscape; University of Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences: Gainesville, FL, USA, 2004; pp. 1–7. [Google Scholar]
- Chimney, M.; Goforth, G. Environmental impacts to the Everglades ecosystem: A historical perspective and restoration strategies. Water Sci. Technol. 2001, 44, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Doren, R.F.; Whiteaker, L.D.; Molnar, G.; Sylvia, D. Restoration of former wetlands within the Hole-in-the-Donut in Everglades National Park. In Proceedings of the Seventeenth Annual Conference on Wetlands Restoration and Creation, Hillsborough Community College, Plant City, FL, USA, 10–11 May 1990; pp. 33–50. [Google Scholar]
- Loope, L.L.; Dunevitz, H.L. Investigations of early plant succession on abandoned farmland in Everglades National Park; National Park Service, South Florida Research Center, Everglades National Park: Homestead, FL, USA, 1981.
- Smith, C.S.; Serra, L.; Li, Y.; Inglett, P.; Inglett, K. Restoration of Disturbed Lands: The Hole-in-the-Donut Restoration in the Everglades. Crit. Rev. Environ. Sci. Technol. 2011, 41, 723–739. [Google Scholar] [CrossRef]
- Dalrymple, G.H.; Doren, R.F.; O’Hare, N.K.; Norland, M.R.; Armentano, T.V. Plant colonization after complete and partial removal of disturbed soils for wetland restoration of former agricultural fields in Everglades National Park. Wetlands 2003, 23, 1015–1029. [Google Scholar] [CrossRef]
- Macdonald, I.A.; Loope, L.L.; Usher, M.B.; Hamann, O. Wildlife conservation and the invasion of nature reserves by introduced species: A global perspective. In Biological Invasions: A Global Perspective; Wiley: New York, NY, USA, 1989; pp. 215–255. [Google Scholar]
- Gordon, D.R. Effects of invasive, non-indigenous plant species on ecosystem processes: Lessons from Florida. Ecol. Appl. 1998, 8, 975–989. [Google Scholar] [CrossRef]
- Li, Y.; Norland, M. The role of soil fertility in invasion of Brazilian Pepper (Schinus terebinthifolious) in Everglades National Park, Florida. Soil Sci. 2001, 166, 400–405. [Google Scholar] [CrossRef]
- Ewel, J.J.; Ojima, D.S.; Karl, D.A.; DeBusk, W.F. Schinus in Successional Ecosystems of Everglades National Park; Report T-676; South Florida Research Center: Homestead, FL, USA, 1982. [Google Scholar]
- Rodgers, L.; Pernas, T.; Hill, S.D. Mapping Invasive Plant Distributions in the Florida Everglades Using the Digital Aerial Sketch Mapping Technique. Invasive Plant Sci. Manag. 2014, 7, 360–374. [Google Scholar] [CrossRef]
- Orth, P.G.; Conover, R.A. Changes in nutrients resulting from farming the Hole-in-the-Donut, Everglades National Park. Proc. Fla. State Hortic. Soc. 1975, 28, 221–225. [Google Scholar]
- Meador, R.E. The Role of Mycorrhizae in Influencing Succession on Abandoned Everglades Farmland. Unpublished Master’s Thesis, University of Florida, Gainesville, FL, USA, 1977. [Google Scholar]
- Ewel, J.J. Invasibility: Lessons from south Florida. In Ecology of Biological Invasions of North America and Hawaii; Springer: New York, NY, USA, 1986; pp. 214–230. [Google Scholar]
- Aziz, T.; Sylvia, D.M.; Doren, R.F. Activity and Species Composition of Arbuscular Mycorrhizal Fungi Following Soil Removal. Ecol. Appl. 1995, 5, 776–784. [Google Scholar] [CrossRef]
- Klimkowska, A.; Van Diggelen, R.; Bakker, J.P.; Grootjans, A.P. Wet meadow restoration in Western Europe: A quan-titative assessment of the effectiveness of several techniques. Biol. Conserv. 2007, 140, 318–328. [Google Scholar] [CrossRef]
- Klimkowska, A.; Elst, D.J.; Grootjans, A.P. Understanding long-term effects of topsoil removal in peatlands: Over-Coming thresholds for fen meadows restoration. Appl. Veg. Sci. 2015, 18, 110–120. [Google Scholar] [CrossRef]
- Zak, D.; Meyer, N.; Cabezas, A.; Gelbrecht, J.; Mauersberger, R.; Tiemeyer, B.; Wagner, C.; McInnes, R. Topsoil removal to minimize internal eutrophication in rewetted peatlands and to protect downstream systems against phosphorus pollution: A case study from NE Germany. Ecol. Eng. 2017, 103, 488–496. [Google Scholar] [CrossRef]
- Hausman, C.E.; Fraser, L.H.; Kershner, M.W.; Szalay, F.A. Plant community establishment in a restored wetland: Effects of soil removal. Appl. Veg. Sci. 2007, 10, 383–390. [Google Scholar] [CrossRef]
- Krauss, P. Old Field Succession in Everglades National Park; Report SFRC-87/03; South Florida Research Center: Homestead, FL, USA, 1987. [Google Scholar]
- O’Hare, N.K. Biological Monitoring of Restored Wetlands in the Hole-in-the- Donut; Final Annual Report, HID Year 10; Everglades National Park: Homestead, FL, USA, 2008.
- Inglett, P.; Inglett, K. Biogeochemical changes during early development of restored calcareous wetland soils. Geoderma 2013, 192, 132–141. [Google Scholar] [CrossRef]
- Villalobos-Vega, R. Water Table and Nutrient Dynamics in Neotropical Savannas and Wetland Ecosystems. Ph.D. Thesis, University of Miami, Coral Gables, FL, USA, 2010. Available online: http://scholarlyrepository.miami.edu/oa_dissertations/389 (accessed on 2 January 2023).
- Mahmood, R.; Pielke, R.A., Sr.; Hubbard, K.; Niyogi, D.; Dirmeyer, P.A.; McAlpine, C.; Carleton, A.M.; Hale, R.; Gameda, S.; Beltrán-Przekurat, A.; et al. Land cover changes and their biogeophysical effects on climate. Int. J. Clim. 2013, 34, 929–953. [Google Scholar] [CrossRef]
- Fetter, C.W. Regional Groundwater Flow; Inc. Applied Hydrogeology: Geneve, Switzerland, 1980. [Google Scholar]
- Hibbert, A.R. Increases in Streamflow after Converting Chaparral to Grass. Water Resour. Res. 1971, 7, 71–80. [Google Scholar] [CrossRef]
- Anderson, M.; Gao, F.; Knipper, K.; Hain, C.; Dulaney, W.; Baldocchi, D.; Eichelmann, E.; Hemes, K.; Yang, Y.; Medellin-Azuara, J.; et al. Field-Scale Assessment of Land and Water Use Change over the California Delta Using Remote Sensing. Remote Sens. 2018, 10, 889. [Google Scholar] [CrossRef]
- Kahara, S.N.; Madurapperuma, B.D.; Hernandez, B.K.; Scaroni, L.; Hopson, E. Hydrology and Nutrient Dynamics in Managed Restored Wetlands of California’s Central Valley, USA. Water 2022, 14, 3574. [Google Scholar] [CrossRef]
- Harvey, J.W.; McCormick, P.V. Groundwater’s significance to changing hydrology, water chemistry, and biological communities of a floodplain ecosystem, Everglades, South Florida, USA. Hydrogeol. J. 2008, 17, 185–201. [Google Scholar] [CrossRef]
- Price, R.M.; Swart, P.K. Geochemical Indicators of Groundwater Recharge in the Surficial Aquifer System, Everglades National Park, Florida, USA; Geological Society of America: Boulder, CO, USA, 2006. [Google Scholar] [CrossRef] [Green Version]
- Lagomasino, D.; Price, R.M.; Whitman, D.; Campbell, P.K.; Melesse, A. Estimating major ion and nutrient con-centrations in mangrove estuaries in Everglades National Park using leaf and satellite reflectance. Remote Sens. Environ. 2014, 154, 202–218. [Google Scholar] [CrossRef]
- Serra, L.A. Identifying Suitable areas for the Reestablishment of Pinus elliottii var. densa on Previously Farmed Lands in the Hole-in-the-Donut Restoration, Everglades National Park. Unpublished Ph.D. Thesis, University of Florida, Gainesville, FL, USA, 2009. [Google Scholar]
- USDA. Soil Survey of Dade County, Florida; Natural Resources Conservation Service, U.S. Government Printing Office: Washington, DC, USA, 1996.
- Duever, M.J.; Meeder, J.F.; Meeder, L.C.; McCollom, J.M. The climate of south Florida and its role in shaping the Everglades ecosystem. In Everglades: The Ecosystem and Its Restoration; St. Lucie Press: Boca Raton, FL, USA, 1994; pp. 225–248. [Google Scholar]
- Kotun, K.; Renshaw, A. Taylor Slough Hydrology. Wetlands 2013, 34, 9–22. [Google Scholar] [CrossRef]
- Fish, J.E.; Stewart, M.T. Hydrogeology of the Surficial Aquifer System, Dade County, Florida; Water-Resources Investigations Report No. 90-4108; U.S. Geological Survey: Tallahassee, FL, USA, 1991.
- Reio, D. Investigating the Effects of Land-Cover Change on the Hydrologic Conditions of a Restored Agricultural Area in Everglades National Park. Master’s Thesis, Florida International University, Miami, FL, USA, 2018. [Google Scholar] [CrossRef]
- Sandoval, E.; Price, R.M.; Whitman, D.; Melesse, A.M. Long-term (11 years) study of water balance, flushing times and water chemistry of a coastal wetland undergoing restoration, Everglades, Florida, USA. Catena 2016, 144, 74–83. [Google Scholar] [CrossRef]
- Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Justice, C.; Townshend, J.; Vermote, E.; Masuoka, E.; Wolfe, R.; Saleous, N.; Roy, D.; Morisette, J. An overview of MODIS Land data processing and product status. Remote Sens. Environ. 2002, 83, 3–15. [Google Scholar] [CrossRef]
- Solórzano, L.; Sharp, J.H. Determination of total dissolved phosphorus and particulate phosphorus in natural waters1. Limnol. Oceanogr. 1980, 25, 754–758. [Google Scholar] [CrossRef]
- Price, R.M.; Reio, D. Groundwater and Surface Water Chemistry from the Hole-in-the-Donut and Nearby Taylor Slough in Everglades National Park, Florida, USA: 2015–2016 ver 4. Environmental Data Initiative. 2023. Available online: https://portal.edirepository.org/nis/mapbrowse?packageid=knb-lter-fce.1252.4 (accessed on 2 January 2023).
- Abtew, W. Evapotranspiration measurements and modeling for three wetland systems in south florida. JAWRA J. Am. Water Resour. Assoc. 1996, 32, 465–473. [Google Scholar] [CrossRef]
- Douglas, E.M.; Jacobs, J.M.; Sumner, D.M.; Ray, R.L. A comparison of models for estimating potential evapotranspi-ration for Florida land cover types. J. Hydrol. 2009, 373, 366–376. [Google Scholar] [CrossRef]
- Saha, A.K.; Moses, C.S.; Price, R.; Engel, V.; Smith, T.J.; Anderson, G. A Hydrological Budget (2002–2008) for a Large Subtropical Wetland Ecosystem Indicates Marine Groundwater Discharge Accompanies Diminished Freshwater Flow. Estuaries Coasts 2011, 35, 459–474. [Google Scholar] [CrossRef]
- Zapata-Rios, X.; Price, R.M. Estimates of groundwater discharge to a coastal wetland using multiple techniques: Taylor Slough, Everglades National Park, USA. Hydrogeol. J. 2012, 20, 1651–1668. [Google Scholar] [CrossRef]
- Chen, H.; Wei, Z.; Lin, R.; Cai, J.; Han, C. Estimation of Evapotranspiration and Soil Water Content at a Regional Scale Using Remote Sensing Data. Water 2022, 14, 3283. [Google Scholar] [CrossRef]
- Sullivan, P.L.; Price, R.M.; Ross, M.S.; Stoffella, S.L.; Sah, J.P.; Scinto, L.J.; Cline, E.; Dreschel, T.W.; Sklar, F.H. Trees: A powerful geomorphic agent governing the landscape evolution of a subtropical wetland. Biogeochemistry 2016, 128, 369–384. [Google Scholar] [CrossRef]
- Dessu, S.B.; Price, R.M.; Troxler, T.G.; Kominoski, J.S. Effects of sea-level rise and freshwater management on long-term water levels and water quality in the Florida Coastal Everglades. J. Environ. Manag. 2018, 211, 164–176. [Google Scholar] [CrossRef] [PubMed]
- Troxler, T.G.; Childers, D.L.; Madden, C.J. Drivers of Decadal-Scale Change in Southern Everglades Wetland Macrophyte Communities of the Coastal Ecotone. Wetlands 2013, 34, 81–90. [Google Scholar] [CrossRef]
- Bounoua, L.; DeFries, R.; Collatz, G.J.; Sellers, P.; Khan, H. Effects of Land Cover Conversion on Surface Climate. Clim. Chang. 2002, 52, 29–64. [Google Scholar] [CrossRef]
- Harvey, J.W.; Jackson, J.M.; Mooney, R.H.; Choi, J. Interaction between Ground Water and Surface Water in Taylor Slough and Vicinity, Everglades National Park, South Florida: Study Methods and Appendixes; U.S.G.S. Open File Report 2000-248; US Geological Survey: Reason, VA, USA, 2000. [CrossRef]
- Wang, Q.; Li, Y.; Zhang, M. Soil recovery across a chronosequence of restored wetlands in the Florida Everglades. Sci. Rep. 2015, 5, 17630. [Google Scholar] [CrossRef]
- Verhagen, R.; Klooker, J.; Bakker, J.; Diggelen, R. Restoration success of low-production plant communities on former agricultural soils after top-soil removal. Appl. Veg. Sci. 2001, 4, 75–82. [Google Scholar] [CrossRef]
- Everglades National Park. Hole-in-the-Donut Restoration; National Park Service, U.S. Dept. of the Interior, South Florida Natural Resources Center, Everglades National Park: Homestead, FL, USA, 2009.
Year | Minimum | Maximum | Range | Acres Restored | Mean | Standard Deviation |
---|---|---|---|---|---|---|
2000 | 584.8 | 1450.7 | 865.9 | 808 | 1083.4 | 256.7 |
2001 | 590.0 | 1442 | 852.0 | 1141 | 1079.6 | 263.1 |
2003 | 698.6 | 1429.4 | 730.8 | 2051 | 1025.9 | 246.0 |
2004 | 603.9 | 1490.8 | 886.9 | 2890 | 950.5 | 281.4 |
2005 | 594.7 | 1437 | 842.3 | 3890 | 848.7 | 225.3 |
2009 | 627.3 | 1442.6 | 815.3 | 4091 | 872.6 | 223.1 |
2010 | 667.3 | 1434.6 | 767.3 | 4225 | 893.4 | 212.9 |
2011 | 675.1 | 1419.9 | 744.8 | 4414 | 909.9 | 203.8 |
2013 | 775.0 | 1425.2 | 650.2 | 4639 | 963.4 | 174.8 |
2014 | 677.5 | 1447 | 769.5 | 4893 | 891.6 | 195.3 |
Site | HCO3− (mg/L) | Na+ (mg/L) | K+ (mg/L) | Mg2+ (mg/L) | Ca2+ (mg/L) | Cl− (mg/L) | TN (μmol/L) | TP (μmol/L) | TOC (μmol/L) | NH4+ (μmol/L) | NO3− (μmol/L) |
---|---|---|---|---|---|---|---|---|---|---|---|
DO1 GW | 256.52 | 9.3 | 0.42 | 1.99 | 81.89 | 18.43 | 32.84 | 0.24 | 246.75 | 18.01 | 0.06 |
DO3 GW | 245.56 | 11.22 | 0.29 | 2.01 | 77.65 | 22.69 | 22.43 | 0.34 | 277.46 | 8 | 0.16 |
NP-67 GW | 254.59 | 8.37 | 1.01 | 2.45 | 81.44 | 16.72 | 48.94 | 0.36 | 332.52 | 12.04 | 0.17 |
TSB GW | 276.3 | 19.36 | 0.47 | 3.67 | 85.23 | 33.88 | 56.61 | 0.16 | 411.52 | 21.3 | 0.11 |
DO1 SW | 264.07 | 10.29 | 0.41 | 2.18 | 81.35 | 21.45 | 44.69 | 0.24 | 393.26 | 7.17 | 0.05 |
DO3 SW | 244.34 | 12.23 | 0.26 | 2.16 | 77.85 | 25.06 | 41.3 | 0.26 | 481.39 | 5.55 | 0.07 |
NP-67 SW | 192.61 | 8.11 | 0.8 | 2.23 | 59.38 | 16.45 | 31.76 | 0.52 | 592.04 | 11.3 | 0.23 |
TSB SW | 179.44 | 22.9 | 1.19 | 4.26 | 49.67 | 34.56 | 45.99 | 0.2 | 699.94 | 2.25 | 0.37 |
Comparison Between Location | Constituent | p-Value |
---|---|---|
NP-67 SW-DO1 SW | HCO3− | 0.10 |
TSB SW-DO1 SW | HCO3− | 0.03 |
TSB GW-DO1 GW | Na+ | 0.01 |
TSB SW-DO1 SW | Na+ | 0.00 |
TSB GW-DO3 GW | Na+ | 0.07 |
TSB SW-DO3 SW | Na+ | 0.01 |
NP-67 GW-DO1 GW | K+ | 0.08 |
TSB SW-DO1 SW | K+ | 0.02 |
NP-67 GW-DO3 GW | K+ | 0.04 |
TSB SW-DO3 SW | K+ | 0.00 |
TSB GW-DO1 GW | Mg2+ | 0.00 |
TSB SW-DO1 SW | Mg2+ | 0.00 |
TSB GW-DO3 GW | Mg2+ | 0.01 |
TSB SW-DO3 SW | Mg2+ | 0.00 |
TSB SW-DO1 SW | Ca2+ | 0.01 |
TSB SW-DO3 SW | Ca2+ | 0.02 |
NP-67 GW-DO3 GW | TN | 0.06 |
TSB GW-DO3 GW | TN | 0.05 |
NP-67 SW-DO1 SW | TOC | 0.10 |
TSB SW-DO1 SW | TOC | 0.00 |
TSB SW-DO3 SW | TOC | 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reio, D.N.; Price, R.M.; Melesse, A.M.; Ross, M. Quantification of Evapotranspiration and Water Chemistry in a Remediated Wetland in Everglades National Park, USA. Water 2023, 15, 611. https://doi.org/10.3390/w15040611
Reio DN, Price RM, Melesse AM, Ross M. Quantification of Evapotranspiration and Water Chemistry in a Remediated Wetland in Everglades National Park, USA. Water. 2023; 15(4):611. https://doi.org/10.3390/w15040611
Chicago/Turabian StyleReio, Dillon Nicholas, René M. Price, Assefa M. Melesse, and Michael Ross. 2023. "Quantification of Evapotranspiration and Water Chemistry in a Remediated Wetland in Everglades National Park, USA" Water 15, no. 4: 611. https://doi.org/10.3390/w15040611
APA StyleReio, D. N., Price, R. M., Melesse, A. M., & Ross, M. (2023). Quantification of Evapotranspiration and Water Chemistry in a Remediated Wetland in Everglades National Park, USA. Water, 15(4), 611. https://doi.org/10.3390/w15040611