Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = European mountain pines

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3200 KiB  
Article
Early Detection of Southern Pine Beetle Attack by UAV-Collected Multispectral Imagery
by Caroline R. Kanaskie, Michael R. Routhier, Benjamin T. Fraser, Russell G. Congalton, Matthew P. Ayres and Jeff R. Garnas
Remote Sens. 2024, 16(14), 2608; https://doi.org/10.3390/rs16142608 - 17 Jul 2024
Cited by 7 | Viewed by 2374
Abstract
Effective management of bark beetle infestations requires prompt detection of attacked trees. Early attack is also called green attack, since tree foliage does not yet show any visible signs of tree decline. In several bark beetle systems, including mountain pine beetle and European [...] Read more.
Effective management of bark beetle infestations requires prompt detection of attacked trees. Early attack is also called green attack, since tree foliage does not yet show any visible signs of tree decline. In several bark beetle systems, including mountain pine beetle and European spruce bark beetle, unpiloted aerial vehicle (UAV)-based remote sensing has successfully detected early attack. We explore the utility of remote sensing for early attack detection of southern pine beetle (SPB; Dendroctonus frontalis Zimm.), paired with detailed ground surveys to link tree decline symptoms with SPB life stages within the tree. In three of the northernmost SPB outbreaks in 2022 (Long Island, New York), we conducted ground surveys every two weeks throughout the growing season and collected UAV-based multispectral imagery in July 2022. Ground data revealed that SPB-attacked pitch pines (Pinus rigida Mill.) generally maintained green foliage until SPB pupation occurred within the bole. This tree decline behavior illustrates the need for early attack detection tools, like multispectral imagery, in the beetle’s northern range. Balanced random forest classification achieved, on average, 78.8% overall accuracy and identified our class of interest, SPB early attack, with 68.3% producer’s accuracy and 72.1% user’s accuracy. After removing the deciduous trees and just mapping the pine, the overall accuracy, on average, was 76.9% while the producer’s accuracy and the user’s accuracy both increased for the SPB early attack class. Our results demonstrate the utility of multispectral remote sensing in assessing SPB outbreaks, and we discuss possible improvements to our protocol. This is the first remote sensing study of SPB early attack in almost 60 years, and the first using a UAV in the SPB literature. Full article
Show Figures

Figure 1

15 pages, 1742 KiB  
Article
Envisioning Transition from Open Landscapes to Forested Landscapes in the Routt National Forest, Colorado, United States
by Brice B. Hanberry and Jacob M. Seidel
Fire 2024, 7(3), 82; https://doi.org/10.3390/fire7030082 - 6 Mar 2024
Viewed by 2266
Abstract
Globally, in remaining wildlands, tree densities and forested cover have increased in grasslands and open forests since European settlement. In the southern Rocky Mountains of Colorado, United States, we determined tree composition and tree cover from historical (years 1875 to 1896) surveys and [...] Read more.
Globally, in remaining wildlands, tree densities and forested cover have increased in grasslands and open forests since European settlement. In the southern Rocky Mountains of Colorado, United States, we determined tree composition and tree cover from historical (years 1875 to 1896) surveys and compared them to current (2002 to 2011) tree composition and current (year 2016) forested land cover for 500,000 ha of the Routt National Forest. Additionally, we examined whether changes in precipitation occurred. Regarding composition, pine (primarily lodgepole pine; Pinus contorta) decreased from 65% to 32% of all trees, with increased subalpine fir (Abies lasiocarpa) from 0.5% to 23% of all trees, and quaking aspen (Populus tremuloides) from 13% to 30% of all trees. According to 80% of 5175 survey points not in forests, the historical landscape was very open, comprised of grasslands, mountain meadows, and other open ecosystems. In contrast, 75% of the current landscape is covered by forests. Change points in the Palmer Modified Drought Index were within historical limits, indicating that forestation was not related to a change in water availability. Based on historical surveys and accounts, we envisioned a historical landscape that was open but embedded with dense lodgepole pine clusters and spruce stands at high elevations, which has now become a predominantly forested landscape of dense forests, similar to global forestation patterns. Full article
Show Figures

Figure 1

21 pages, 3996 KiB  
Article
Spatial-Coherent Dynamics and Climatic Signals in the Radial Growth of Siberian Stone Pine (Pinus sibirica Du Tour) in Subalpine Stands along the Western Sayan Mountains
by Dina F. Zhirnova, Liliana V. Belokopytova, Konstantin V. Krutovsky, Yulia A. Kholdaenko, Elena A. Babushkina and Eugene A. Vaganov
Forests 2022, 13(12), 1994; https://doi.org/10.3390/f13121994 - 25 Nov 2022
Cited by 9 | Viewed by 2179
Abstract
Siberian stone pine (Pinus sibirica Du Tour) is one of the keystone conifers in Siberian taiga, but its radial growth is complacent and thus rarely investigated. We studied its growth in subalpine stands near the upper timberline along the Western Sayan Mountains, [...] Read more.
Siberian stone pine (Pinus sibirica Du Tour) is one of the keystone conifers in Siberian taiga, but its radial growth is complacent and thus rarely investigated. We studied its growth in subalpine stands near the upper timberline along the Western Sayan Mountains, Southern Siberia, because climatic responses of trees growing on the boundaries of species distribution help us better understand their performance and prospects under climate change. We performed dendroclimatic analysis for six tree-ring width chronologies with significant between-site correlations at distances up to 270 km (r = 0.57–0.84, p < 0.05). We used ERA-20C (European Reanalysis of the Twentieth Century) daily climatic series to reveal weak but spatially coherent responses of tree growth to temperature and precipitation. Temperature stably stimulated growth during the period from the previous July–August to current August, except for an adverse effect in April. Precipitation suppressed growth during periods from the previous July–September to December (with reaction gradually strengthening) and from the current April to August (weakening), while the snowfall impact in January–March was neutral or positive. Weather extremes probably caused formation of wide tree rings in 1968 and 2002, but narrow rings in 1938, 1947, 1967, 1988, and 1997. A subtle increase in the climatic sensitivity of mature trees was observed for all significant seasonal climatic variables except for the temperature in the previous October–January. The current winter warming trend is supposedly advantageous for young pine trees based on their climatic response and observed elevational advance. Full article
(This article belongs to the Special Issue Climate-Smart Forestry: Problems, Priorities and Prospects)
Show Figures

Figure 1

24 pages, 5242 KiB  
Article
Comparing PlanetScope and Sentinel-2 Imagery for Mapping Mountain Pines in the Sarntal Alps, Italy
by Moritz Rösch, Ruth Sonnenschein, Sebastian Buchelt and Tobias Ullmann
Remote Sens. 2022, 14(13), 3190; https://doi.org/10.3390/rs14133190 - 2 Jul 2022
Cited by 12 | Viewed by 4173
Abstract
The mountain pine (Pinus mugo ssp. Mugo Turra) is an important component of the alpine treeline ecotone and fulfills numerous ecosystem functions. To understand and quantify the impacts of increasing logging activities and climatic changes in the European Alps, accurate information on [...] Read more.
The mountain pine (Pinus mugo ssp. Mugo Turra) is an important component of the alpine treeline ecotone and fulfills numerous ecosystem functions. To understand and quantify the impacts of increasing logging activities and climatic changes in the European Alps, accurate information on the occurrence and distribution of mountain pine stands is needed. While Earth observation provides up-to-date information on land cover, space-borne mapping of mountain pines is challenging as different coniferous species are spectrally similar, and small-structured patches may remain undetected due to the sensor’s spatial resolution. This study uses multi-temporal optical imagery from PlanetScope (3 m) and Sentinel-2 (10 m) and combines them with additional features (e.g., textural statistics (homogeneity, contrast, entropy, spatial mean and spatial variance) from gray level co-occurrence matrix (GLCM), topographic features (elevation, slope and aspect) and canopy height information) to overcome the present challenges in mapping mountain pine stands. Specifically, we assessed the influence of spatial resolution and feature space composition including the GLCM window size for textural features. The study site is covering the Sarntal Alps, Italy, a region known for large stands of mountain pine. Our results show that mountain pines can be accurately mapped (PlanetScope (90.96%) and Sentinel-2 (90.65%)) by combining all features. In general, Sentinel-2 can achieve comparable results to PlanetScope independent of the feature set composition, despite the lower spatial resolution. In particular, the inclusion of textural features improved the accuracy by +8% (PlanetScope) and +3% (Sentinel-2), whereas accuracy improvements of topographic features and canopy height were low. The derived map of mountain pines in the Sarntal Alps supports local forest management to monitor and assess recent and ongoing anthropogenic and climatic changes at the treeline. Furthermore, our study highlights the importance of freely available Sentinel-2 data and image-derived textural features to accurately map mountain pines in Alpine environments. Full article
(This article belongs to the Special Issue Remote Sensing for Mountain Ecosystems)
Show Figures

Graphical abstract

18 pages, 5593 KiB  
Article
Climate Signals for Growth Variations of F. sylvatica, P. abies, and P. sylvestris in Southeast Germany over the Past 50 Years
by Annette Debel, Wolfgang Jens-Henrik Meier and Achim Bräuning
Forests 2021, 12(11), 1433; https://doi.org/10.3390/f12111433 - 21 Oct 2021
Cited by 24 | Viewed by 3537
Abstract
Since recent drought events have already caused severe damage to trees and droughts in the near future are expected to occur even more frequently, this study investigated the response of forest ecosystems to changing climate conditions in the topographically complex region of Bavaria, [...] Read more.
Since recent drought events have already caused severe damage to trees and droughts in the near future are expected to occur even more frequently, this study investigated the response of forest ecosystems to changing climate conditions in the topographically complex region of Bavaria, southeast Germany. For this purpose, climate–growth relationships of important European deciduous and coniferous tree species were investigated over the past 50 years at three middle mountain ranges and corresponding basins. A response analysis between tree-ring width and climate variables was applied to detect modifications in tree responses comparing two 25-year periods at individual forest sites. Furthermore, tree responses to climatic extreme years and seasons were analyzed using a superposed epoch analysis. The results showed that Scots pine (Pinus sylvestris) proved to be the most vulnerable and least drought-resistant of all investigated tree species. Likewise, Norway spruce (Picea abies) and European beech (Fagus sylvatica) revealed a higher drought sensitivity over the past 25 years, even though an extended growing season partially improved tree growth at high-elevation sites. In conclusion, all studied tree species were affected by drought events, even at humid high-elevation sites. Correlations with daily climate variables confirmed that even short-term weather conditions could strongly influence trees’ radial growth. Tree responses to climate conditions have shifted significantly between past and present periods but vary considerably among sites and are generally stronger in humid regions than in already dry areas. Full article
(This article belongs to the Special Issue Vulnerability of Forests to Climate Variability and Change)
Show Figures

Figure 1

19 pages, 1412 KiB  
Article
New Insight into Taxonomy of European Mountain Pines, Pinus mugo Complex, Based on Complete Chloroplast Genomes Sequencing
by Joanna Sokołowska, Hanna Fuchs and Konrad Celiński
Plants 2021, 10(7), 1331; https://doi.org/10.3390/plants10071331 - 29 Jun 2021
Cited by 15 | Viewed by 3421
Abstract
The Pinus mugo complex is a large group of closely related mountain pines, which are an important component of the ecosystems of the most important mountain ranges, such as the Alps, Carpathians and Pyrenees. The phylogenetic relationships between taxa in this complex have [...] Read more.
The Pinus mugo complex is a large group of closely related mountain pines, which are an important component of the ecosystems of the most important mountain ranges, such as the Alps, Carpathians and Pyrenees. The phylogenetic relationships between taxa in this complex have been under discussion for many years. Despite the use of many different approaches, they still need to be clarified and supplemented with new data, especially those obtained with high-throughput methods. Therefore, in this study, the complete sequences of the chloroplast genomes of the three most recognized members of the Pinus mugo complex, i.e., Pinus mugo, Pinus rotundata and Pinus uncinata, were sequenced and analyzed to gain new insight into their phylogenetic relationships. Comparative analysis of their complete chloroplast genome sequences revealed several mutational hotspots potentially useful for the genetic identification of taxa from the Pinus mugo complex. Phylogenetic inference based on sixteen complete chloroplast genomes of different coniferous representatives showed that pines from the Pinus mugo complex form one distinct monophyletic group. The results obtained in this study provide new and valuable omics data for further research within the European mountain pine complex. They also indicate which regions may be useful in the search for diagnostic DNA markers for the members of Pinus mugo complex and set the baseline in the conservation of genetic resources of its endangered taxa. Full article
(This article belongs to the Special Issue Plant Evolution, Systematics, and Chloroplast Genome)
Show Figures

Figure 1

24 pages, 2843 KiB  
Article
Candidate Genes for the High-Altitude Adaptations of Two Mountain Pine Taxa
by Julia Zaborowska, Bartosz Łabiszak, Annika Perry, Stephen Cavers and Witold Wachowiak
Int. J. Mol. Sci. 2021, 22(7), 3477; https://doi.org/10.3390/ijms22073477 - 27 Mar 2021
Cited by 6 | Viewed by 3803
Abstract
Mountain plants, challenged by vegetation time contractions and dynamic changes in environmental conditions, developed adaptations that help them to balance their growth, reproduction, survival, and regeneration. However, knowledge regarding the genetic basis of species adaptation to higher altitudes remain scarce for most plant [...] Read more.
Mountain plants, challenged by vegetation time contractions and dynamic changes in environmental conditions, developed adaptations that help them to balance their growth, reproduction, survival, and regeneration. However, knowledge regarding the genetic basis of species adaptation to higher altitudes remain scarce for most plant species. Here, we attempted to identify such corresponding genomic regions of high evolutionary importance in two closely related European pines, Pinus mugo and P. uncinata, contrasting them with a reference lowland relative—P. sylvestris. We genotyped 438 samples at thousands of single nucleotide polymorphism (SNP) markers, tested their genetic differentiation and population structure followed by outlier detection and gene ontology annotations. Markers clearly differentiated the species and uncovered patterns of population structure in two of them. In P. uncinata three Pyrenean sites were grouped together, while two outlying populations constituted a separate cluster. In P. sylvestris, Spanish population appeared distinct from the remaining four European sites. Between mountain pines and the reference species, 35 candidate genes for altitude-dependent selection were identified, including such encoding proteins responsible for photosynthesis, photorespiration and cell redox homeostasis, regulation of transcription, and mRNA processing. In comparison between two mountain pines, 75 outlier SNPs were found in proteins involved mainly in the gene expression and metabolism. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

29 pages, 5919 KiB  
Article
Multi-Temporal Sentinel-2 Data in Classification of Mountain Vegetation
by Martyna Wakulińska and Adriana Marcinkowska-Ochtyra
Remote Sens. 2020, 12(17), 2696; https://doi.org/10.3390/rs12172696 - 20 Aug 2020
Cited by 31 | Viewed by 7759
Abstract
The electromagnetic spectrum registered via satellite remote sensing methods became a popular data source that can enrich traditional methods of vegetation monitoring. The European Space Agency Sentinel-2 mission, thanks to its spatial (10–20 m) and spectral resolution (12 spectral bands registered in visible-, [...] Read more.
The electromagnetic spectrum registered via satellite remote sensing methods became a popular data source that can enrich traditional methods of vegetation monitoring. The European Space Agency Sentinel-2 mission, thanks to its spatial (10–20 m) and spectral resolution (12 spectral bands registered in visible-, near-, and mid-infrared spectrum) and primarily its short revisit time (5 days), helps to provide reliable and accurate material for the identification of mountain vegetation. Using the support vector machines (SVM) algorithm and reference data (botanical map of non-forest vegetation, field survey data, and high spatial resolution images) it was possible to classify eight vegetation types of Giant Mountains: bogs and fens, deciduous shrub vegetation, forests, grasslands, heathlands, subalpine tall forbs, subalpine dwarf pine scrubs, and rock and scree vegetation. Additional variables such as principal component analysis (PCA) bands and selected vegetation indices were included in the best classified dataset. The results of the iterative classification, repeated 100 times, were assessed as approximately 80% median overall accuracy (OA) based on multi-temporal datasets composed of images acquired through the vegetation growing season (from late spring to early autumn 2018), better than using a single-date scene (70%–72% OA). Additional variables did not significantly improve the results, showing the importance of spectral and temporal information themselves. Our study confirms the possibility of fully available data for the identification of mountain vegetation for management purposes and protection within national parks. Full article
Show Figures

Graphical abstract

13 pages, 3216 KiB  
Article
Seed Total Protein Profiling in Discrimination of Closely Related Pines: Evidence from the Pinus mugo Complex
by Konrad Celiński, Joanna Sokołowska, Agata Zemleduch-Barylska, Roman Kuna, Hanna Kijak, Aleksandra Maria Staszak, Aleksandra Wojnicka-Półtorak and Ewa Chudzińska
Plants 2020, 9(7), 872; https://doi.org/10.3390/plants9070872 - 9 Jul 2020
Cited by 2 | Viewed by 3462
Abstract
The Pinus mugo complex includes several dozen closely related European mountain pines. The discrimination of specific taxa within this complex is still extremely challenging, although numerous methodologies have been used to solve this problem, including morphological and anatomical analyses, cytological studies, allozyme variability, [...] Read more.
The Pinus mugo complex includes several dozen closely related European mountain pines. The discrimination of specific taxa within this complex is still extremely challenging, although numerous methodologies have been used to solve this problem, including morphological and anatomical analyses, cytological studies, allozyme variability, and DNA barcoding, etc. In this study, we used the seed total protein (STP) patterns to search for taxonomically interesting differences among three closely-related pine taxa from the Pinus mugo complex and five more distant species from the Pinaceae family. It was postulated that STP profiling can serve as the backup methodology for modern taxonomic research, in which more sophisticated analyses, i.e., based on the DNA barcoding approach, have been found to be useless. A quantitative analysis of the STP profiles revealed characteristic electrophoretic patterns for all the analyzed taxa from Pinaceae. STP profiling enabled the discrimination of closely-related pine taxa, even of those previously indistinguishable by chloroplast DNA barcodes. The results obtained in this study indicate that STP profiling can be very useful for solving complex taxonomic puzzles. Full article
(This article belongs to the Special Issue Systematics and the Conservation of Plant Diversity)
Show Figures

Figure 1

18 pages, 2427 KiB  
Article
Tree Growth and Wood Quality in Pure Vs. Mixed-Species Stands of European Beech and Calabrian Pine in Mediterranean Mountain Forests
by Diego Russo, Pasquale A. Marziliano, Giorgio Macrì, Giuseppe Zimbalatti, Roberto Tognetti and Fabio Lombardi
Forests 2020, 11(1), 6; https://doi.org/10.3390/f11010006 - 18 Dec 2019
Cited by 18 | Viewed by 4826
Abstract
Mixed-species forests may deliver more forest functions and services than monocultures, as being considered more resistant to disturbances than pure stands. However, information on wood quality in mixed-species vs. corresponding pure forests is poor. In this study, nine plots grouped into three triplets [...] Read more.
Mixed-species forests may deliver more forest functions and services than monocultures, as being considered more resistant to disturbances than pure stands. However, information on wood quality in mixed-species vs. corresponding pure forests is poor. In this study, nine plots grouped into three triplets of pure and mixed-species stands of European beech and Calabrian pine (three dominated by European beech, three dominated by Calabrian pine, and three mixed-species plots) were analysed. We evaluated tree growth and wood quality through dendrochronological approaches and non-destructive technologies (acoustic detection), respectively, hypothesizing that the mixture might improve the fitness of each species and its wood quality. A linear mixed model was applied to test the effects of exogenous influences on the basal area index (BAI) and the dynamic modulus of elasticity (MOEd). The recruitment period (Rp) was studied to verify whether wood quality was independent from stem radial growth patterns. Results showed that the mixture effect influenced both wood quality and BAI. In the mixed-species plots, for each species, MOEd values were significantly higher than in the corresponding pure stands. The mixture effect aligned MOEd values, making wood quality uniform across the different diameter classes. In the mixed-species plots, a significant positive relationship between MOEd and Rp, but also significantly higher BAI values than in the pure plots, were found for European beech, but not for Calabrian pine. The results suggest the promotion of mixing of European beech and Calabrian pine in this harsh environment to potentially improve both tree growth and wood quality. Full article
(This article belongs to the Special Issue Relationship between Forest Ecophysiology and Environment)
Show Figures

Figure 1

24 pages, 9850 KiB  
Article
Forest Stand Species Mapping Using the Sentinel-2 Time Series
by Ewa Grabska, Patrick Hostert, Dirk Pflugmacher and Katarzyna Ostapowicz
Remote Sens. 2019, 11(10), 1197; https://doi.org/10.3390/rs11101197 - 20 May 2019
Cited by 234 | Viewed by 17333
Abstract
Accurate information regarding forest tree species composition is useful for a wide range of applications, both for forest management and scientific research. Remote sensing is an efficient tool for collecting spatially explicit information on forest attributes. With the launch of the Sentinel-2 mission, [...] Read more.
Accurate information regarding forest tree species composition is useful for a wide range of applications, both for forest management and scientific research. Remote sensing is an efficient tool for collecting spatially explicit information on forest attributes. With the launch of the Sentinel-2 mission, new opportunities have arisen for mapping tree species owing to its spatial, spectral, and temporal resolution. The short revisit cycle (five days) is crucial in vegetation mapping because of the reflectance changes caused by phenological phases. In our study, we evaluated the utility of the Sentinel-2 time series for mapping tree species in the complex, mixed forests of the Polish Carpathian Mountains. We mapped the following nine tree species: common beech, silver birch, common hornbeam, silver fir, sycamore maple, European larch, grey alder, Scots pine, and Norway spruce. We used the Sentinel-2 time series from 2018, with 18 images included in the study. Different combinations of Sentinel-2 imagery were selected based on mean decrease accuracy (MDA) and mean decrease Gini (MDG) measures, in addition to temporal phonological pattern analysis. Tree species discrimination was performed using the Random Forest classification algorithm. Our results showed that the use of the Sentinel-2 time series instead of single date imagery significantly improved forest tree species mapping, by approximately 5–10% of overall accuracy. In particular, combining images from spring and autumn resulted in better species discrimination. Full article
(This article belongs to the Special Issue Multitemporal Remote Sensing for Forestry)
Show Figures

Graphical abstract

25 pages, 6448 KiB  
Article
Fire Regime in Marginal Jack Pine Populations at Their Southern Limit of Distribution, Riding Mountain National Park, Central Canada
by Jacques C. Tardif, Stephen Cornelsen, France Conciatori, Eben Blake Hodgin and Marlow G. Pellatt
Forests 2016, 7(10), 219; https://doi.org/10.3390/f7100219 - 30 Sep 2016
Cited by 7 | Viewed by 7555
Abstract
In central Canada, long fire history reconstructions are rare. In a context where both anthropogenic and climate influences on fire regime have changed, Parks Canada has a mandate to maintain ecological integrity. Here we present a fire history derived from fire-scarred jack pine [...] Read more.
In central Canada, long fire history reconstructions are rare. In a context where both anthropogenic and climate influences on fire regime have changed, Parks Canada has a mandate to maintain ecological integrity. Here we present a fire history derived from fire-scarred jack pine (Pinus banksiana Lamb.) trees growing at their southern distribution limit in Riding Mountain National Park (RMNP). In Lake Katherine Fire Management Unit (LKFMU), a subregion within the park, fire history was reconstructed from archival records, tree-ring records, and charcoal in lake sediment. From about 1450 to 1850 common era (CE) the fire return intervals varied from 37 to 125 years, according to models. During the period 1864–1930 the study area burned frequently (Weibull Mean Fire Intervals between 2.66 and 5.62 years); this period coincided with the end of First Nations occupation and the start of European settlement. Major recruitment pulses were associated with the stand-replacing 1864 and 1894 fires. This period nevertheless corresponded to a reduction in charcoal accumulation. The current fire-free period in LKFMU (1930–today) coincides with RMNP establishment, exclusion of First Nations land use and increased fire suppression. Charcoal accumulation further decreased during this period. In the absence of fire, jack pine exclusion in LKFMU is foreseeable and the use of prescribed burning is advocated to conserve this protected jack pine ecosystem, at the southern margins of its range, and in the face of potential climate change. Full article
Show Figures

Figure 1

Back to TopTop