Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = East Pisco Basin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 9486 KB  
Article
Surviving a Dark Age: The Oldest Baleen-Bearing Whales (Cetacea: Chaeomysticeti) of Pacific South America (Lower Miocene, Peru)
by Francesco Nobile, Olivier Lambert, Giovanni Bianucci, Eli Amson, Mark Bosselaers, Giulia Bosio, Luca Pellegrino, Elisa Malinverno, Claudio Di Celma, Mario Urbina and Alberto Collareta
Life 2025, 15(3), 452; https://doi.org/10.3390/life15030452 - 13 Mar 2025
Cited by 1 | Viewed by 2633
Abstract
The evolution of baleen whales (Mysticeti) comprises two main phases, namely, (i) a Paleogene phase, which saw the diversification of stem lineages, and (ii) a Neogene phase, dominated by modern-looking, toothless, baleen-bearing forms in the monophyletic group Chaeomysticeti. These two phases are separated [...] Read more.
The evolution of baleen whales (Mysticeti) comprises two main phases, namely, (i) a Paleogene phase, which saw the diversification of stem lineages, and (ii) a Neogene phase, dominated by modern-looking, toothless, baleen-bearing forms in the monophyletic group Chaeomysticeti. These two phases are separated by a global turnover event coinciding with a gap—or “dark age”—in the mysticete fossil record. This dark age occurred between 23 and ~18 Ma and is apparently detected worldwide, except in Zealandia. Here, we report on a new mysticete fossil from the Lower Miocene (Burdigalian: ~19.2 Ma) strata of the Chilcatay Formation cropping out at the newly discovered locality of Cerro Tiza (East Pisco Basin, Peru), which represents a limited but precious testament from the last phase of the baleen whale dark age. Two previously mentioned, slightly geologically younger fossils from the same formation are also reappraised herein, revealing the occurrence of at least another baleen whale taxon in the upper Chilcatay strata—one that belongs in the mysticete crown group. Although the Early Miocene remains a problematic time interval for the fossil record of baleen whales, our new results encourage the search for mysticete fossils in the Lower Miocene strata of the East Pisco Basin, whose basin fill preserves a cornucopia of extraordinarily informative marine vertebrate fossils of the Cenozoic age, as well as in coeval deposits worldwide. Full article
(This article belongs to the Section Paleobiology)
Show Figures

Figure 1

16 pages, 9610 KB  
Article
Ghosts of the Holobiont: Borings on a Miocene Turtle Carapace from the Pisco Formation (Peru) as Witnesses of Ancient Symbiosis
by Alberto Collareta, Rafael Varas-Malca, Giulia Bosio, Mario Urbina and Giovanni Coletti
J. Mar. Sci. Eng. 2023, 11(1), 45; https://doi.org/10.3390/jmse11010045 - 29 Dec 2022
Cited by 12 | Viewed by 4742
Abstract
In spite of the widespread occurrence of epibiotic turtle barnacles (Coronuloidea: Chelonibiidae and Platylepadidae) on extant marine turtles (Chelonioidea: Cheloniidae and Dermochelyidae), and although the association between these cirripedes and their chelonian hosts has existed for more than 30 million years, only a [...] Read more.
In spite of the widespread occurrence of epibiotic turtle barnacles (Coronuloidea: Chelonibiidae and Platylepadidae) on extant marine turtles (Chelonioidea: Cheloniidae and Dermochelyidae), and although the association between these cirripedes and their chelonian hosts has existed for more than 30 million years, only a few studies have investigated the deep past of this iconic symbiotic relationship on palaeontological grounds. We describe probable platylepadid attachment scars in the form of hemispherical/hemiellipsoidal borings on an Upper Miocene (Tortonian) fragmentary turtle carapace, identified herein as belonging to Cheloniidae, from the Pisco Lagerstätte (East Pisco Basin, southern Peru). When coupled with the available molecular data, this and other similar ichnofossils allow for hypothesising that platylepadid symbionts were hosted by sea turtles as early as in early Oligocene times and became relatively widespread during the subsequent Miocene epoch. Chelonian fossils that preserve evidence of colonisation by platylepadid epibionts in the form of pits on the turtle shell should be regarded as fossil holobionts, i.e., palaeontological witnesses of discrete communal ecological units formed by a basibiont and the associated symbionts (including the epibiota). A greater attention to the bone modifications that may be detected on fossil turtle bones is expected to contribute significantly to the emerging field of palaeosymbiology. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

17 pages, 6340 KB  
Article
Dental Morphology, Palaeoecology and Palaeobiogeographic Significance of a New Species of Requiem Shark (Genus Carcharhinus) from the Lower Miocene of Peru (East Pisco Basin, Chilcatay Formation)
by Alberto Collareta, René Kindlimann, Alessio Baglioni, Walter Landini, Giovanni Sarti, Alí Altamirano, Mario Urbina and Giovanni Bianucci
J. Mar. Sci. Eng. 2022, 10(10), 1466; https://doi.org/10.3390/jmse10101466 - 10 Oct 2022
Cited by 8 | Viewed by 4945
Abstract
Nowadays, the requiem sharks comprise one of the most diverse and widespread families of selachians, i.e., Carcharhinidae. Among the carcharhinids, the genus Carcharhinus has the largest number of living species, namely, at least 35. Known from fossils as old as the Cretaceous, the [...] Read more.
Nowadays, the requiem sharks comprise one of the most diverse and widespread families of selachians, i.e., Carcharhinidae. Among the carcharhinids, the genus Carcharhinus has the largest number of living species, namely, at least 35. Known from fossils as old as the Cretaceous, the requiem sharks did not significantly radiate before the Eocene (when Carcharhinus also appeared), and their diversification mainly occurred in Neogene times. Here, we describe a new species of requiem shark, Carcharhinus dicelmai sp. nov., based on fossil teeth from Lower Miocene (18.4–18.1 Ma) strata of the Chilcatay Formation of the East Pisco Basin (southern Peru). Upper teeth of C. dicelmai sp. nov. are typically provided with a slender, smooth-edged cusp; a marked coronal twist; and a distal heel that bears 1–5 coarse, angularly lobate serrae that become more prominent toward the base of the cusp. The dentition of C. dicelmai sp. nov. appears less akin to that of most other carcharhines to the cutting-clutching type, and seemingly testifies to the development of more predominantly clutching adaptations. A carcharhinid tooth from the Burdigalian to lower Langhian Cantaure Formation of Venezuela is reassigned to C. dicelmai sp. nov., suggesting a trans-Panamanian distribution for this extinct shark species. Full article
(This article belongs to the Special Issue Feature Papers in Marine Biology)
Show Figures

Figure 1

25 pages, 9463 KB  
Article
Vertebrate Palaeoecology of the Pisco Formation (Miocene, Peru): Glimpses into the Ancient Humboldt Current Ecosystem
by Alberto Collareta, Olivier Lambert, Felix G. Marx, Christian de Muizon, Rafael Varas-Malca, Walter Landini, Giulia Bosio, Elisa Malinverno, Karen Gariboldi, Anna Gioncada, Mario Urbina and Giovanni Bianucci
J. Mar. Sci. Eng. 2021, 9(11), 1188; https://doi.org/10.3390/jmse9111188 - 27 Oct 2021
Cited by 33 | Viewed by 10621
Abstract
The northward-flowing Humboldt Current hosts perpetually high levels of productivity along the western coast of South America. Here, we aim to elucidate the deep-time history of this globally important ecosystem based on a detailed palaeoecological analysis of the exceptionally preserved middle–upper Miocene vertebrate [...] Read more.
The northward-flowing Humboldt Current hosts perpetually high levels of productivity along the western coast of South America. Here, we aim to elucidate the deep-time history of this globally important ecosystem based on a detailed palaeoecological analysis of the exceptionally preserved middle–upper Miocene vertebrate assemblages of the Pisco Formation of the East Pisco Basin, southern Peru. We summarise observations on hundreds of fossil whales, dolphins, seals, seabirds, turtles, crocodiles, sharks, rays, and bony fishes to reconstruct ecological relationships in the wake of the Middle Miocene Climatic Optimum, and the marked cooling that followed it. The lowermost, middle Miocene Pisco sequence (P0) and its vertebrate assemblage testify to a warm, semi-enclosed, near-shore palaeoenvironment. During the first part of the Tortonian (P1), high productivity within a prominent upwelling system supported a diverse assemblage of mesopredators, at least some of which permanently resided in the Pisco embayment and used it as a nursery or breeding/calving area. Younger portions of the Pisco Formation (P2) reveal a more open setting, with wide-ranging species like rorquals increasingly dominating the vertebrate assemblage, but also local differences reflecting distance from the coast. Like today, these ancient precursors of the modern Humboldt Current Ecosystem were based on sardines, but notably differed from their present-day equivalent in being dominated by extremely large-bodied apex predators like Livyatan melvillei and Carcharocles megalodon. Full article
(This article belongs to the Special Issue Feature Papers in Marine Biology)
Show Figures

Graphical abstract

Back to TopTop